// SPDX-License-Identifier: GPL-2.0-only #define _GNU_SOURCE /* for program_invocation_short_name */ #include "test_util.h" #include "kvm_util.h" #include "processor.h" #include "vmx.h" #include "svm_util.h" #define L2_GUEST_STACK_SIZE 256 /* * Arbitrary, never shoved into KVM/hardware, just need to avoid conflict with * the "real" exceptions used, #SS/#GP/#DF (12/13/8). */ #define FAKE_TRIPLE_FAULT_VECTOR 0xaa /* Arbitrary 32-bit error code injected by this test. */ #define SS_ERROR_CODE 0xdeadbeef /* * Bit '0' is set on Intel if the exception occurs while delivering a previous * event/exception. AMD's wording is ambiguous, but presumably the bit is set * if the exception occurs while delivering an external event, e.g. NMI or INTR, * but not for exceptions that occur when delivering other exceptions or * software interrupts. * * Note, Intel's name for it, "External event", is misleading and much more * aligned with AMD's behavior, but the SDM is quite clear on its behavior. */ #define ERROR_CODE_EXT_FLAG BIT(0) /* * Bit '1' is set if the fault occurred when looking up a descriptor in the * IDT, which is the case here as the IDT is empty/NULL. */ #define ERROR_CODE_IDT_FLAG BIT(1) /* * The #GP that occurs when vectoring #SS should show the index into the IDT * for #SS, plus have the "IDT flag" set. */ #define GP_ERROR_CODE_AMD ((SS_VECTOR * 8) | ERROR_CODE_IDT_FLAG) #define GP_ERROR_CODE_INTEL ((SS_VECTOR * 8) | ERROR_CODE_IDT_FLAG | ERROR_CODE_EXT_FLAG) /* * Intel and AMD both shove '0' into the error code on #DF, regardless of what * led to the double fault. */ #define DF_ERROR_CODE 0 #define INTERCEPT_SS (BIT_ULL(SS_VECTOR)) #define INTERCEPT_SS_DF (INTERCEPT_SS | BIT_ULL(DF_VECTOR)) #define INTERCEPT_SS_GP_DF (INTERCEPT_SS_DF | BIT_ULL(GP_VECTOR)) static void l2_ss_pending_test(void) { GUEST_SYNC(SS_VECTOR); } static void l2_ss_injected_gp_test(void) { GUEST_SYNC(GP_VECTOR); } static void l2_ss_injected_df_test(void) { GUEST_SYNC(DF_VECTOR); } static void l2_ss_injected_tf_test(void) { GUEST_SYNC(FAKE_TRIPLE_FAULT_VECTOR); } static void svm_run_l2(struct svm_test_data *svm, void *l2_code, int vector, uint32_t error_code) { struct vmcb *vmcb = svm->vmcb; struct vmcb_control_area *ctrl = &vmcb->control; vmcb->save.rip = (u64)l2_code; run_guest(vmcb, svm->vmcb_gpa); if (vector == FAKE_TRIPLE_FAULT_VECTOR) return; GUEST_ASSERT_EQ(ctrl->exit_code, (SVM_EXIT_EXCP_BASE + vector)); GUEST_ASSERT_EQ(ctrl->exit_info_1, error_code); } static void l1_svm_code(struct svm_test_data *svm) { struct vmcb_control_area *ctrl = &svm->vmcb->control; unsigned long l2_guest_stack[L2_GUEST_STACK_SIZE]; generic_svm_setup(svm, NULL, &l2_guest_stack[L2_GUEST_STACK_SIZE]); svm->vmcb->save.idtr.limit = 0; ctrl->intercept |= BIT_ULL(INTERCEPT_SHUTDOWN); ctrl->intercept_exceptions = INTERCEPT_SS_GP_DF; svm_run_l2(svm, l2_ss_pending_test, SS_VECTOR, SS_ERROR_CODE); svm_run_l2(svm, l2_ss_injected_gp_test, GP_VECTOR, GP_ERROR_CODE_AMD); ctrl->intercept_exceptions = INTERCEPT_SS_DF; svm_run_l2(svm, l2_ss_injected_df_test, DF_VECTOR, DF_ERROR_CODE); ctrl->intercept_exceptions = INTERCEPT_SS; svm_run_l2(svm, l2_ss_injected_tf_test, FAKE_TRIPLE_FAULT_VECTOR, 0); GUEST_ASSERT_EQ(ctrl->exit_code, SVM_EXIT_SHUTDOWN); GUEST_DONE(); } static void vmx_run_l2(void *l2_code, int vector, uint32_t error_code) { GUEST_ASSERT(!vmwrite(GUEST_RIP, (u64)l2_code)); GUEST_ASSERT_EQ(vector == SS_VECTOR ? vmlaunch() : vmresume(), 0); if (vector == FAKE_TRIPLE_FAULT_VECTOR) return; GUEST_ASSERT_EQ(vmreadz(VM_EXIT_REASON), EXIT_REASON_EXCEPTION_NMI); GUEST_ASSERT_EQ((vmreadz(VM_EXIT_INTR_INFO) & 0xff), vector); GUEST_ASSERT_EQ(vmreadz(VM_EXIT_INTR_ERROR_CODE), error_code); } static void l1_vmx_code(struct vmx_pages *vmx) { unsigned long l2_guest_stack[L2_GUEST_STACK_SIZE]; GUEST_ASSERT_EQ(prepare_for_vmx_operation(vmx), true); GUEST_ASSERT_EQ(load_vmcs(vmx), true); prepare_vmcs(vmx, NULL, &l2_guest_stack[L2_GUEST_STACK_SIZE]); GUEST_ASSERT_EQ(vmwrite(GUEST_IDTR_LIMIT, 0), 0); /* * VMX disallows injecting an exception with error_code[31:16] != 0, * and hardware will never generate a VM-Exit with bits 31:16 set. * KVM should likewise truncate the "bad" userspace value. */ GUEST_ASSERT_EQ(vmwrite(EXCEPTION_BITMAP, INTERCEPT_SS_GP_DF), 0); vmx_run_l2(l2_ss_pending_test, SS_VECTOR, (u16)SS_ERROR_CODE); vmx_run_l2(l2_ss_injected_gp_test, GP_VECTOR, GP_ERROR_CODE_INTEL); GUEST_ASSERT_EQ(vmwrite(EXCEPTION_BITMAP, INTERCEPT_SS_DF), 0); vmx_run_l2(l2_ss_injected_df_test, DF_VECTOR, DF_ERROR_CODE); GUEST_ASSERT_EQ(vmwrite(EXCEPTION_BITMAP, INTERCEPT_SS), 0); vmx_run_l2(l2_ss_injected_tf_test, FAKE_TRIPLE_FAULT_VECTOR, 0); GUEST_ASSERT_EQ(vmreadz(VM_EXIT_REASON), EXIT_REASON_TRIPLE_FAULT); GUEST_DONE(); } static void __attribute__((__flatten__)) l1_guest_code(void *test_data) { if (this_cpu_has(X86_FEATURE_SVM)) l1_svm_code(test_data); else l1_vmx_code(test_data); } static void assert_ucall_vector(struct kvm_vcpu *vcpu, int vector) { struct kvm_run *run = vcpu->run; struct ucall uc; TEST_ASSERT(run->exit_reason == KVM_EXIT_IO, "Unexpected exit reason: %u (%s),\n", run->exit_reason, exit_reason_str(run->exit_reason)); switch (get_ucall(vcpu, &uc)) { case UCALL_SYNC: TEST_ASSERT(vector == uc.args[1], "Expected L2 to ask for %d, got %ld", vector, uc.args[1]); break; case UCALL_DONE: TEST_ASSERT(vector == -1, "Expected L2 to ask for %d, L2 says it's done", vector); break; case UCALL_ABORT: TEST_FAIL("%s at %s:%ld (0x%lx != 0x%lx)", (const char *)uc.args[0], __FILE__, uc.args[1], uc.args[2], uc.args[3]); break; default: TEST_FAIL("Expected L2 to ask for %d, got unexpected ucall %lu", vector, uc.cmd); } } static void queue_ss_exception(struct kvm_vcpu *vcpu, bool inject) { struct kvm_vcpu_events events; vcpu_events_get(vcpu, &events); TEST_ASSERT(!events.exception.pending, "Vector %d unexpectedlt pending", events.exception.nr); TEST_ASSERT(!events.exception.injected, "Vector %d unexpectedly injected", events.exception.nr); events.flags = KVM_VCPUEVENT_VALID_PAYLOAD; events.exception.pending = !inject; events.exception.injected = inject; events.exception.nr = SS_VECTOR; events.exception.has_error_code = true; events.exception.error_code = SS_ERROR_CODE; vcpu_events_set(vcpu, &events); } /* * Verify KVM_{G,S}ET_EVENTS play nice with pending vs. injected exceptions * when an exception is being queued for L2. Specifically, verify that KVM * honors L1 exception intercept controls when a #SS is pending/injected, * triggers a #GP on vectoring the #SS, morphs to #DF if #GP isn't intercepted * by L1, and finally causes (nested) SHUTDOWN if #DF isn't intercepted by L1. */ int main(int argc, char *argv[]) { vm_vaddr_t nested_test_data_gva; struct kvm_vcpu_events events; struct kvm_vcpu *vcpu; struct kvm_vm *vm; TEST_REQUIRE(kvm_has_cap(KVM_CAP_EXCEPTION_PAYLOAD)); TEST_REQUIRE(kvm_cpu_has(X86_FEATURE_SVM) || kvm_cpu_has(X86_FEATURE_VMX)); vm = vm_create_with_one_vcpu(&vcpu, l1_guest_code); vm_enable_cap(vm, KVM_CAP_EXCEPTION_PAYLOAD, -2ul); if (kvm_cpu_has(X86_FEATURE_SVM)) vcpu_alloc_svm(vm, &nested_test_data_gva); else vcpu_alloc_vmx(vm, &nested_test_data_gva); vcpu_args_set(vcpu, 1, nested_test_data_gva); /* Run L1 => L2. L2 should sync and request #SS. */ vcpu_run(vcpu); assert_ucall_vector(vcpu, SS_VECTOR); /* Pend #SS and request immediate exit. #SS should still be pending. */ queue_ss_exception(vcpu, false); vcpu->run->immediate_exit = true; vcpu_run_complete_io(vcpu); /* Verify the pending events comes back out the same as it went in. */ vcpu_events_get(vcpu, &events); ASSERT_EQ(events.flags & KVM_VCPUEVENT_VALID_PAYLOAD, KVM_VCPUEVENT_VALID_PAYLOAD); ASSERT_EQ(events.exception.pending, true); ASSERT_EQ(events.exception.nr, SS_VECTOR); ASSERT_EQ(events.exception.has_error_code, true); ASSERT_EQ(events.exception.error_code, SS_ERROR_CODE); /* * Run for real with the pending #SS, L1 should get a VM-Exit due to * #SS interception and re-enter L2 to request #GP (via injected #SS). */ vcpu->run->immediate_exit = false; vcpu_run(vcpu); assert_ucall_vector(vcpu, GP_VECTOR); /* * Inject #SS, the #SS should bypass interception and cause #GP, which * L1 should intercept before KVM morphs it to #DF. L1 should then * disable #GP interception and run L2 to request #DF (via #SS => #GP). */ queue_ss_exception(vcpu, true); vcpu_run(vcpu); assert_ucall_vector(vcpu, DF_VECTOR); /* * Inject #SS, the #SS should bypass interception and cause #GP, which * L1 is no longer interception, and so should see a #DF VM-Exit. L1 * should then signal that is done. */ queue_ss_exception(vcpu, true); vcpu_run(vcpu); assert_ucall_vector(vcpu, FAKE_TRIPLE_FAULT_VECTOR); /* * Inject #SS yet again. L1 is not intercepting #GP or #DF, and so * should see nested TRIPLE_FAULT / SHUTDOWN. */ queue_ss_exception(vcpu, true); vcpu_run(vcpu); assert_ucall_vector(vcpu, -1); kvm_vm_free(vm); }