/* * VGICv3 MMIO handling functions * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 as * published by the Free Software Foundation. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. */ #include #include #include #include #include #include #include "vgic.h" #include "vgic-mmio.h" /* extract @num bytes at @offset bytes offset in data */ static unsigned long extract_bytes(unsigned long data, unsigned int offset, unsigned int num) { return (data >> (offset * 8)) & GENMASK_ULL(num * 8 - 1, 0); } static unsigned long vgic_mmio_read_v3_misc(struct kvm_vcpu *vcpu, gpa_t addr, unsigned int len) { u32 value = 0; switch (addr & 0x0c) { case GICD_CTLR: if (vcpu->kvm->arch.vgic.enabled) value |= GICD_CTLR_ENABLE_SS_G1; value |= GICD_CTLR_ARE_NS | GICD_CTLR_DS; break; case GICD_TYPER: value = vcpu->kvm->arch.vgic.nr_spis + VGIC_NR_PRIVATE_IRQS; value = (value >> 5) - 1; value |= (INTERRUPT_ID_BITS_SPIS - 1) << 19; break; case GICD_IIDR: value = (PRODUCT_ID_KVM << 24) | (IMPLEMENTER_ARM << 0); break; default: return 0; } return value; } static void vgic_mmio_write_v3_misc(struct kvm_vcpu *vcpu, gpa_t addr, unsigned int len, unsigned long val) { struct vgic_dist *dist = &vcpu->kvm->arch.vgic; bool was_enabled = dist->enabled; switch (addr & 0x0c) { case GICD_CTLR: dist->enabled = val & GICD_CTLR_ENABLE_SS_G1; if (!was_enabled && dist->enabled) vgic_kick_vcpus(vcpu->kvm); break; case GICD_TYPER: case GICD_IIDR: return; } } static unsigned long vgic_mmio_read_irouter(struct kvm_vcpu *vcpu, gpa_t addr, unsigned int len) { int intid = VGIC_ADDR_TO_INTID(addr, 64); struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, NULL, intid); if (!irq) return 0; /* The upper word is RAZ for us. */ if (addr & 4) return 0; return extract_bytes(READ_ONCE(irq->mpidr), addr & 7, len); } static void vgic_mmio_write_irouter(struct kvm_vcpu *vcpu, gpa_t addr, unsigned int len, unsigned long val) { int intid = VGIC_ADDR_TO_INTID(addr, 64); struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, NULL, intid); if (!irq) return; /* The upper word is WI for us since we don't implement Aff3. */ if (addr & 4) return; spin_lock(&irq->irq_lock); /* We only care about and preserve Aff0, Aff1 and Aff2. */ irq->mpidr = val & GENMASK(23, 0); irq->target_vcpu = kvm_mpidr_to_vcpu(vcpu->kvm, irq->mpidr); spin_unlock(&irq->irq_lock); } static unsigned long vgic_mmio_read_v3r_typer(struct kvm_vcpu *vcpu, gpa_t addr, unsigned int len) { unsigned long mpidr = kvm_vcpu_get_mpidr_aff(vcpu); int target_vcpu_id = vcpu->vcpu_id; u64 value; value = (mpidr & GENMASK(23, 0)) << 32; value |= ((target_vcpu_id & 0xffff) << 8); if (target_vcpu_id == atomic_read(&vcpu->kvm->online_vcpus) - 1) value |= GICR_TYPER_LAST; return extract_bytes(value, addr & 7, len); } static unsigned long vgic_mmio_read_v3r_iidr(struct kvm_vcpu *vcpu, gpa_t addr, unsigned int len) { return (PRODUCT_ID_KVM << 24) | (IMPLEMENTER_ARM << 0); } static unsigned long vgic_mmio_read_v3_idregs(struct kvm_vcpu *vcpu, gpa_t addr, unsigned int len) { switch (addr & 0xffff) { case GICD_PIDR2: /* report a GICv3 compliant implementation */ return 0x3b; } return 0; } /* * The GICv3 per-IRQ registers are split to control PPIs and SGIs in the * redistributors, while SPIs are covered by registers in the distributor * block. Trying to set private IRQs in this block gets ignored. * We take some special care here to fix the calculation of the register * offset. */ #define REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(off, rd, wr, bpi, acc) \ { \ .reg_offset = off, \ .bits_per_irq = bpi, \ .len = (bpi * VGIC_NR_PRIVATE_IRQS) / 8, \ .access_flags = acc, \ .read = vgic_mmio_read_raz, \ .write = vgic_mmio_write_wi, \ }, { \ .reg_offset = off + (bpi * VGIC_NR_PRIVATE_IRQS) / 8, \ .bits_per_irq = bpi, \ .len = (bpi * (1024 - VGIC_NR_PRIVATE_IRQS)) / 8, \ .access_flags = acc, \ .read = rd, \ .write = wr, \ } static const struct vgic_register_region vgic_v3_dist_registers[] = { REGISTER_DESC_WITH_LENGTH(GICD_CTLR, vgic_mmio_read_v3_misc, vgic_mmio_write_v3_misc, 16, VGIC_ACCESS_32bit), REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_IGROUPR, vgic_mmio_read_rao, vgic_mmio_write_wi, 1, VGIC_ACCESS_32bit), REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_ISENABLER, vgic_mmio_read_enable, vgic_mmio_write_senable, 1, VGIC_ACCESS_32bit), REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_ICENABLER, vgic_mmio_read_enable, vgic_mmio_write_cenable, 1, VGIC_ACCESS_32bit), REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_ISPENDR, vgic_mmio_read_pending, vgic_mmio_write_spending, 1, VGIC_ACCESS_32bit), REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_ICPENDR, vgic_mmio_read_pending, vgic_mmio_write_cpending, 1, VGIC_ACCESS_32bit), REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_ISACTIVER, vgic_mmio_read_active, vgic_mmio_write_sactive, 1, VGIC_ACCESS_32bit), REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_ICACTIVER, vgic_mmio_read_active, vgic_mmio_write_cactive, 1, VGIC_ACCESS_32bit), REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_IPRIORITYR, vgic_mmio_read_priority, vgic_mmio_write_priority, 8, VGIC_ACCESS_32bit | VGIC_ACCESS_8bit), REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_ITARGETSR, vgic_mmio_read_raz, vgic_mmio_write_wi, 8, VGIC_ACCESS_32bit | VGIC_ACCESS_8bit), REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_ICFGR, vgic_mmio_read_config, vgic_mmio_write_config, 2, VGIC_ACCESS_32bit), REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_IGRPMODR, vgic_mmio_read_raz, vgic_mmio_write_wi, 1, VGIC_ACCESS_32bit), REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_IROUTER, vgic_mmio_read_irouter, vgic_mmio_write_irouter, 64, VGIC_ACCESS_64bit | VGIC_ACCESS_32bit), REGISTER_DESC_WITH_LENGTH(GICD_IDREGS, vgic_mmio_read_v3_idregs, vgic_mmio_write_wi, 48, VGIC_ACCESS_32bit), }; static const struct vgic_register_region vgic_v3_rdbase_registers[] = { REGISTER_DESC_WITH_LENGTH(GICR_CTLR, vgic_mmio_read_raz, vgic_mmio_write_wi, 4, VGIC_ACCESS_32bit), REGISTER_DESC_WITH_LENGTH(GICR_IIDR, vgic_mmio_read_v3r_iidr, vgic_mmio_write_wi, 4, VGIC_ACCESS_32bit), REGISTER_DESC_WITH_LENGTH(GICR_TYPER, vgic_mmio_read_v3r_typer, vgic_mmio_write_wi, 8, VGIC_ACCESS_64bit | VGIC_ACCESS_32bit), REGISTER_DESC_WITH_LENGTH(GICR_PROPBASER, vgic_mmio_read_raz, vgic_mmio_write_wi, 8, VGIC_ACCESS_64bit | VGIC_ACCESS_32bit), REGISTER_DESC_WITH_LENGTH(GICR_PENDBASER, vgic_mmio_read_raz, vgic_mmio_write_wi, 8, VGIC_ACCESS_64bit | VGIC_ACCESS_32bit), REGISTER_DESC_WITH_LENGTH(GICR_IDREGS, vgic_mmio_read_v3_idregs, vgic_mmio_write_wi, 48, VGIC_ACCESS_32bit), }; static const struct vgic_register_region vgic_v3_sgibase_registers[] = { REGISTER_DESC_WITH_LENGTH(GICR_IGROUPR0, vgic_mmio_read_rao, vgic_mmio_write_wi, 4, VGIC_ACCESS_32bit), REGISTER_DESC_WITH_LENGTH(GICR_ISENABLER0, vgic_mmio_read_enable, vgic_mmio_write_senable, 4, VGIC_ACCESS_32bit), REGISTER_DESC_WITH_LENGTH(GICR_ICENABLER0, vgic_mmio_read_enable, vgic_mmio_write_cenable, 4, VGIC_ACCESS_32bit), REGISTER_DESC_WITH_LENGTH(GICR_ISPENDR0, vgic_mmio_read_pending, vgic_mmio_write_spending, 4, VGIC_ACCESS_32bit), REGISTER_DESC_WITH_LENGTH(GICR_ICPENDR0, vgic_mmio_read_pending, vgic_mmio_write_cpending, 4, VGIC_ACCESS_32bit), REGISTER_DESC_WITH_LENGTH(GICR_ISACTIVER0, vgic_mmio_read_active, vgic_mmio_write_sactive, 4, VGIC_ACCESS_32bit), REGISTER_DESC_WITH_LENGTH(GICR_ICACTIVER0, vgic_mmio_read_active, vgic_mmio_write_cactive, 4, VGIC_ACCESS_32bit), REGISTER_DESC_WITH_LENGTH(GICR_IPRIORITYR0, vgic_mmio_read_priority, vgic_mmio_write_priority, 32, VGIC_ACCESS_32bit | VGIC_ACCESS_8bit), REGISTER_DESC_WITH_LENGTH(GICR_ICFGR0, vgic_mmio_read_config, vgic_mmio_write_config, 8, VGIC_ACCESS_32bit), REGISTER_DESC_WITH_LENGTH(GICR_IGRPMODR0, vgic_mmio_read_raz, vgic_mmio_write_wi, 4, VGIC_ACCESS_32bit), REGISTER_DESC_WITH_LENGTH(GICR_NSACR, vgic_mmio_read_raz, vgic_mmio_write_wi, 4, VGIC_ACCESS_32bit), }; unsigned int vgic_v3_init_dist_iodev(struct vgic_io_device *dev) { dev->regions = vgic_v3_dist_registers; dev->nr_regions = ARRAY_SIZE(vgic_v3_dist_registers); kvm_iodevice_init(&dev->dev, &kvm_io_gic_ops); return SZ_64K; } int vgic_register_redist_iodevs(struct kvm *kvm, gpa_t redist_base_address) { int nr_vcpus = atomic_read(&kvm->online_vcpus); struct kvm_vcpu *vcpu; struct vgic_io_device *devices; int c, ret = 0; devices = kmalloc(sizeof(struct vgic_io_device) * nr_vcpus * 2, GFP_KERNEL); if (!devices) return -ENOMEM; kvm_for_each_vcpu(c, vcpu, kvm) { gpa_t rd_base = redist_base_address + c * SZ_64K * 2; gpa_t sgi_base = rd_base + SZ_64K; struct vgic_io_device *rd_dev = &devices[c * 2]; struct vgic_io_device *sgi_dev = &devices[c * 2 + 1]; kvm_iodevice_init(&rd_dev->dev, &kvm_io_gic_ops); rd_dev->base_addr = rd_base; rd_dev->regions = vgic_v3_rdbase_registers; rd_dev->nr_regions = ARRAY_SIZE(vgic_v3_rdbase_registers); rd_dev->redist_vcpu = vcpu; mutex_lock(&kvm->slots_lock); ret = kvm_io_bus_register_dev(kvm, KVM_MMIO_BUS, rd_base, SZ_64K, &rd_dev->dev); mutex_unlock(&kvm->slots_lock); if (ret) break; kvm_iodevice_init(&sgi_dev->dev, &kvm_io_gic_ops); sgi_dev->base_addr = sgi_base; sgi_dev->regions = vgic_v3_sgibase_registers; sgi_dev->nr_regions = ARRAY_SIZE(vgic_v3_sgibase_registers); sgi_dev->redist_vcpu = vcpu; mutex_lock(&kvm->slots_lock); ret = kvm_io_bus_register_dev(kvm, KVM_MMIO_BUS, sgi_base, SZ_64K, &sgi_dev->dev); mutex_unlock(&kvm->slots_lock); if (ret) { kvm_io_bus_unregister_dev(kvm, KVM_MMIO_BUS, &rd_dev->dev); break; } } if (ret) { /* The current c failed, so we start with the previous one. */ for (c--; c >= 0; c--) { kvm_io_bus_unregister_dev(kvm, KVM_MMIO_BUS, &devices[c * 2].dev); kvm_io_bus_unregister_dev(kvm, KVM_MMIO_BUS, &devices[c * 2 + 1].dev); } kfree(devices); } else { kvm->arch.vgic.redist_iodevs = devices; } return ret; } /* * Compare a given affinity (level 1-3 and a level 0 mask, from the SGI * generation register ICC_SGI1R_EL1) with a given VCPU. * If the VCPU's MPIDR matches, return the level0 affinity, otherwise * return -1. */ static int match_mpidr(u64 sgi_aff, u16 sgi_cpu_mask, struct kvm_vcpu *vcpu) { unsigned long affinity; int level0; /* * Split the current VCPU's MPIDR into affinity level 0 and the * rest as this is what we have to compare against. */ affinity = kvm_vcpu_get_mpidr_aff(vcpu); level0 = MPIDR_AFFINITY_LEVEL(affinity, 0); affinity &= ~MPIDR_LEVEL_MASK; /* bail out if the upper three levels don't match */ if (sgi_aff != affinity) return -1; /* Is this VCPU's bit set in the mask ? */ if (!(sgi_cpu_mask & BIT(level0))) return -1; return level0; } /* * The ICC_SGI* registers encode the affinity differently from the MPIDR, * so provide a wrapper to use the existing defines to isolate a certain * affinity level. */ #define SGI_AFFINITY_LEVEL(reg, level) \ ((((reg) & ICC_SGI1R_AFFINITY_## level ##_MASK) \ >> ICC_SGI1R_AFFINITY_## level ##_SHIFT) << MPIDR_LEVEL_SHIFT(level)) /** * vgic_v3_dispatch_sgi - handle SGI requests from VCPUs * @vcpu: The VCPU requesting a SGI * @reg: The value written into the ICC_SGI1R_EL1 register by that VCPU * * With GICv3 (and ARE=1) CPUs trigger SGIs by writing to a system register. * This will trap in sys_regs.c and call this function. * This ICC_SGI1R_EL1 register contains the upper three affinity levels of the * target processors as well as a bitmask of 16 Aff0 CPUs. * If the interrupt routing mode bit is not set, we iterate over all VCPUs to * check for matching ones. If this bit is set, we signal all, but not the * calling VCPU. */ void vgic_v3_dispatch_sgi(struct kvm_vcpu *vcpu, u64 reg) { struct kvm *kvm = vcpu->kvm; struct kvm_vcpu *c_vcpu; u16 target_cpus; u64 mpidr; int sgi, c; int vcpu_id = vcpu->vcpu_id; bool broadcast; sgi = (reg & ICC_SGI1R_SGI_ID_MASK) >> ICC_SGI1R_SGI_ID_SHIFT; broadcast = reg & BIT(ICC_SGI1R_IRQ_ROUTING_MODE_BIT); target_cpus = (reg & ICC_SGI1R_TARGET_LIST_MASK) >> ICC_SGI1R_TARGET_LIST_SHIFT; mpidr = SGI_AFFINITY_LEVEL(reg, 3); mpidr |= SGI_AFFINITY_LEVEL(reg, 2); mpidr |= SGI_AFFINITY_LEVEL(reg, 1); /* * We iterate over all VCPUs to find the MPIDRs matching the request. * If we have handled one CPU, we clear its bit to detect early * if we are already finished. This avoids iterating through all * VCPUs when most of the times we just signal a single VCPU. */ kvm_for_each_vcpu(c, c_vcpu, kvm) { struct vgic_irq *irq; /* Exit early if we have dealt with all requested CPUs */ if (!broadcast && target_cpus == 0) break; /* Don't signal the calling VCPU */ if (broadcast && c == vcpu_id) continue; if (!broadcast) { int level0; level0 = match_mpidr(mpidr, target_cpus, c_vcpu); if (level0 == -1) continue; /* remove this matching VCPU from the mask */ target_cpus &= ~BIT(level0); } irq = vgic_get_irq(vcpu->kvm, c_vcpu, sgi); spin_lock(&irq->irq_lock); irq->pending = true; vgic_queue_irq_unlock(vcpu->kvm, irq); } }