// SPDX-License-Identifier: GPL-2.0 #define _GNU_SOURCE #include #include #include #include #include #include #include #include #include #include #include #include #include static bool cfg_do_ipv4; static bool cfg_do_ipv6; static bool cfg_verbose; static bool cfg_overlap; static bool cfg_permissive; static unsigned short cfg_port = 9000; const struct in_addr addr4 = { .s_addr = __constant_htonl(INADDR_LOOPBACK + 2) }; const struct in6_addr addr6 = IN6ADDR_LOOPBACK_INIT; #define IP4_HLEN (sizeof(struct iphdr)) #define IP6_HLEN (sizeof(struct ip6_hdr)) #define UDP_HLEN (sizeof(struct udphdr)) /* IPv6 fragment header lenth. */ #define FRAG_HLEN 8 static int payload_len; static int max_frag_len; #define MSG_LEN_MAX 10000 /* Max UDP payload length. */ #define IP4_MF (1u << 13) /* IPv4 MF flag. */ #define IP6_MF (1) /* IPv6 MF flag. */ #define CSUM_MANGLED_0 (0xffff) static uint8_t udp_payload[MSG_LEN_MAX]; static uint8_t ip_frame[IP_MAXPACKET]; static uint32_t ip_id = 0xabcd; static int msg_counter; static int frag_counter; static unsigned int seed; /* Receive a UDP packet. Validate it matches udp_payload. */ static void recv_validate_udp(int fd_udp) { ssize_t ret; static uint8_t recv_buff[MSG_LEN_MAX]; ret = recv(fd_udp, recv_buff, payload_len, 0); msg_counter++; if (cfg_overlap) { if (ret == -1 && (errno == ETIMEDOUT || errno == EAGAIN)) return; /* OK */ if (!cfg_permissive) { if (ret != -1) error(1, 0, "recv: expected timeout; got %d", (int)ret); error(1, errno, "recv: expected timeout: %d", errno); } } if (ret == -1) error(1, errno, "recv: payload_len = %d max_frag_len = %d", payload_len, max_frag_len); if (ret != payload_len) error(1, 0, "recv: wrong size: %d vs %d", (int)ret, payload_len); if (memcmp(udp_payload, recv_buff, payload_len)) error(1, 0, "recv: wrong data"); } static uint32_t raw_checksum(uint8_t *buf, int len, uint32_t sum) { int i; for (i = 0; i < (len & ~1U); i += 2) { sum += (u_int16_t)ntohs(*((u_int16_t *)(buf + i))); if (sum > 0xffff) sum -= 0xffff; } if (i < len) { sum += buf[i] << 8; if (sum > 0xffff) sum -= 0xffff; } return sum; } static uint16_t udp_checksum(struct ip *iphdr, struct udphdr *udphdr) { uint32_t sum = 0; uint16_t res; sum = raw_checksum((uint8_t *)&iphdr->ip_src, 2 * sizeof(iphdr->ip_src), IPPROTO_UDP + (uint32_t)(UDP_HLEN + payload_len)); sum = raw_checksum((uint8_t *)udphdr, UDP_HLEN, sum); sum = raw_checksum((uint8_t *)udp_payload, payload_len, sum); res = 0xffff & ~sum; if (res) return htons(res); else return CSUM_MANGLED_0; } static uint16_t udp6_checksum(struct ip6_hdr *iphdr, struct udphdr *udphdr) { uint32_t sum = 0; uint16_t res; sum = raw_checksum((uint8_t *)&iphdr->ip6_src, 2 * sizeof(iphdr->ip6_src), IPPROTO_UDP); sum = raw_checksum((uint8_t *)&udphdr->len, sizeof(udphdr->len), sum); sum = raw_checksum((uint8_t *)udphdr, UDP_HLEN, sum); sum = raw_checksum((uint8_t *)udp_payload, payload_len, sum); res = 0xffff & ~sum; if (res) return htons(res); else return CSUM_MANGLED_0; } static void send_fragment(int fd_raw, struct sockaddr *addr, socklen_t alen, int offset, bool ipv6) { int frag_len; int res; int payload_offset = offset > 0 ? offset - UDP_HLEN : 0; uint8_t *frag_start = ipv6 ? ip_frame + IP6_HLEN + FRAG_HLEN : ip_frame + IP4_HLEN; if (offset == 0) { struct udphdr udphdr; udphdr.source = htons(cfg_port + 1); udphdr.dest = htons(cfg_port); udphdr.len = htons(UDP_HLEN + payload_len); udphdr.check = 0; if (ipv6) udphdr.check = udp6_checksum((struct ip6_hdr *)ip_frame, &udphdr); else udphdr.check = udp_checksum((struct ip *)ip_frame, &udphdr); memcpy(frag_start, &udphdr, UDP_HLEN); } if (ipv6) { struct ip6_hdr *ip6hdr = (struct ip6_hdr *)ip_frame; struct ip6_frag *fraghdr = (struct ip6_frag *)(ip_frame + IP6_HLEN); if (payload_len - payload_offset <= max_frag_len && offset > 0) { /* This is the last fragment. */ frag_len = FRAG_HLEN + payload_len - payload_offset; fraghdr->ip6f_offlg = htons(offset); } else { frag_len = FRAG_HLEN + max_frag_len; fraghdr->ip6f_offlg = htons(offset | IP6_MF); } ip6hdr->ip6_plen = htons(frag_len); if (offset == 0) memcpy(frag_start + UDP_HLEN, udp_payload, frag_len - FRAG_HLEN - UDP_HLEN); else memcpy(frag_start, udp_payload + payload_offset, frag_len - FRAG_HLEN); frag_len += IP6_HLEN; } else { struct ip *iphdr = (struct ip *)ip_frame; if (payload_len - payload_offset <= max_frag_len && offset > 0) { /* This is the last fragment. */ frag_len = IP4_HLEN + payload_len - payload_offset; iphdr->ip_off = htons(offset / 8); } else { frag_len = IP4_HLEN + max_frag_len; iphdr->ip_off = htons(offset / 8 | IP4_MF); } iphdr->ip_len = htons(frag_len); if (offset == 0) memcpy(frag_start + UDP_HLEN, udp_payload, frag_len - IP4_HLEN - UDP_HLEN); else memcpy(frag_start, udp_payload + payload_offset, frag_len - IP4_HLEN); } res = sendto(fd_raw, ip_frame, frag_len, 0, addr, alen); if (res < 0) error(1, errno, "send_fragment"); if (res != frag_len) error(1, 0, "send_fragment: %d vs %d", res, frag_len); frag_counter++; } static void send_udp_frags(int fd_raw, struct sockaddr *addr, socklen_t alen, bool ipv6) { struct ip *iphdr = (struct ip *)ip_frame; struct ip6_hdr *ip6hdr = (struct ip6_hdr *)ip_frame; int res; int offset; int frag_len; /* Send the UDP datagram using raw IP fragments: the 0th fragment * has the UDP header; other fragments are pieces of udp_payload * split in chunks of frag_len size. * * Odd fragments (1st, 3rd, 5th, etc.) are sent out first, then * even fragments (0th, 2nd, etc.) are sent out. */ if (ipv6) { struct ip6_frag *fraghdr = (struct ip6_frag *)(ip_frame + IP6_HLEN); ((struct sockaddr_in6 *)addr)->sin6_port = 0; memset(ip6hdr, 0, sizeof(*ip6hdr)); ip6hdr->ip6_flow = htonl(6<<28); /* Version. */ ip6hdr->ip6_nxt = IPPROTO_FRAGMENT; ip6hdr->ip6_hops = 255; ip6hdr->ip6_src = addr6; ip6hdr->ip6_dst = addr6; fraghdr->ip6f_nxt = IPPROTO_UDP; fraghdr->ip6f_reserved = 0; fraghdr->ip6f_ident = htonl(ip_id++); } else { memset(iphdr, 0, sizeof(*iphdr)); iphdr->ip_hl = 5; iphdr->ip_v = 4; iphdr->ip_tos = 0; iphdr->ip_id = htons(ip_id++); iphdr->ip_ttl = 0x40; iphdr->ip_p = IPPROTO_UDP; iphdr->ip_src.s_addr = htonl(INADDR_LOOPBACK); iphdr->ip_dst = addr4; iphdr->ip_sum = 0; } /* Occasionally test in-order fragments. */ if (!cfg_overlap && (rand() % 100 < 15)) { offset = 0; while (offset < (UDP_HLEN + payload_len)) { send_fragment(fd_raw, addr, alen, offset, ipv6); offset += max_frag_len; } return; } /* Occasionally test IPv4 "runs" (see net/ipv4/ip_fragment.c) */ if (!cfg_overlap && (rand() % 100 < 20) && (payload_len > 9 * max_frag_len)) { offset = 6 * max_frag_len; while (offset < (UDP_HLEN + payload_len)) { send_fragment(fd_raw, addr, alen, offset, ipv6); offset += max_frag_len; } offset = 3 * max_frag_len; while (offset < 6 * max_frag_len) { send_fragment(fd_raw, addr, alen, offset, ipv6); offset += max_frag_len; } offset = 0; while (offset < 3 * max_frag_len) { send_fragment(fd_raw, addr, alen, offset, ipv6); offset += max_frag_len; } return; } /* Odd fragments. */ offset = max_frag_len; while (offset < (UDP_HLEN + payload_len)) { send_fragment(fd_raw, addr, alen, offset, ipv6); /* IPv4 ignores duplicates, so randomly send a duplicate. */ if (rand() % 100 == 1) send_fragment(fd_raw, addr, alen, offset, ipv6); offset += 2 * max_frag_len; } if (cfg_overlap) { /* Send an extra random fragment. * * Duplicates and some fragments completely inside * previously sent fragments are dropped/ignored. So * random offset and frag_len can result in a dropped * fragment instead of a dropped queue/packet. Thus we * hard-code offset and frag_len. */ if (max_frag_len * 4 < payload_len || max_frag_len < 16) { /* not enough payload for random offset and frag_len. */ offset = 8; frag_len = UDP_HLEN + max_frag_len; } else { offset = rand() % (payload_len / 2); frag_len = 2 * max_frag_len + 1 + rand() % 256; } if (ipv6) { struct ip6_frag *fraghdr = (struct ip6_frag *)(ip_frame + IP6_HLEN); /* sendto() returns EINVAL if offset + frag_len is too small. */ /* In IPv6 if !!(frag_len % 8), the fragment is dropped. */ frag_len &= ~0x7; fraghdr->ip6f_offlg = htons(offset / 8 | IP6_MF); ip6hdr->ip6_plen = htons(frag_len); frag_len += IP6_HLEN; } else { frag_len += IP4_HLEN; iphdr->ip_off = htons(offset / 8 | IP4_MF); iphdr->ip_len = htons(frag_len); } res = sendto(fd_raw, ip_frame, frag_len, 0, addr, alen); if (res < 0) error(1, errno, "sendto overlap: %d", frag_len); if (res != frag_len) error(1, 0, "sendto overlap: %d vs %d", (int)res, frag_len); frag_counter++; } /* Event fragments. */ offset = 0; while (offset < (UDP_HLEN + payload_len)) { send_fragment(fd_raw, addr, alen, offset, ipv6); /* IPv4 ignores duplicates, so randomly send a duplicate. */ if (rand() % 100 == 1) send_fragment(fd_raw, addr, alen, offset, ipv6); offset += 2 * max_frag_len; } } static void run_test(struct sockaddr *addr, socklen_t alen, bool ipv6) { int fd_tx_raw, fd_rx_udp; /* Frag queue timeout is set to one second in the calling script; * socket timeout should be just a bit longer to avoid tests interfering * with each other. */ struct timeval tv = { .tv_sec = 1, .tv_usec = 10 }; int idx; int min_frag_len = 8; /* Initialize the payload. */ for (idx = 0; idx < MSG_LEN_MAX; ++idx) udp_payload[idx] = idx % 256; /* Open sockets. */ fd_tx_raw = socket(addr->sa_family, SOCK_RAW, IPPROTO_RAW); if (fd_tx_raw == -1) error(1, errno, "socket tx_raw"); fd_rx_udp = socket(addr->sa_family, SOCK_DGRAM, 0); if (fd_rx_udp == -1) error(1, errno, "socket rx_udp"); if (bind(fd_rx_udp, addr, alen)) error(1, errno, "bind"); /* Fail fast. */ if (setsockopt(fd_rx_udp, SOL_SOCKET, SO_RCVTIMEO, &tv, sizeof(tv))) error(1, errno, "setsockopt rcv timeout"); for (payload_len = min_frag_len; payload_len < MSG_LEN_MAX; payload_len += (rand() % 4096)) { if (cfg_verbose) printf("payload_len: %d\n", payload_len); if (cfg_overlap) { /* With overlaps, one send/receive pair below takes * at least one second (== timeout) to run, so there * is not enough test time to run a nested loop: * the full overlap test takes 20-30 seconds. */ max_frag_len = min_frag_len + rand() % (1500 - FRAG_HLEN - min_frag_len); send_udp_frags(fd_tx_raw, addr, alen, ipv6); recv_validate_udp(fd_rx_udp); } else { /* Without overlaps, each packet reassembly (== one * send/receive pair below) takes very little time to * run, so we can easily afford more thourough testing * with a nested loop: the full non-overlap test takes * less than one second). */ max_frag_len = min_frag_len; do { send_udp_frags(fd_tx_raw, addr, alen, ipv6); recv_validate_udp(fd_rx_udp); max_frag_len += 8 * (rand() % 8); } while (max_frag_len < (1500 - FRAG_HLEN) && max_frag_len <= payload_len); } } /* Cleanup. */ if (close(fd_tx_raw)) error(1, errno, "close tx_raw"); if (close(fd_rx_udp)) error(1, errno, "close rx_udp"); if (cfg_verbose) printf("processed %d messages, %d fragments\n", msg_counter, frag_counter); fprintf(stderr, "PASS\n"); } static void run_test_v4(void) { struct sockaddr_in addr = {0}; addr.sin_family = AF_INET; addr.sin_port = htons(cfg_port); addr.sin_addr = addr4; run_test((void *)&addr, sizeof(addr), false /* !ipv6 */); } static void run_test_v6(void) { struct sockaddr_in6 addr = {0}; addr.sin6_family = AF_INET6; addr.sin6_port = htons(cfg_port); addr.sin6_addr = addr6; run_test((void *)&addr, sizeof(addr), true /* ipv6 */); } static void parse_opts(int argc, char **argv) { int c; while ((c = getopt(argc, argv, "46opv")) != -1) { switch (c) { case '4': cfg_do_ipv4 = true; break; case '6': cfg_do_ipv6 = true; break; case 'o': cfg_overlap = true; break; case 'p': cfg_permissive = true; break; case 'v': cfg_verbose = true; break; default: error(1, 0, "%s: parse error", argv[0]); } } } int main(int argc, char **argv) { parse_opts(argc, argv); seed = time(NULL); srand(seed); /* Print the seed to track/reproduce potential failures. */ printf("seed = %d\n", seed); if (cfg_do_ipv4) run_test_v4(); if (cfg_do_ipv6) run_test_v6(); return 0; }