// SPDX-License-Identifier: GPL-2.0+ // // Copyright 2019, Michael Ellerman, IBM Corp. // // Test that out-of-bounds reads/writes behave as expected. #include #include #include #include #include #include #include #include #include "utils.h" // Old distros (Ubuntu 16.04 at least) don't define this #ifndef SEGV_BNDERR #define SEGV_BNDERR 3 #endif // 64-bit kernel is always here #define PAGE_OFFSET (0xcul << 60) static unsigned long kernel_virt_end; static volatile int fault_code; static volatile unsigned long fault_addr; static jmp_buf setjmp_env; static void segv_handler(int n, siginfo_t *info, void *ctxt_v) { fault_code = info->si_code; fault_addr = (unsigned long)info->si_addr; siglongjmp(setjmp_env, 1); } int bad_access(char *p, bool write) { char x; fault_code = 0; fault_addr = 0; if (sigsetjmp(setjmp_env, 1) == 0) { if (write) *p = 1; else x = *p; printf("Bad - no SEGV! (%c)\n", x); return 1; } // If we see MAPERR that means we took a page fault rather than an SLB // miss. We only expect to take page faults for addresses within the // valid kernel range. FAIL_IF(fault_code == SEGV_MAPERR && \ (fault_addr < PAGE_OFFSET || fault_addr >= kernel_virt_end)); FAIL_IF(fault_code != SEGV_MAPERR && fault_code != SEGV_BNDERR); return 0; } static int using_hash_mmu(bool *using_hash) { char line[128]; FILE *f; int rc; f = fopen("/proc/cpuinfo", "r"); FAIL_IF(!f); rc = 0; while (fgets(line, sizeof(line), f) != NULL) { if (strcmp(line, "MMU : Hash\n") == 0) { *using_hash = true; goto out; } if (strcmp(line, "MMU : Radix\n") == 0) { *using_hash = false; goto out; } } rc = -1; out: fclose(f); return rc; } static int test(void) { unsigned long i, j, addr, region_shift, page_shift, page_size; struct sigaction sig; bool hash_mmu; sig = (struct sigaction) { .sa_sigaction = segv_handler, .sa_flags = SA_SIGINFO, }; FAIL_IF(sigaction(SIGSEGV, &sig, NULL) != 0); FAIL_IF(using_hash_mmu(&hash_mmu)); page_size = sysconf(_SC_PAGESIZE); if (page_size == (64 * 1024)) page_shift = 16; else page_shift = 12; if (page_size == (64 * 1024) || !hash_mmu) { region_shift = 52; // We have 7 512T regions (4 kernel linear, vmalloc, io, vmemmap) kernel_virt_end = PAGE_OFFSET + (7 * (512ul << 40)); } else if (page_size == (4 * 1024) && hash_mmu) { region_shift = 46; // We have 7 64T regions (4 kernel linear, vmalloc, io, vmemmap) kernel_virt_end = PAGE_OFFSET + (7 * (64ul << 40)); } else FAIL_IF(true); printf("Using %s MMU, PAGE_SIZE = %dKB start address 0x%016lx\n", hash_mmu ? "hash" : "radix", (1 << page_shift) >> 10, 1ul << region_shift); // This generates access patterns like: // 0x0010000000000000 // 0x0010000000010000 // 0x0010000000020000 // ... // 0x0014000000000000 // 0x0018000000000000 // 0x0020000000000000 // 0x0020000000010000 // 0x0020000000020000 // ... // 0xf400000000000000 // 0xf800000000000000 for (i = 1; i <= ((0xful << 60) >> region_shift); i++) { for (j = page_shift - 1; j < 60; j++) { unsigned long base, delta; base = i << region_shift; delta = 1ul << j; if (delta >= base) break; addr = (base | delta) & ~((1 << page_shift) - 1); FAIL_IF(bad_access((char *)addr, false)); FAIL_IF(bad_access((char *)addr, true)); } } return 0; } int main(void) { return test_harness(test, "bad_accesses"); }