// SPDX-License-Identifier: GPL-2.0 /* Copyright(c) 2016-20 Intel Corporation. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "defines.h" #include "../kselftest_harness.h" #include "main.h" static const uint64_t MAGIC = 0x1122334455667788ULL; static const uint64_t MAGIC2 = 0x8877665544332211ULL; vdso_sgx_enter_enclave_t vdso_sgx_enter_enclave; struct vdso_symtab { Elf64_Sym *elf_symtab; const char *elf_symstrtab; Elf64_Word *elf_hashtab; }; static Elf64_Dyn *vdso_get_dyntab(void *addr) { Elf64_Ehdr *ehdr = addr; Elf64_Phdr *phdrtab = addr + ehdr->e_phoff; int i; for (i = 0; i < ehdr->e_phnum; i++) if (phdrtab[i].p_type == PT_DYNAMIC) return addr + phdrtab[i].p_offset; return NULL; } static void *vdso_get_dyn(void *addr, Elf64_Dyn *dyntab, Elf64_Sxword tag) { int i; for (i = 0; dyntab[i].d_tag != DT_NULL; i++) if (dyntab[i].d_tag == tag) return addr + dyntab[i].d_un.d_ptr; return NULL; } static bool vdso_get_symtab(void *addr, struct vdso_symtab *symtab) { Elf64_Dyn *dyntab = vdso_get_dyntab(addr); symtab->elf_symtab = vdso_get_dyn(addr, dyntab, DT_SYMTAB); if (!symtab->elf_symtab) return false; symtab->elf_symstrtab = vdso_get_dyn(addr, dyntab, DT_STRTAB); if (!symtab->elf_symstrtab) return false; symtab->elf_hashtab = vdso_get_dyn(addr, dyntab, DT_HASH); if (!symtab->elf_hashtab) return false; return true; } static unsigned long elf_sym_hash(const char *name) { unsigned long h = 0, high; while (*name) { h = (h << 4) + *name++; high = h & 0xf0000000; if (high) h ^= high >> 24; h &= ~high; } return h; } static Elf64_Sym *vdso_symtab_get(struct vdso_symtab *symtab, const char *name) { Elf64_Word bucketnum = symtab->elf_hashtab[0]; Elf64_Word *buckettab = &symtab->elf_hashtab[2]; Elf64_Word *chaintab = &symtab->elf_hashtab[2 + bucketnum]; Elf64_Sym *sym; Elf64_Word i; for (i = buckettab[elf_sym_hash(name) % bucketnum]; i != STN_UNDEF; i = chaintab[i]) { sym = &symtab->elf_symtab[i]; if (!strcmp(name, &symtab->elf_symstrtab[sym->st_name])) return sym; } return NULL; } /* * Return the offset in the enclave where the data segment can be found. * The first RW segment loaded is the TCS, skip that to get info on the * data segment. */ static off_t encl_get_data_offset(struct encl *encl) { int i; for (i = 1; i < encl->nr_segments; i++) { struct encl_segment *seg = &encl->segment_tbl[i]; if (seg->prot == (PROT_READ | PROT_WRITE)) return seg->offset; } return -1; } FIXTURE(enclave) { struct encl encl; struct sgx_enclave_run run; }; static bool setup_test_encl(unsigned long heap_size, struct encl *encl, struct __test_metadata *_metadata) { Elf64_Sym *sgx_enter_enclave_sym = NULL; struct vdso_symtab symtab; struct encl_segment *seg; char maps_line[256]; FILE *maps_file; unsigned int i; void *addr; if (!encl_load("test_encl.elf", encl, heap_size)) { encl_delete(encl); TH_LOG("Failed to load the test enclave."); return false; } if (!encl_measure(encl)) goto err; if (!encl_build(encl)) goto err; /* * An enclave consumer only must do this. */ for (i = 0; i < encl->nr_segments; i++) { struct encl_segment *seg = &encl->segment_tbl[i]; addr = mmap((void *)encl->encl_base + seg->offset, seg->size, seg->prot, MAP_SHARED | MAP_FIXED, encl->fd, 0); EXPECT_NE(addr, MAP_FAILED); if (addr == MAP_FAILED) goto err; } /* Get vDSO base address */ addr = (void *)getauxval(AT_SYSINFO_EHDR); if (!addr) goto err; if (!vdso_get_symtab(addr, &symtab)) goto err; sgx_enter_enclave_sym = vdso_symtab_get(&symtab, "__vdso_sgx_enter_enclave"); if (!sgx_enter_enclave_sym) goto err; vdso_sgx_enter_enclave = addr + sgx_enter_enclave_sym->st_value; return true; err: for (i = 0; i < encl->nr_segments; i++) { seg = &encl->segment_tbl[i]; TH_LOG("0x%016lx 0x%016lx 0x%02x", seg->offset, seg->size, seg->prot); } maps_file = fopen("/proc/self/maps", "r"); if (maps_file != NULL) { while (fgets(maps_line, sizeof(maps_line), maps_file) != NULL) { maps_line[strlen(maps_line) - 1] = '\0'; if (strstr(maps_line, "/dev/sgx_enclave")) TH_LOG("%s", maps_line); } fclose(maps_file); } TH_LOG("Failed to initialize the test enclave."); encl_delete(encl); return false; } FIXTURE_SETUP(enclave) { } FIXTURE_TEARDOWN(enclave) { encl_delete(&self->encl); } #define ENCL_CALL(op, run, clobbered) \ ({ \ int ret; \ if ((clobbered)) \ ret = vdso_sgx_enter_enclave((unsigned long)(op), 0, 0, \ EENTER, 0, 0, (run)); \ else \ ret = sgx_enter_enclave((void *)(op), NULL, 0, EENTER, NULL, NULL, \ (run)); \ ret; \ }) #define EXPECT_EEXIT(run) \ do { \ EXPECT_EQ((run)->function, EEXIT); \ if ((run)->function != EEXIT) \ TH_LOG("0x%02x 0x%02x 0x%016llx", (run)->exception_vector, \ (run)->exception_error_code, (run)->exception_addr); \ } while (0) TEST_F(enclave, unclobbered_vdso) { struct encl_op_get_from_buf get_op; struct encl_op_put_to_buf put_op; ASSERT_TRUE(setup_test_encl(ENCL_HEAP_SIZE_DEFAULT, &self->encl, _metadata)); memset(&self->run, 0, sizeof(self->run)); self->run.tcs = self->encl.encl_base; put_op.header.type = ENCL_OP_PUT_TO_BUFFER; put_op.value = MAGIC; EXPECT_EQ(ENCL_CALL(&put_op, &self->run, false), 0); EXPECT_EEXIT(&self->run); EXPECT_EQ(self->run.user_data, 0); get_op.header.type = ENCL_OP_GET_FROM_BUFFER; get_op.value = 0; EXPECT_EQ(ENCL_CALL(&get_op, &self->run, false), 0); EXPECT_EQ(get_op.value, MAGIC); EXPECT_EEXIT(&self->run); EXPECT_EQ(self->run.user_data, 0); } /* * A section metric is concatenated in a way that @low bits 12-31 define the * bits 12-31 of the metric and @high bits 0-19 define the bits 32-51 of the * metric. */ static unsigned long sgx_calc_section_metric(unsigned int low, unsigned int high) { return (low & GENMASK_ULL(31, 12)) + ((high & GENMASK_ULL(19, 0)) << 32); } /* * Sum total available physical SGX memory across all EPC sections * * Return: total available physical SGX memory available on system */ static unsigned long get_total_epc_mem(void) { unsigned int eax, ebx, ecx, edx; unsigned long total_size = 0; unsigned int type; int section = 0; while (true) { __cpuid_count(SGX_CPUID, section + SGX_CPUID_EPC, eax, ebx, ecx, edx); type = eax & SGX_CPUID_EPC_MASK; if (type == SGX_CPUID_EPC_INVALID) break; if (type != SGX_CPUID_EPC_SECTION) break; total_size += sgx_calc_section_metric(ecx, edx); section++; } return total_size; } TEST_F(enclave, unclobbered_vdso_oversubscribed) { struct encl_op_get_from_buf get_op; struct encl_op_put_to_buf put_op; unsigned long total_mem; total_mem = get_total_epc_mem(); ASSERT_NE(total_mem, 0); ASSERT_TRUE(setup_test_encl(total_mem, &self->encl, _metadata)); memset(&self->run, 0, sizeof(self->run)); self->run.tcs = self->encl.encl_base; put_op.header.type = ENCL_OP_PUT_TO_BUFFER; put_op.value = MAGIC; EXPECT_EQ(ENCL_CALL(&put_op, &self->run, false), 0); EXPECT_EEXIT(&self->run); EXPECT_EQ(self->run.user_data, 0); get_op.header.type = ENCL_OP_GET_FROM_BUFFER; get_op.value = 0; EXPECT_EQ(ENCL_CALL(&get_op, &self->run, false), 0); EXPECT_EQ(get_op.value, MAGIC); EXPECT_EEXIT(&self->run); EXPECT_EQ(self->run.user_data, 0); } TEST_F(enclave, clobbered_vdso) { struct encl_op_get_from_buf get_op; struct encl_op_put_to_buf put_op; ASSERT_TRUE(setup_test_encl(ENCL_HEAP_SIZE_DEFAULT, &self->encl, _metadata)); memset(&self->run, 0, sizeof(self->run)); self->run.tcs = self->encl.encl_base; put_op.header.type = ENCL_OP_PUT_TO_BUFFER; put_op.value = MAGIC; EXPECT_EQ(ENCL_CALL(&put_op, &self->run, true), 0); EXPECT_EEXIT(&self->run); EXPECT_EQ(self->run.user_data, 0); get_op.header.type = ENCL_OP_GET_FROM_BUFFER; get_op.value = 0; EXPECT_EQ(ENCL_CALL(&get_op, &self->run, true), 0); EXPECT_EQ(get_op.value, MAGIC); EXPECT_EEXIT(&self->run); EXPECT_EQ(self->run.user_data, 0); } static int test_handler(long rdi, long rsi, long rdx, long ursp, long r8, long r9, struct sgx_enclave_run *run) { run->user_data = 0; return 0; } TEST_F(enclave, clobbered_vdso_and_user_function) { struct encl_op_get_from_buf get_op; struct encl_op_put_to_buf put_op; ASSERT_TRUE(setup_test_encl(ENCL_HEAP_SIZE_DEFAULT, &self->encl, _metadata)); memset(&self->run, 0, sizeof(self->run)); self->run.tcs = self->encl.encl_base; self->run.user_handler = (__u64)test_handler; self->run.user_data = 0xdeadbeef; put_op.header.type = ENCL_OP_PUT_TO_BUFFER; put_op.value = MAGIC; EXPECT_EQ(ENCL_CALL(&put_op, &self->run, true), 0); EXPECT_EEXIT(&self->run); EXPECT_EQ(self->run.user_data, 0); get_op.header.type = ENCL_OP_GET_FROM_BUFFER; get_op.value = 0; EXPECT_EQ(ENCL_CALL(&get_op, &self->run, true), 0); EXPECT_EQ(get_op.value, MAGIC); EXPECT_EEXIT(&self->run); EXPECT_EQ(self->run.user_data, 0); } /* * Sanity check that it is possible to enter either of the two hardcoded TCS */ TEST_F(enclave, tcs_entry) { struct encl_op_header op; ASSERT_TRUE(setup_test_encl(ENCL_HEAP_SIZE_DEFAULT, &self->encl, _metadata)); memset(&self->run, 0, sizeof(self->run)); self->run.tcs = self->encl.encl_base; op.type = ENCL_OP_NOP; EXPECT_EQ(ENCL_CALL(&op, &self->run, true), 0); EXPECT_EEXIT(&self->run); EXPECT_EQ(self->run.exception_vector, 0); EXPECT_EQ(self->run.exception_error_code, 0); EXPECT_EQ(self->run.exception_addr, 0); /* Move to the next TCS. */ self->run.tcs = self->encl.encl_base + PAGE_SIZE; EXPECT_EQ(ENCL_CALL(&op, &self->run, true), 0); EXPECT_EEXIT(&self->run); EXPECT_EQ(self->run.exception_vector, 0); EXPECT_EQ(self->run.exception_error_code, 0); EXPECT_EQ(self->run.exception_addr, 0); } /* * Second page of .data segment is used to test changing PTE permissions. * This spans the local encl_buffer within the test enclave. * * 1) Start with a sanity check: a value is written to the target page within * the enclave and read back to ensure target page can be written to. * 2) Change PTE permissions (RW -> RO) of target page within enclave. * 3) Repeat (1) - this time expecting a regular #PF communicated via the * vDSO. * 4) Change PTE permissions of target page within enclave back to be RW. * 5) Repeat (1) by resuming enclave, now expected to be possible to write to * and read from target page within enclave. */ TEST_F(enclave, pte_permissions) { struct encl_op_get_from_addr get_addr_op; struct encl_op_put_to_addr put_addr_op; unsigned long data_start; int ret; ASSERT_TRUE(setup_test_encl(ENCL_HEAP_SIZE_DEFAULT, &self->encl, _metadata)); memset(&self->run, 0, sizeof(self->run)); self->run.tcs = self->encl.encl_base; data_start = self->encl.encl_base + encl_get_data_offset(&self->encl) + PAGE_SIZE; /* * Sanity check to ensure it is possible to write to page that will * have its permissions manipulated. */ /* Write MAGIC to page */ put_addr_op.value = MAGIC; put_addr_op.addr = data_start; put_addr_op.header.type = ENCL_OP_PUT_TO_ADDRESS; EXPECT_EQ(ENCL_CALL(&put_addr_op, &self->run, true), 0); EXPECT_EEXIT(&self->run); EXPECT_EQ(self->run.exception_vector, 0); EXPECT_EQ(self->run.exception_error_code, 0); EXPECT_EQ(self->run.exception_addr, 0); /* * Read memory that was just written to, confirming that it is the * value previously written (MAGIC). */ get_addr_op.value = 0; get_addr_op.addr = data_start; get_addr_op.header.type = ENCL_OP_GET_FROM_ADDRESS; EXPECT_EQ(ENCL_CALL(&get_addr_op, &self->run, true), 0); EXPECT_EQ(get_addr_op.value, MAGIC); EXPECT_EEXIT(&self->run); EXPECT_EQ(self->run.exception_vector, 0); EXPECT_EQ(self->run.exception_error_code, 0); EXPECT_EQ(self->run.exception_addr, 0); /* Change PTE permissions of target page within the enclave */ ret = mprotect((void *)data_start, PAGE_SIZE, PROT_READ); if (ret) perror("mprotect"); /* * PTE permissions of target page changed to read-only, EPCM * permissions unchanged (EPCM permissions are RW), attempt to * write to the page, expecting a regular #PF. */ put_addr_op.value = MAGIC2; EXPECT_EQ(ENCL_CALL(&put_addr_op, &self->run, true), 0); EXPECT_EQ(self->run.exception_vector, 14); EXPECT_EQ(self->run.exception_error_code, 0x7); EXPECT_EQ(self->run.exception_addr, data_start); self->run.exception_vector = 0; self->run.exception_error_code = 0; self->run.exception_addr = 0; /* * Change PTE permissions back to enable enclave to write to the * target page and resume enclave - do not expect any exceptions this * time. */ ret = mprotect((void *)data_start, PAGE_SIZE, PROT_READ | PROT_WRITE); if (ret) perror("mprotect"); EXPECT_EQ(vdso_sgx_enter_enclave((unsigned long)&put_addr_op, 0, 0, ERESUME, 0, 0, &self->run), 0); EXPECT_EEXIT(&self->run); EXPECT_EQ(self->run.exception_vector, 0); EXPECT_EQ(self->run.exception_error_code, 0); EXPECT_EQ(self->run.exception_addr, 0); get_addr_op.value = 0; EXPECT_EQ(ENCL_CALL(&get_addr_op, &self->run, true), 0); EXPECT_EQ(get_addr_op.value, MAGIC2); EXPECT_EEXIT(&self->run); EXPECT_EQ(self->run.exception_vector, 0); EXPECT_EQ(self->run.exception_error_code, 0); EXPECT_EQ(self->run.exception_addr, 0); } TEST_HARNESS_MAIN