// SPDX-License-Identifier: GPL-2.0-only /* * vsock test utilities * * Copyright (C) 2017 Red Hat, Inc. * * Author: Stefan Hajnoczi */ #include #include #include #include #include #include #include #include #include "timeout.h" #include "control.h" #include "util.h" /* Install signal handlers */ void init_signals(void) { struct sigaction act = { .sa_handler = sigalrm, }; sigaction(SIGALRM, &act, NULL); signal(SIGPIPE, SIG_IGN); } /* Parse a CID in string representation */ unsigned int parse_cid(const char *str) { char *endptr = NULL; unsigned long n; errno = 0; n = strtoul(str, &endptr, 10); if (errno || *endptr != '\0') { fprintf(stderr, "malformed CID \"%s\"\n", str); exit(EXIT_FAILURE); } return n; } /* Wait for the remote to close the connection */ void vsock_wait_remote_close(int fd) { struct epoll_event ev; int epollfd, nfds; epollfd = epoll_create1(0); if (epollfd == -1) { perror("epoll_create1"); exit(EXIT_FAILURE); } ev.events = EPOLLRDHUP | EPOLLHUP; ev.data.fd = fd; if (epoll_ctl(epollfd, EPOLL_CTL_ADD, fd, &ev) == -1) { perror("epoll_ctl"); exit(EXIT_FAILURE); } nfds = epoll_wait(epollfd, &ev, 1, TIMEOUT * 1000); if (nfds == -1) { perror("epoll_wait"); exit(EXIT_FAILURE); } if (nfds == 0) { fprintf(stderr, "epoll_wait timed out\n"); exit(EXIT_FAILURE); } assert(nfds == 1); assert(ev.events & (EPOLLRDHUP | EPOLLHUP)); assert(ev.data.fd == fd); close(epollfd); } /* Connect to and return the file descriptor. */ static int vsock_connect(unsigned int cid, unsigned int port, int type) { union { struct sockaddr sa; struct sockaddr_vm svm; } addr = { .svm = { .svm_family = AF_VSOCK, .svm_port = port, .svm_cid = cid, }, }; int ret; int fd; control_expectln("LISTENING"); fd = socket(AF_VSOCK, type, 0); timeout_begin(TIMEOUT); do { ret = connect(fd, &addr.sa, sizeof(addr.svm)); timeout_check("connect"); } while (ret < 0 && errno == EINTR); timeout_end(); if (ret < 0) { int old_errno = errno; close(fd); fd = -1; errno = old_errno; } return fd; } int vsock_stream_connect(unsigned int cid, unsigned int port) { return vsock_connect(cid, port, SOCK_STREAM); } int vsock_seqpacket_connect(unsigned int cid, unsigned int port) { return vsock_connect(cid, port, SOCK_SEQPACKET); } /* Listen on and return the first incoming connection. The remote * address is stored to clientaddrp. clientaddrp may be NULL. */ static int vsock_accept(unsigned int cid, unsigned int port, struct sockaddr_vm *clientaddrp, int type) { union { struct sockaddr sa; struct sockaddr_vm svm; } addr = { .svm = { .svm_family = AF_VSOCK, .svm_port = port, .svm_cid = cid, }, }; union { struct sockaddr sa; struct sockaddr_vm svm; } clientaddr; socklen_t clientaddr_len = sizeof(clientaddr.svm); int fd; int client_fd; int old_errno; fd = socket(AF_VSOCK, type, 0); if (bind(fd, &addr.sa, sizeof(addr.svm)) < 0) { perror("bind"); exit(EXIT_FAILURE); } if (listen(fd, 1) < 0) { perror("listen"); exit(EXIT_FAILURE); } control_writeln("LISTENING"); timeout_begin(TIMEOUT); do { client_fd = accept(fd, &clientaddr.sa, &clientaddr_len); timeout_check("accept"); } while (client_fd < 0 && errno == EINTR); timeout_end(); old_errno = errno; close(fd); errno = old_errno; if (client_fd < 0) return client_fd; if (clientaddr_len != sizeof(clientaddr.svm)) { fprintf(stderr, "unexpected addrlen from accept(2), %zu\n", (size_t)clientaddr_len); exit(EXIT_FAILURE); } if (clientaddr.sa.sa_family != AF_VSOCK) { fprintf(stderr, "expected AF_VSOCK from accept(2), got %d\n", clientaddr.sa.sa_family); exit(EXIT_FAILURE); } if (clientaddrp) *clientaddrp = clientaddr.svm; return client_fd; } int vsock_stream_accept(unsigned int cid, unsigned int port, struct sockaddr_vm *clientaddrp) { return vsock_accept(cid, port, clientaddrp, SOCK_STREAM); } int vsock_seqpacket_accept(unsigned int cid, unsigned int port, struct sockaddr_vm *clientaddrp) { return vsock_accept(cid, port, clientaddrp, SOCK_SEQPACKET); } /* Transmit one byte and check the return value. * * expected_ret: * <0 Negative errno (for testing errors) * 0 End-of-file * 1 Success */ void send_byte(int fd, int expected_ret, int flags) { const uint8_t byte = 'A'; ssize_t nwritten; timeout_begin(TIMEOUT); do { nwritten = send(fd, &byte, sizeof(byte), flags); timeout_check("write"); } while (nwritten < 0 && errno == EINTR); timeout_end(); if (expected_ret < 0) { if (nwritten != -1) { fprintf(stderr, "bogus send(2) return value %zd\n", nwritten); exit(EXIT_FAILURE); } if (errno != -expected_ret) { perror("write"); exit(EXIT_FAILURE); } return; } if (nwritten < 0) { perror("write"); exit(EXIT_FAILURE); } if (nwritten == 0) { if (expected_ret == 0) return; fprintf(stderr, "unexpected EOF while sending byte\n"); exit(EXIT_FAILURE); } if (nwritten != sizeof(byte)) { fprintf(stderr, "bogus send(2) return value %zd\n", nwritten); exit(EXIT_FAILURE); } } /* Receive one byte and check the return value. * * expected_ret: * <0 Negative errno (for testing errors) * 0 End-of-file * 1 Success */ void recv_byte(int fd, int expected_ret, int flags) { uint8_t byte; ssize_t nread; timeout_begin(TIMEOUT); do { nread = recv(fd, &byte, sizeof(byte), flags); timeout_check("read"); } while (nread < 0 && errno == EINTR); timeout_end(); if (expected_ret < 0) { if (nread != -1) { fprintf(stderr, "bogus recv(2) return value %zd\n", nread); exit(EXIT_FAILURE); } if (errno != -expected_ret) { perror("read"); exit(EXIT_FAILURE); } return; } if (nread < 0) { perror("read"); exit(EXIT_FAILURE); } if (nread == 0) { if (expected_ret == 0) return; fprintf(stderr, "unexpected EOF while receiving byte\n"); exit(EXIT_FAILURE); } if (nread != sizeof(byte)) { fprintf(stderr, "bogus recv(2) return value %zd\n", nread); exit(EXIT_FAILURE); } if (byte != 'A') { fprintf(stderr, "unexpected byte read %c\n", byte); exit(EXIT_FAILURE); } } /* Run test cases. The program terminates if a failure occurs. */ void run_tests(const struct test_case *test_cases, const struct test_opts *opts) { int i; for (i = 0; test_cases[i].name; i++) { void (*run)(const struct test_opts *opts); char *line; printf("%d - %s...", i, test_cases[i].name); fflush(stdout); /* Full barrier before executing the next test. This * ensures that client and server are executing the * same test case. In particular, it means whoever is * faster will not see the peer still executing the * last test. This is important because port numbers * can be used by multiple test cases. */ if (test_cases[i].skip) control_writeln("SKIP"); else control_writeln("NEXT"); line = control_readln(); if (control_cmpln(line, "SKIP", false) || test_cases[i].skip) { printf("skipped\n"); free(line); continue; } control_cmpln(line, "NEXT", true); free(line); if (opts->mode == TEST_MODE_CLIENT) run = test_cases[i].run_client; else run = test_cases[i].run_server; if (run) run(opts); printf("ok\n"); } } void list_tests(const struct test_case *test_cases) { int i; printf("ID\tTest name\n"); for (i = 0; test_cases[i].name; i++) printf("%d\t%s\n", i, test_cases[i].name); exit(EXIT_FAILURE); } void skip_test(struct test_case *test_cases, size_t test_cases_len, const char *test_id_str) { unsigned long test_id; char *endptr = NULL; errno = 0; test_id = strtoul(test_id_str, &endptr, 10); if (errno || *endptr != '\0') { fprintf(stderr, "malformed test ID \"%s\"\n", test_id_str); exit(EXIT_FAILURE); } if (test_id >= test_cases_len) { fprintf(stderr, "test ID (%lu) larger than the max allowed (%lu)\n", test_id, test_cases_len - 1); exit(EXIT_FAILURE); } test_cases[test_id].skip = true; }