aboutsummaryrefslogtreecommitdiffstats
path: root/arch/arm64/kernel/cpufeature.c
blob: ae22edf9d3c904dcbad2e86028e92080d39a1a3b (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
/*
 * Contains CPU feature definitions
 *
 * Copyright (C) 2015 ARM Ltd.
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program.  If not, see <http://www.gnu.org/licenses/>.
 */

#define pr_fmt(fmt) "CPU features: " fmt

#include <linux/bsearch.h>
#include <linux/sort.h>
#include <linux/types.h>
#include <asm/cpu.h>
#include <asm/cpufeature.h>
#include <asm/cpu_ops.h>
#include <asm/processor.h>
#include <asm/sysreg.h>

unsigned long elf_hwcap __read_mostly;
EXPORT_SYMBOL_GPL(elf_hwcap);

#ifdef CONFIG_COMPAT
#define COMPAT_ELF_HWCAP_DEFAULT	\
				(COMPAT_HWCAP_HALF|COMPAT_HWCAP_THUMB|\
				 COMPAT_HWCAP_FAST_MULT|COMPAT_HWCAP_EDSP|\
				 COMPAT_HWCAP_TLS|COMPAT_HWCAP_VFP|\
				 COMPAT_HWCAP_VFPv3|COMPAT_HWCAP_VFPv4|\
				 COMPAT_HWCAP_NEON|COMPAT_HWCAP_IDIV|\
				 COMPAT_HWCAP_LPAE)
unsigned int compat_elf_hwcap __read_mostly = COMPAT_ELF_HWCAP_DEFAULT;
unsigned int compat_elf_hwcap2 __read_mostly;
#endif

DECLARE_BITMAP(cpu_hwcaps, ARM64_NCAPS);

#define __ARM64_FTR_BITS(SIGNED, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL) \
	{						\
		.sign = SIGNED,				\
		.strict = STRICT,			\
		.type = TYPE,				\
		.shift = SHIFT,				\
		.width = WIDTH,				\
		.safe_val = SAFE_VAL,			\
	}

/* Define a feature with signed values */
#define ARM64_FTR_BITS(STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL) \
	__ARM64_FTR_BITS(FTR_SIGNED, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL)

/* Define a feature with unsigned value */
#define U_ARM64_FTR_BITS(STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL) \
	__ARM64_FTR_BITS(FTR_UNSIGNED, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL)

#define ARM64_FTR_END					\
	{						\
		.width = 0,				\
	}

static struct arm64_ftr_bits ftr_id_aa64isar0[] = {
	ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 32, 32, 0),
	ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64ISAR0_RDM_SHIFT, 4, 0),
	ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 24, 4, 0),
	ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_ATOMICS_SHIFT, 4, 0),
	ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_CRC32_SHIFT, 4, 0),
	ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_SHA2_SHIFT, 4, 0),
	ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_SHA1_SHIFT, 4, 0),
	ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_AES_SHIFT, 4, 0),
	ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 0, 4, 0),	/* RAZ */
	ARM64_FTR_END,
};

static struct arm64_ftr_bits ftr_id_aa64pfr0[] = {
	ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 32, 32, 0),
	ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 28, 4, 0),
	ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64PFR0_GIC_SHIFT, 4, 0),
	ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_ASIMD_SHIFT, 4, ID_AA64PFR0_ASIMD_NI),
	ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_FP_SHIFT, 4, ID_AA64PFR0_FP_NI),
	/* Linux doesn't care about the EL3 */
	ARM64_FTR_BITS(FTR_NONSTRICT, FTR_EXACT, ID_AA64PFR0_EL3_SHIFT, 4, 0),
	ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64PFR0_EL2_SHIFT, 4, 0),
	ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64PFR0_EL1_SHIFT, 4, ID_AA64PFR0_EL1_64BIT_ONLY),
	ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64PFR0_EL0_SHIFT, 4, ID_AA64PFR0_EL0_64BIT_ONLY),
	ARM64_FTR_END,
};

static struct arm64_ftr_bits ftr_id_aa64mmfr0[] = {
	ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 32, 32, 0),
	ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64MMFR0_TGRAN4_SHIFT, 4, ID_AA64MMFR0_TGRAN4_NI),
	ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64MMFR0_TGRAN64_SHIFT, 4, ID_AA64MMFR0_TGRAN64_NI),
	ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64MMFR0_TGRAN16_SHIFT, 4, ID_AA64MMFR0_TGRAN16_NI),
	ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64MMFR0_BIGENDEL0_SHIFT, 4, 0),
	/* Linux shouldn't care about secure memory */
	ARM64_FTR_BITS(FTR_NONSTRICT, FTR_EXACT, ID_AA64MMFR0_SNSMEM_SHIFT, 4, 0),
	ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64MMFR0_BIGENDEL_SHIFT, 4, 0),
	ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64MMFR0_ASID_SHIFT, 4, 0),
	/*
	 * Differing PARange is fine as long as all peripherals and memory are mapped
	 * within the minimum PARange of all CPUs
	 */
	U_ARM64_FTR_BITS(FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_PARANGE_SHIFT, 4, 0),
	ARM64_FTR_END,
};

static struct arm64_ftr_bits ftr_id_aa64mmfr1[] = {
	ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 32, 32, 0),
	ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_PAN_SHIFT, 4, 0),
	ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64MMFR1_LOR_SHIFT, 4, 0),
	ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64MMFR1_HPD_SHIFT, 4, 0),
	ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64MMFR1_VHE_SHIFT, 4, 0),
	ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64MMFR1_VMIDBITS_SHIFT, 4, 0),
	ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64MMFR1_HADBS_SHIFT, 4, 0),
	ARM64_FTR_END,
};

static struct arm64_ftr_bits ftr_id_aa64mmfr2[] = {
	ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64MMFR2_UAO_SHIFT, 4, 0),
	ARM64_FTR_END,
};

static struct arm64_ftr_bits ftr_ctr[] = {
	U_ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 31, 1, 1),	/* RAO */
	ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 28, 3, 0),
	U_ARM64_FTR_BITS(FTR_STRICT, FTR_HIGHER_SAFE, 24, 4, 0),	/* CWG */
	U_ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 20, 4, 0),	/* ERG */
	U_ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 16, 4, 1),	/* DminLine */
	/*
	 * Linux can handle differing I-cache policies. Userspace JITs will
	 * make use of *minLine
	 */
	U_ARM64_FTR_BITS(FTR_NONSTRICT, FTR_EXACT, 14, 2, 0),	/* L1Ip */
	ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 4, 10, 0),	/* RAZ */
	U_ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 0, 4, 0),	/* IminLine */
	ARM64_FTR_END,
};

static struct arm64_ftr_bits ftr_id_mmfr0[] = {
	ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 28, 4, 0),	/* InnerShr */
	ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 24, 4, 0),	/* FCSE */
	ARM64_FTR_BITS(FTR_NONSTRICT, FTR_LOWER_SAFE, 20, 4, 0),	/* AuxReg */
	ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 16, 4, 0),	/* TCM */
	ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 12, 4, 0),	/* ShareLvl */
	ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 8, 4, 0),	/* OuterShr */
	ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 4, 4, 0),	/* PMSA */
	ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 0, 4, 0),	/* VMSA */
	ARM64_FTR_END,
};

static struct arm64_ftr_bits ftr_id_aa64dfr0[] = {
	ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 32, 32, 0),
	U_ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, ID_AA64DFR0_CTX_CMPS_SHIFT, 4, 0),
	U_ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, ID_AA64DFR0_WRPS_SHIFT, 4, 0),
	U_ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, ID_AA64DFR0_BRPS_SHIFT, 4, 0),
	U_ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64DFR0_PMUVER_SHIFT, 4, 0),
	U_ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64DFR0_TRACEVER_SHIFT, 4, 0),
	U_ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64DFR0_DEBUGVER_SHIFT, 4, 0x6),
	ARM64_FTR_END,
};

static struct arm64_ftr_bits ftr_mvfr2[] = {
	ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 8, 24, 0),	/* RAZ */
	ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 4, 4, 0),		/* FPMisc */
	ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 0, 4, 0),		/* SIMDMisc */
	ARM64_FTR_END,
};

static struct arm64_ftr_bits ftr_dczid[] = {
	ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 5, 27, 0),	/* RAZ */
	ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 4, 1, 1),		/* DZP */
	ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 0, 4, 0),	/* BS */
	ARM64_FTR_END,
};


static struct arm64_ftr_bits ftr_id_isar5[] = {
	ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_ISAR5_RDM_SHIFT, 4, 0),
	ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 20, 4, 0),	/* RAZ */
	ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_ISAR5_CRC32_SHIFT, 4, 0),
	ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_ISAR5_SHA2_SHIFT, 4, 0),
	ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_ISAR5_SHA1_SHIFT, 4, 0),
	ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_ISAR5_AES_SHIFT, 4, 0),
	ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_ISAR5_SEVL_SHIFT, 4, 0),
	ARM64_FTR_END,
};

static struct arm64_ftr_bits ftr_id_mmfr4[] = {
	ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 8, 24, 0),	/* RAZ */
	ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 4, 4, 0),		/* ac2 */
	ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 0, 4, 0),		/* RAZ */
	ARM64_FTR_END,
};

static struct arm64_ftr_bits ftr_id_pfr0[] = {
	ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 16, 16, 0),	/* RAZ */
	ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 12, 4, 0),	/* State3 */
	ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 8, 4, 0),		/* State2 */
	ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 4, 4, 0),		/* State1 */
	ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 0, 4, 0),		/* State0 */
	ARM64_FTR_END,
};

/*
 * Common ftr bits for a 32bit register with all hidden, strict
 * attributes, with 4bit feature fields and a default safe value of
 * 0. Covers the following 32bit registers:
 * id_isar[0-4], id_mmfr[1-3], id_pfr1, mvfr[0-1]
 */
static struct arm64_ftr_bits ftr_generic_32bits[] = {
	ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 28, 4, 0),
	ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 24, 4, 0),
	ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 20, 4, 0),
	ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 16, 4, 0),
	ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 12, 4, 0),
	ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 8, 4, 0),
	ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 4, 4, 0),
	ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 0, 4, 0),
	ARM64_FTR_END,
};

static struct arm64_ftr_bits ftr_generic[] = {
	ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 0, 64, 0),
	ARM64_FTR_END,
};

static struct arm64_ftr_bits ftr_generic32[] = {
	ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 0, 32, 0),
	ARM64_FTR_END,
};

static struct arm64_ftr_bits ftr_aa64raz[] = {
	ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 0, 64, 0),
	ARM64_FTR_END,
};

#define ARM64_FTR_REG(id, table)		\
	{					\
		.sys_id = id,			\
		.name = #id,			\
		.ftr_bits = &((table)[0]),	\
	}

static struct arm64_ftr_reg arm64_ftr_regs[] = {

	/* Op1 = 0, CRn = 0, CRm = 1 */
	ARM64_FTR_REG(SYS_ID_PFR0_EL1, ftr_id_pfr0),
	ARM64_FTR_REG(SYS_ID_PFR1_EL1, ftr_generic_32bits),
	ARM64_FTR_REG(SYS_ID_DFR0_EL1, ftr_generic_32bits),
	ARM64_FTR_REG(SYS_ID_MMFR0_EL1, ftr_id_mmfr0),
	ARM64_FTR_REG(SYS_ID_MMFR1_EL1, ftr_generic_32bits),
	ARM64_FTR_REG(SYS_ID_MMFR2_EL1, ftr_generic_32bits),
	ARM64_FTR_REG(SYS_ID_MMFR3_EL1, ftr_generic_32bits),

	/* Op1 = 0, CRn = 0, CRm = 2 */
	ARM64_FTR_REG(SYS_ID_ISAR0_EL1, ftr_generic_32bits),
	ARM64_FTR_REG(SYS_ID_ISAR1_EL1, ftr_generic_32bits),
	ARM64_FTR_REG(SYS_ID_ISAR2_EL1, ftr_generic_32bits),
	ARM64_FTR_REG(SYS_ID_ISAR3_EL1, ftr_generic_32bits),
	ARM64_FTR_REG(SYS_ID_ISAR4_EL1, ftr_generic_32bits),
	ARM64_FTR_REG(SYS_ID_ISAR5_EL1, ftr_id_isar5),
	ARM64_FTR_REG(SYS_ID_MMFR4_EL1, ftr_id_mmfr4),

	/* Op1 = 0, CRn = 0, CRm = 3 */
	ARM64_FTR_REG(SYS_MVFR0_EL1, ftr_generic_32bits),
	ARM64_FTR_REG(SYS_MVFR1_EL1, ftr_generic_32bits),
	ARM64_FTR_REG(SYS_MVFR2_EL1, ftr_mvfr2),

	/* Op1 = 0, CRn = 0, CRm = 4 */
	ARM64_FTR_REG(SYS_ID_AA64PFR0_EL1, ftr_id_aa64pfr0),
	ARM64_FTR_REG(SYS_ID_AA64PFR1_EL1, ftr_aa64raz),

	/* Op1 = 0, CRn = 0, CRm = 5 */
	ARM64_FTR_REG(SYS_ID_AA64DFR0_EL1, ftr_id_aa64dfr0),
	ARM64_FTR_REG(SYS_ID_AA64DFR1_EL1, ftr_generic),

	/* Op1 = 0, CRn = 0, CRm = 6 */
	ARM64_FTR_REG(SYS_ID_AA64ISAR0_EL1, ftr_id_aa64isar0),
	ARM64_FTR_REG(SYS_ID_AA64ISAR1_EL1, ftr_aa64raz),

	/* Op1 = 0, CRn = 0, CRm = 7 */
	ARM64_FTR_REG(SYS_ID_AA64MMFR0_EL1, ftr_id_aa64mmfr0),
	ARM64_FTR_REG(SYS_ID_AA64MMFR1_EL1, ftr_id_aa64mmfr1),
	ARM64_FTR_REG(SYS_ID_AA64MMFR2_EL1, ftr_id_aa64mmfr2),

	/* Op1 = 3, CRn = 0, CRm = 0 */
	ARM64_FTR_REG(SYS_CTR_EL0, ftr_ctr),
	ARM64_FTR_REG(SYS_DCZID_EL0, ftr_dczid),

	/* Op1 = 3, CRn = 14, CRm = 0 */
	ARM64_FTR_REG(SYS_CNTFRQ_EL0, ftr_generic32),
};

static int search_cmp_ftr_reg(const void *id, const void *regp)
{
	return (int)(unsigned long)id - (int)((const struct arm64_ftr_reg *)regp)->sys_id;
}

/*
 * get_arm64_ftr_reg - Lookup a feature register entry using its
 * sys_reg() encoding. With the array arm64_ftr_regs sorted in the
 * ascending order of sys_id , we use binary search to find a matching
 * entry.
 *
 * returns - Upon success,  matching ftr_reg entry for id.
 *         - NULL on failure. It is upto the caller to decide
 *	     the impact of a failure.
 */
static struct arm64_ftr_reg *get_arm64_ftr_reg(u32 sys_id)
{
	return bsearch((const void *)(unsigned long)sys_id,
			arm64_ftr_regs,
			ARRAY_SIZE(arm64_ftr_regs),
			sizeof(arm64_ftr_regs[0]),
			search_cmp_ftr_reg);
}

static u64 arm64_ftr_set_value(struct arm64_ftr_bits *ftrp, s64 reg, s64 ftr_val)
{
	u64 mask = arm64_ftr_mask(ftrp);

	reg &= ~mask;
	reg |= (ftr_val << ftrp->shift) & mask;
	return reg;
}

static s64 arm64_ftr_safe_value(struct arm64_ftr_bits *ftrp, s64 new, s64 cur)
{
	s64 ret = 0;

	switch (ftrp->type) {
	case FTR_EXACT:
		ret = ftrp->safe_val;
		break;
	case FTR_LOWER_SAFE:
		ret = new < cur ? new : cur;
		break;
	case FTR_HIGHER_SAFE:
		ret = new > cur ? new : cur;
		break;
	default:
		BUG();
	}

	return ret;
}

static int __init sort_cmp_ftr_regs(const void *a, const void *b)
{
	return ((const struct arm64_ftr_reg *)a)->sys_id -
		 ((const struct arm64_ftr_reg *)b)->sys_id;
}

static void __init swap_ftr_regs(void *a, void *b, int size)
{
	struct arm64_ftr_reg tmp = *(struct arm64_ftr_reg *)a;
	*(struct arm64_ftr_reg *)a = *(struct arm64_ftr_reg *)b;
	*(struct arm64_ftr_reg *)b = tmp;
}

static void __init sort_ftr_regs(void)
{
	/* Keep the array sorted so that we can do the binary search */
	sort(arm64_ftr_regs,
		ARRAY_SIZE(arm64_ftr_regs),
		sizeof(arm64_ftr_regs[0]),
		sort_cmp_ftr_regs,
		swap_ftr_regs);
}

/*
 * Initialise the CPU feature register from Boot CPU values.
 * Also initiliases the strict_mask for the register.
 */
static void __init init_cpu_ftr_reg(u32 sys_reg, u64 new)
{
	u64 val = 0;
	u64 strict_mask = ~0x0ULL;
	struct arm64_ftr_bits *ftrp;
	struct arm64_ftr_reg *reg = get_arm64_ftr_reg(sys_reg);

	BUG_ON(!reg);

	for (ftrp  = reg->ftr_bits; ftrp->width; ftrp++) {
		s64 ftr_new = arm64_ftr_value(ftrp, new);

		val = arm64_ftr_set_value(ftrp, val, ftr_new);
		if (!ftrp->strict)
			strict_mask &= ~arm64_ftr_mask(ftrp);
	}
	reg->sys_val = val;
	reg->strict_mask = strict_mask;
}

void __init init_cpu_features(struct cpuinfo_arm64 *info)
{
	/* Before we start using the tables, make sure it is sorted */
	sort_ftr_regs();

	init_cpu_ftr_reg(SYS_CTR_EL0, info->reg_ctr);
	init_cpu_ftr_reg(SYS_DCZID_EL0, info->reg_dczid);
	init_cpu_ftr_reg(SYS_CNTFRQ_EL0, info->reg_cntfrq);
	init_cpu_ftr_reg(SYS_ID_AA64DFR0_EL1, info->reg_id_aa64dfr0);
	init_cpu_ftr_reg(SYS_ID_AA64DFR1_EL1, info->reg_id_aa64dfr1);
	init_cpu_ftr_reg(SYS_ID_AA64ISAR0_EL1, info->reg_id_aa64isar0);
	init_cpu_ftr_reg(SYS_ID_AA64ISAR1_EL1, info->reg_id_aa64isar1);
	init_cpu_ftr_reg(SYS_ID_AA64MMFR0_EL1, info->reg_id_aa64mmfr0);
	init_cpu_ftr_reg(SYS_ID_AA64MMFR1_EL1, info->reg_id_aa64mmfr1);
	init_cpu_ftr_reg(SYS_ID_AA64MMFR2_EL1, info->reg_id_aa64mmfr2);
	init_cpu_ftr_reg(SYS_ID_AA64PFR0_EL1, info->reg_id_aa64pfr0);
	init_cpu_ftr_reg(SYS_ID_AA64PFR1_EL1, info->reg_id_aa64pfr1);
	init_cpu_ftr_reg(SYS_ID_DFR0_EL1, info->reg_id_dfr0);
	init_cpu_ftr_reg(SYS_ID_ISAR0_EL1, info->reg_id_isar0);
	init_cpu_ftr_reg(SYS_ID_ISAR1_EL1, info->reg_id_isar1);
	init_cpu_ftr_reg(SYS_ID_ISAR2_EL1, info->reg_id_isar2);
	init_cpu_ftr_reg(SYS_ID_ISAR3_EL1, info->reg_id_isar3);
	init_cpu_ftr_reg(SYS_ID_ISAR4_EL1, info->reg_id_isar4);
	init_cpu_ftr_reg(SYS_ID_ISAR5_EL1, info->reg_id_isar5);
	init_cpu_ftr_reg(SYS_ID_MMFR0_EL1, info->reg_id_mmfr0);
	init_cpu_ftr_reg(SYS_ID_MMFR1_EL1, info->reg_id_mmfr1);
	init_cpu_ftr_reg(SYS_ID_MMFR2_EL1, info->reg_id_mmfr2);
	init_cpu_ftr_reg(SYS_ID_MMFR3_EL1, info->reg_id_mmfr3);
	init_cpu_ftr_reg(SYS_ID_PFR0_EL1, info->reg_id_pfr0);
	init_cpu_ftr_reg(SYS_ID_PFR1_EL1, info->reg_id_pfr1);
	init_cpu_ftr_reg(SYS_MVFR0_EL1, info->reg_mvfr0);
	init_cpu_ftr_reg(SYS_MVFR1_EL1, info->reg_mvfr1);
	init_cpu_ftr_reg(SYS_MVFR2_EL1, info->reg_mvfr2);
}

static void update_cpu_ftr_reg(struct arm64_ftr_reg *reg, u64 new)
{
	struct arm64_ftr_bits *ftrp;

	for (ftrp = reg->ftr_bits; ftrp->width; ftrp++) {
		s64 ftr_cur = arm64_ftr_value(ftrp, reg->sys_val);
		s64 ftr_new = arm64_ftr_value(ftrp, new);

		if (ftr_cur == ftr_new)
			continue;
		/* Find a safe value */
		ftr_new = arm64_ftr_safe_value(ftrp, ftr_new, ftr_cur);
		reg->sys_val = arm64_ftr_set_value(ftrp, reg->sys_val, ftr_new);
	}

}

static int check_update_ftr_reg(u32 sys_id, int cpu, u64 val, u64 boot)
{
	struct arm64_ftr_reg *regp = get_arm64_ftr_reg(sys_id);

	BUG_ON(!regp);
	update_cpu_ftr_reg(regp, val);
	if ((boot & regp->strict_mask) == (val & regp->strict_mask))
		return 0;
	pr_warn("SANITY CHECK: Unexpected variation in %s. Boot CPU: %#016llx, CPU%d: %#016llx\n",
			regp->name, boot, cpu, val);
	return 1;
}

/*
 * Update system wide CPU feature registers with the values from a
 * non-boot CPU. Also performs SANITY checks to make sure that there
 * aren't any insane variations from that of the boot CPU.
 */
void update_cpu_features(int cpu,
			 struct cpuinfo_arm64 *info,
			 struct cpuinfo_arm64 *boot)
{
	int taint = 0;

	/*
	 * The kernel can handle differing I-cache policies, but otherwise
	 * caches should look identical. Userspace JITs will make use of
	 * *minLine.
	 */
	taint |= check_update_ftr_reg(SYS_CTR_EL0, cpu,
				      info->reg_ctr, boot->reg_ctr);

	/*
	 * Userspace may perform DC ZVA instructions. Mismatched block sizes
	 * could result in too much or too little memory being zeroed if a
	 * process is preempted and migrated between CPUs.
	 */
	taint |= check_update_ftr_reg(SYS_DCZID_EL0, cpu,
				      info->reg_dczid, boot->reg_dczid);

	/* If different, timekeeping will be broken (especially with KVM) */
	taint |= check_update_ftr_reg(SYS_CNTFRQ_EL0, cpu,
				      info->reg_cntfrq, boot->reg_cntfrq);

	/*
	 * The kernel uses self-hosted debug features and expects CPUs to
	 * support identical debug features. We presently need CTX_CMPs, WRPs,
	 * and BRPs to be identical.
	 * ID_AA64DFR1 is currently RES0.
	 */
	taint |= check_update_ftr_reg(SYS_ID_AA64DFR0_EL1, cpu,
				      info->reg_id_aa64dfr0, boot->reg_id_aa64dfr0);
	taint |= check_update_ftr_reg(SYS_ID_AA64DFR1_EL1, cpu,
				      info->reg_id_aa64dfr1, boot->reg_id_aa64dfr1);
	/*
	 * Even in big.LITTLE, processors should be identical instruction-set
	 * wise.
	 */
	taint |= check_update_ftr_reg(SYS_ID_AA64ISAR0_EL1, cpu,
				      info->reg_id_aa64isar0, boot->reg_id_aa64isar0);
	taint |= check_update_ftr_reg(SYS_ID_AA64ISAR1_EL1, cpu,
				      info->reg_id_aa64isar1, boot->reg_id_aa64isar1);

	/*
	 * Differing PARange support is fine as long as all peripherals and
	 * memory are mapped within the minimum PARange of all CPUs.
	 * Linux should not care about secure memory.
	 */
	taint |= check_update_ftr_reg(SYS_ID_AA64MMFR0_EL1, cpu,
				      info->reg_id_aa64mmfr0, boot->reg_id_aa64mmfr0);
	taint |= check_update_ftr_reg(SYS_ID_AA64MMFR1_EL1, cpu,
				      info->reg_id_aa64mmfr1, boot->reg_id_aa64mmfr1);
	taint |= check_update_ftr_reg(SYS_ID_AA64MMFR2_EL1, cpu,
				      info->reg_id_aa64mmfr2, boot->reg_id_aa64mmfr2);

	/*
	 * EL3 is not our concern.
	 * ID_AA64PFR1 is currently RES0.
	 */
	taint |= check_update_ftr_reg(SYS_ID_AA64PFR0_EL1, cpu,
				      info->reg_id_aa64pfr0, boot->reg_id_aa64pfr0);
	taint |= check_update_ftr_reg(SYS_ID_AA64PFR1_EL1, cpu,
				      info->reg_id_aa64pfr1, boot->reg_id_aa64pfr1);

	/*
	 * If we have AArch32, we care about 32-bit features for compat. These
	 * registers should be RES0 otherwise.
	 */
	taint |= check_update_ftr_reg(SYS_ID_DFR0_EL1, cpu,
					info->reg_id_dfr0, boot->reg_id_dfr0);
	taint |= check_update_ftr_reg(SYS_ID_ISAR0_EL1, cpu,
					info->reg_id_isar0, boot->reg_id_isar0);
	taint |= check_update_ftr_reg(SYS_ID_ISAR1_EL1, cpu,
					info->reg_id_isar1, boot->reg_id_isar1);
	taint |= check_update_ftr_reg(SYS_ID_ISAR2_EL1, cpu,
					info->reg_id_isar2, boot->reg_id_isar2);
	taint |= check_update_ftr_reg(SYS_ID_ISAR3_EL1, cpu,
					info->reg_id_isar3, boot->reg_id_isar3);
	taint |= check_update_ftr_reg(SYS_ID_ISAR4_EL1, cpu,
					info->reg_id_isar4, boot->reg_id_isar4);
	taint |= check_update_ftr_reg(SYS_ID_ISAR5_EL1, cpu,
					info->reg_id_isar5, boot->reg_id_isar5);

	/*
	 * Regardless of the value of the AuxReg field, the AIFSR, ADFSR, and
	 * ACTLR formats could differ across CPUs and therefore would have to
	 * be trapped for virtualization anyway.
	 */
	taint |= check_update_ftr_reg(SYS_ID_MMFR0_EL1, cpu,
					info->reg_id_mmfr0, boot->reg_id_mmfr0);
	taint |= check_update_ftr_reg(SYS_ID_MMFR1_EL1, cpu,
					info->reg_id_mmfr1, boot->reg_id_mmfr1);
	taint |= check_update_ftr_reg(SYS_ID_MMFR2_EL1, cpu,
					info->reg_id_mmfr2, boot->reg_id_mmfr2);
	taint |= check_update_ftr_reg(SYS_ID_MMFR3_EL1, cpu,
					info->reg_id_mmfr3, boot->reg_id_mmfr3);
	taint |= check_update_ftr_reg(SYS_ID_PFR0_EL1, cpu,
					info->reg_id_pfr0, boot->reg_id_pfr0);
	taint |= check_update_ftr_reg(SYS_ID_PFR1_EL1, cpu,
					info->reg_id_pfr1, boot->reg_id_pfr1);
	taint |= check_update_ftr_reg(SYS_MVFR0_EL1, cpu,
					info->reg_mvfr0, boot->reg_mvfr0);
	taint |= check_update_ftr_reg(SYS_MVFR1_EL1, cpu,
					info->reg_mvfr1, boot->reg_mvfr1);
	taint |= check_update_ftr_reg(SYS_MVFR2_EL1, cpu,
					info->reg_mvfr2, boot->reg_mvfr2);

	/*
	 * Mismatched CPU features are a recipe for disaster. Don't even
	 * pretend to support them.
	 */
	WARN_TAINT_ONCE(taint, TAINT_CPU_OUT_OF_SPEC,
			"Unsupported CPU feature variation.\n");
}

u64 read_system_reg(u32 id)
{
	struct arm64_ftr_reg *regp = get_arm64_ftr_reg(id);

	/* We shouldn't get a request for an unsupported register */
	BUG_ON(!regp);
	return regp->sys_val;
}

#include <linux/irqchip/arm-gic-v3.h>

static bool
feature_matches(u64 reg, const struct arm64_cpu_capabilities *entry)
{
	int val = cpuid_feature_extract_field(reg, entry->field_pos);

	return val >= entry->min_field_value;
}

static bool
has_cpuid_feature(const struct arm64_cpu_capabilities *entry)
{
	u64 val;

	val = read_system_reg(entry->sys_reg);
	return feature_matches(val, entry);
}

static bool has_useable_gicv3_cpuif(const struct arm64_cpu_capabilities *entry)
{
	bool has_sre;

	if (!has_cpuid_feature(entry))
		return false;

	has_sre = gic_enable_sre();
	if (!has_sre)
		pr_warn_once("%s present but disabled by higher exception level\n",
			     entry->desc);

	return has_sre;
}

static bool has_no_hw_prefetch(const struct arm64_cpu_capabilities *entry)
{
	u32 midr = read_cpuid_id();
	u32 rv_min, rv_max;

	/* Cavium ThunderX pass 1.x and 2.x */
	rv_min = 0;
	rv_max = (1 << MIDR_VARIANT_SHIFT) | MIDR_REVISION_MASK;

	return MIDR_IS_CPU_MODEL_RANGE(midr, MIDR_THUNDERX, rv_min, rv_max);
}

static const struct arm64_cpu_capabilities arm64_features[] = {
	{
		.desc = "GIC system register CPU interface",
		.capability = ARM64_HAS_SYSREG_GIC_CPUIF,
		.matches = has_useable_gicv3_cpuif,
		.sys_reg = SYS_ID_AA64PFR0_EL1,
		.field_pos = ID_AA64PFR0_GIC_SHIFT,
		.min_field_value = 1,
	},
#ifdef CONFIG_ARM64_PAN
	{
		.desc = "Privileged Access Never",
		.capability = ARM64_HAS_PAN,
		.matches = has_cpuid_feature,
		.sys_reg = SYS_ID_AA64MMFR1_EL1,
		.field_pos = ID_AA64MMFR1_PAN_SHIFT,
		.min_field_value = 1,
		.enable = cpu_enable_pan,
	},
#endif /* CONFIG_ARM64_PAN */
#if defined(CONFIG_AS_LSE) && defined(CONFIG_ARM64_LSE_ATOMICS)
	{
		.desc = "LSE atomic instructions",
		.capability = ARM64_HAS_LSE_ATOMICS,
		.matches = has_cpuid_feature,
		.sys_reg = SYS_ID_AA64ISAR0_EL1,
		.field_pos = ID_AA64ISAR0_ATOMICS_SHIFT,
		.min_field_value = 2,
	},
#endif /* CONFIG_AS_LSE && CONFIG_ARM64_LSE_ATOMICS */
	{
		.desc = "Software prefetching using PRFM",
		.capability = ARM64_HAS_NO_HW_PREFETCH,
		.matches = has_no_hw_prefetch,
	},
#ifdef CONFIG_ARM64_UAO
	{
		.desc = "User Access Override",
		.capability = ARM64_HAS_UAO,
		.matches = has_cpuid_feature,
		.sys_reg = SYS_ID_AA64MMFR2_EL1,
		.field_pos = ID_AA64MMFR2_UAO_SHIFT,
		.min_field_value = 1,
		.enable = cpu_enable_uao,
	},
#endif /* CONFIG_ARM64_UAO */
	{},
};

#define HWCAP_CAP(reg, field, min_value, type, cap)		\
	{							\
		.desc = #cap,					\
		.matches = has_cpuid_feature,			\
		.sys_reg = reg,					\
		.field_pos = field,				\
		.min_field_value = min_value,			\
		.hwcap_type = type,				\
		.hwcap = cap,					\
	}

static const struct arm64_cpu_capabilities arm64_hwcaps[] = {
	HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_AES_SHIFT, 2, CAP_HWCAP, HWCAP_PMULL),
	HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_AES_SHIFT, 1, CAP_HWCAP, HWCAP_AES),
	HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_SHA1_SHIFT, 1, CAP_HWCAP, HWCAP_SHA1),
	HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_SHA2_SHIFT, 1, CAP_HWCAP, HWCAP_SHA2),
	HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_CRC32_SHIFT, 1, CAP_HWCAP, HWCAP_CRC32),
	HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_ATOMICS_SHIFT, 2, CAP_HWCAP, HWCAP_ATOMICS),
	HWCAP_CAP(SYS_ID_AA64PFR0_EL1, ID_AA64PFR0_FP_SHIFT, 0, CAP_HWCAP, HWCAP_FP),
	HWCAP_CAP(SYS_ID_AA64PFR0_EL1, ID_AA64PFR0_ASIMD_SHIFT, 0, CAP_HWCAP, HWCAP_ASIMD),
#ifdef CONFIG_COMPAT
	HWCAP_CAP(SYS_ID_ISAR5_EL1, ID_ISAR5_AES_SHIFT, 2, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_PMULL),
	HWCAP_CAP(SYS_ID_ISAR5_EL1, ID_ISAR5_AES_SHIFT, 1, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_AES),
	HWCAP_CAP(SYS_ID_ISAR5_EL1, ID_ISAR5_SHA1_SHIFT, 1, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_SHA1),
	HWCAP_CAP(SYS_ID_ISAR5_EL1, ID_ISAR5_SHA2_SHIFT, 1, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_SHA2),
	HWCAP_CAP(SYS_ID_ISAR5_EL1, ID_ISAR5_CRC32_SHIFT, 1, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_CRC32),
#endif
	{},
};

static void __init cap_set_hwcap(const struct arm64_cpu_capabilities *cap)
{
	switch (cap->hwcap_type) {
	case CAP_HWCAP:
		elf_hwcap |= cap->hwcap;
		break;
#ifdef CONFIG_COMPAT
	case CAP_COMPAT_HWCAP:
		compat_elf_hwcap |= (u32)cap->hwcap;
		break;
	case CAP_COMPAT_HWCAP2:
		compat_elf_hwcap2 |= (u32)cap->hwcap;
		break;
#endif
	default:
		WARN_ON(1);
		break;
	}
}

/* Check if we have a particular HWCAP enabled */
static bool __maybe_unused cpus_have_hwcap(const struct arm64_cpu_capabilities *cap)
{
	bool rc;

	switch (cap->hwcap_type) {
	case CAP_HWCAP:
		rc = (elf_hwcap & cap->hwcap) != 0;
		break;
#ifdef CONFIG_COMPAT
	case CAP_COMPAT_HWCAP:
		rc = (compat_elf_hwcap & (u32)cap->hwcap) != 0;
		break;
	case CAP_COMPAT_HWCAP2:
		rc = (compat_elf_hwcap2 & (u32)cap->hwcap) != 0;
		break;
#endif
	default:
		WARN_ON(1);
		rc = false;
	}

	return rc;
}

static void __init setup_cpu_hwcaps(void)
{
	int i;
	const struct arm64_cpu_capabilities *hwcaps = arm64_hwcaps;

	for (i = 0; hwcaps[i].desc; i++)
		if (hwcaps[i].matches(&hwcaps[i]))
			cap_set_hwcap(&hwcaps[i]);
}

void update_cpu_capabilities(const struct arm64_cpu_capabilities *caps,
			    const char *info)
{
	int i;

	for (i = 0; caps[i].desc; i++) {
		if (!caps[i].matches(&caps[i]))
			continue;

		if (!cpus_have_cap(caps[i].capability))
			pr_info("%s %s\n", info, caps[i].desc);
		cpus_set_cap(caps[i].capability);
	}
}

/*
 * Run through the enabled capabilities and enable() it on all active
 * CPUs
 */
static void __init
enable_cpu_capabilities(const struct arm64_cpu_capabilities *caps)
{
	int i;

	for (i = 0; caps[i].desc; i++)
		if (caps[i].enable && cpus_have_cap(caps[i].capability))
			on_each_cpu(caps[i].enable, NULL, true);
}

#ifdef CONFIG_HOTPLUG_CPU

/*
 * Flag to indicate if we have computed the system wide
 * capabilities based on the boot time active CPUs. This
 * will be used to determine if a new booting CPU should
 * go through the verification process to make sure that it
 * supports the system capabilities, without using a hotplug
 * notifier.
 */
static bool sys_caps_initialised;

static inline void set_sys_caps_initialised(void)
{
	sys_caps_initialised = true;
}

/*
 * __raw_read_system_reg() - Used by a STARTING cpu before cpuinfo is populated.
 */
static u64 __raw_read_system_reg(u32 sys_id)
{
	switch (sys_id) {
	case SYS_ID_PFR0_EL1:		return read_cpuid(SYS_ID_PFR0_EL1);
	case SYS_ID_PFR1_EL1:		return read_cpuid(SYS_ID_PFR1_EL1);
	case SYS_ID_DFR0_EL1:		return read_cpuid(SYS_ID_DFR0_EL1);
	case SYS_ID_MMFR0_EL1:		return read_cpuid(SYS_ID_MMFR0_EL1);
	case SYS_ID_MMFR1_EL1:		return read_cpuid(SYS_ID_MMFR1_EL1);
	case SYS_ID_MMFR2_EL1:		return read_cpuid(SYS_ID_MMFR2_EL1);
	case SYS_ID_MMFR3_EL1:		return read_cpuid(SYS_ID_MMFR3_EL1);
	case SYS_ID_ISAR0_EL1:		return read_cpuid(SYS_ID_ISAR0_EL1);
	case SYS_ID_ISAR1_EL1:		return read_cpuid(SYS_ID_ISAR1_EL1);
	case SYS_ID_ISAR2_EL1:		return read_cpuid(SYS_ID_ISAR2_EL1);
	case SYS_ID_ISAR3_EL1:		return read_cpuid(SYS_ID_ISAR3_EL1);
	case SYS_ID_ISAR4_EL1:		return read_cpuid(SYS_ID_ISAR4_EL1);
	case SYS_ID_ISAR5_EL1:		return read_cpuid(SYS_ID_ISAR4_EL1);
	case SYS_MVFR0_EL1:		return read_cpuid(SYS_MVFR0_EL1);
	case SYS_MVFR1_EL1:		return read_cpuid(SYS_MVFR1_EL1);
	case SYS_MVFR2_EL1:		return read_cpuid(SYS_MVFR2_EL1);

	case SYS_ID_AA64PFR0_EL1:	return read_cpuid(SYS_ID_AA64PFR0_EL1);
	case SYS_ID_AA64PFR1_EL1:	return read_cpuid(SYS_ID_AA64PFR0_EL1);
	case SYS_ID_AA64DFR0_EL1:	return read_cpuid(SYS_ID_AA64DFR0_EL1);
	case SYS_ID_AA64DFR1_EL1:	return read_cpuid(SYS_ID_AA64DFR0_EL1);
	case SYS_ID_AA64MMFR0_EL1:	return read_cpuid(SYS_ID_AA64MMFR0_EL1);
	case SYS_ID_AA64MMFR1_EL1:	return read_cpuid(SYS_ID_AA64MMFR1_EL1);
	case SYS_ID_AA64MMFR2_EL1:	return read_cpuid(SYS_ID_AA64MMFR2_EL1);
	case SYS_ID_AA64ISAR0_EL1:	return read_cpuid(SYS_ID_AA64ISAR0_EL1);
	case SYS_ID_AA64ISAR1_EL1:	return read_cpuid(SYS_ID_AA64ISAR1_EL1);

	case SYS_CNTFRQ_EL0:		return read_cpuid(SYS_CNTFRQ_EL0);
	case SYS_CTR_EL0:		return read_cpuid(SYS_CTR_EL0);
	case SYS_DCZID_EL0:		return read_cpuid(SYS_DCZID_EL0);
	default:
		BUG();
		return 0;
	}
}

/*
 * Park the CPU which doesn't have the capability as advertised
 * by the system.
 */
static void fail_incapable_cpu(char *cap_type,
				 const struct arm64_cpu_capabilities *cap)
{
	int cpu = smp_processor_id();

	pr_crit("CPU%d: missing %s : %s\n", cpu, cap_type, cap->desc);
	/* Mark this CPU absent */
	set_cpu_present(cpu, 0);

	/* Check if we can park ourselves */
	if (cpu_ops[cpu] && cpu_ops[cpu]->cpu_die)
		cpu_ops[cpu]->cpu_die(cpu);
	asm(
	"1:	wfe\n"
	"	wfi\n"
	"	b	1b");
}

/*
 * Run through the enabled system capabilities and enable() it on this CPU.
 * The capabilities were decided based on the available CPUs at the boot time.
 * Any new CPU should match the system wide status of the capability. If the
 * new CPU doesn't have a capability which the system now has enabled, we
 * cannot do anything to fix it up and could cause unexpected failures. So
 * we park the CPU.
 */
void verify_local_cpu_capabilities(void)
{
	int i;
	const struct arm64_cpu_capabilities *caps;

	/*
	 * If we haven't computed the system capabilities, there is nothing
	 * to verify.
	 */
	if (!sys_caps_initialised)
		return;

	caps = arm64_features;
	for (i = 0; caps[i].desc; i++) {
		if (!cpus_have_cap(caps[i].capability) || !caps[i].sys_reg)
			continue;
		/*
		 * If the new CPU misses an advertised feature, we cannot proceed
		 * further, park the cpu.
		 */
		if (!feature_matches(__raw_read_system_reg(caps[i].sys_reg), &caps[i]))
			fail_incapable_cpu("arm64_features", &caps[i]);
		if (caps[i].enable)
			caps[i].enable(NULL);
	}

	for (i = 0, caps = arm64_hwcaps; caps[i].desc; i++) {
		if (!cpus_have_hwcap(&caps[i]))
			continue;
		if (!feature_matches(__raw_read_system_reg(caps[i].sys_reg), &caps[i]))
			fail_incapable_cpu("arm64_hwcaps", &caps[i]);
	}
}

#else	/* !CONFIG_HOTPLUG_CPU */

static inline void set_sys_caps_initialised(void)
{
}

#endif	/* CONFIG_HOTPLUG_CPU */

static void __init setup_feature_capabilities(void)
{
	update_cpu_capabilities(arm64_features, "detected feature:");
	enable_cpu_capabilities(arm64_features);
}

void __init setup_cpu_features(void)
{
	u32 cwg;
	int cls;

	/* Set the CPU feature capabilies */
	setup_feature_capabilities();
	setup_cpu_hwcaps();

	/* Advertise that we have computed the system capabilities */
	set_sys_caps_initialised();

	/*
	 * Check for sane CTR_EL0.CWG value.
	 */
	cwg = cache_type_cwg();
	cls = cache_line_size();
	if (!cwg)
		pr_warn("No Cache Writeback Granule information, assuming cache line size %d\n",
			cls);
	if (L1_CACHE_BYTES < cls)
		pr_warn("L1_CACHE_BYTES smaller than the Cache Writeback Granule (%d < %d)\n",
			L1_CACHE_BYTES, cls);
}