aboutsummaryrefslogtreecommitdiffstats
path: root/arch/ppc64/kernel/iSeries_setup.c
blob: 1139e27e1713781f8b1ec0a3ef890049982b5749 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
/*
 *    Copyright (c) 2000 Mike Corrigan <mikejc@us.ibm.com>
 *    Copyright (c) 1999-2000 Grant Erickson <grant@lcse.umn.edu>
 *
 *    Module name: iSeries_setup.c
 *
 *    Description:
 *      Architecture- / platform-specific boot-time initialization code for
 *      the IBM iSeries LPAR.  Adapted from original code by Grant Erickson and
 *      code by Gary Thomas, Cort Dougan <cort@fsmlabs.com>, and Dan Malek
 *      <dan@net4x.com>.
 *
 *      This program is free software; you can redistribute it and/or
 *      modify it under the terms of the GNU General Public License
 *      as published by the Free Software Foundation; either version
 *      2 of the License, or (at your option) any later version.
 */

#undef DEBUG

#include <linux/config.h>
#include <linux/init.h>
#include <linux/threads.h>
#include <linux/smp.h>
#include <linux/param.h>
#include <linux/string.h>
#include <linux/initrd.h>
#include <linux/seq_file.h>
#include <linux/kdev_t.h>
#include <linux/major.h>
#include <linux/root_dev.h>

#include <asm/processor.h>
#include <asm/machdep.h>
#include <asm/page.h>
#include <asm/mmu.h>
#include <asm/pgtable.h>
#include <asm/mmu_context.h>
#include <asm/cputable.h>
#include <asm/sections.h>
#include <asm/iommu.h>

#include <asm/time.h>
#include "iSeries_setup.h"
#include <asm/naca.h>
#include <asm/paca.h>
#include <asm/cache.h>
#include <asm/sections.h>
#include <asm/abs_addr.h>
#include <asm/iSeries/HvCallHpt.h>
#include <asm/iSeries/HvLpConfig.h>
#include <asm/iSeries/HvCallEvent.h>
#include <asm/iSeries/HvCallSm.h>
#include <asm/iSeries/HvCallXm.h>
#include <asm/iSeries/ItLpQueue.h>
#include <asm/iSeries/IoHriMainStore.h>
#include <asm/iSeries/mf.h>
#include <asm/iSeries/HvLpEvent.h>
#include <asm/iSeries/iSeries_irq.h>
#include <asm/iSeries/IoHriProcessorVpd.h>
#include <asm/iSeries/ItVpdAreas.h>
#include <asm/iSeries/LparMap.h>

extern void hvlog(char *fmt, ...);

#ifdef DEBUG
#define DBG(fmt...) hvlog(fmt)
#else
#define DBG(fmt...)
#endif

/* Function Prototypes */
extern void ppcdbg_initialize(void);

static void build_iSeries_Memory_Map(void);
static void setup_iSeries_cache_sizes(void);
static void iSeries_bolt_kernel(unsigned long saddr, unsigned long eaddr);
#ifdef CONFIG_PCI
extern void iSeries_pci_final_fixup(void);
#else
static void iSeries_pci_final_fixup(void) { }
#endif

/* Global Variables */
static unsigned long procFreqHz;
static unsigned long procFreqMhz;
static unsigned long procFreqMhzHundreths;

static unsigned long tbFreqHz;
static unsigned long tbFreqMhz;
static unsigned long tbFreqMhzHundreths;

int piranha_simulator;

extern int rd_size;		/* Defined in drivers/block/rd.c */
extern unsigned long klimit;
extern unsigned long embedded_sysmap_start;
extern unsigned long embedded_sysmap_end;

extern unsigned long iSeries_recal_tb;
extern unsigned long iSeries_recal_titan;

static int mf_initialized;

struct MemoryBlock {
	unsigned long absStart;
	unsigned long absEnd;
	unsigned long logicalStart;
	unsigned long logicalEnd;
};

/*
 * Process the main store vpd to determine where the holes in memory are
 * and return the number of physical blocks and fill in the array of
 * block data.
 */
static unsigned long iSeries_process_Condor_mainstore_vpd(
		struct MemoryBlock *mb_array, unsigned long max_entries)
{
	unsigned long holeFirstChunk, holeSizeChunks;
	unsigned long numMemoryBlocks = 1;
	struct IoHriMainStoreSegment4 *msVpd =
		(struct IoHriMainStoreSegment4 *)xMsVpd;
	unsigned long holeStart = msVpd->nonInterleavedBlocksStartAdr;
	unsigned long holeEnd = msVpd->nonInterleavedBlocksEndAdr;
	unsigned long holeSize = holeEnd - holeStart;

	printk("Mainstore_VPD: Condor\n");
	/*
	 * Determine if absolute memory has any
	 * holes so that we can interpret the
	 * access map we get back from the hypervisor
	 * correctly.
	 */
	mb_array[0].logicalStart = 0;
	mb_array[0].logicalEnd = 0x100000000;
	mb_array[0].absStart = 0;
	mb_array[0].absEnd = 0x100000000;

	if (holeSize) {
		numMemoryBlocks = 2;
		holeStart = holeStart & 0x000fffffffffffff;
		holeStart = addr_to_chunk(holeStart);
		holeFirstChunk = holeStart;
		holeSize = addr_to_chunk(holeSize);
		holeSizeChunks = holeSize;
		printk( "Main store hole: start chunk = %0lx, size = %0lx chunks\n",
				holeFirstChunk, holeSizeChunks );
		mb_array[0].logicalEnd = holeFirstChunk;
		mb_array[0].absEnd = holeFirstChunk;
		mb_array[1].logicalStart = holeFirstChunk;
		mb_array[1].logicalEnd = 0x100000000 - holeSizeChunks;
		mb_array[1].absStart = holeFirstChunk + holeSizeChunks;
		mb_array[1].absEnd = 0x100000000;
	}
	return numMemoryBlocks;
}

#define MaxSegmentAreas			32
#define MaxSegmentAdrRangeBlocks	128
#define MaxAreaRangeBlocks		4

static unsigned long iSeries_process_Regatta_mainstore_vpd(
		struct MemoryBlock *mb_array, unsigned long max_entries)
{
	struct IoHriMainStoreSegment5 *msVpdP =
		(struct IoHriMainStoreSegment5 *)xMsVpd;
	unsigned long numSegmentBlocks = 0;
	u32 existsBits = msVpdP->msAreaExists;
	unsigned long area_num;

	printk("Mainstore_VPD: Regatta\n");

	for (area_num = 0; area_num < MaxSegmentAreas; ++area_num ) {
		unsigned long numAreaBlocks;
		struct IoHriMainStoreArea4 *currentArea;

		if (existsBits & 0x80000000) {
			unsigned long block_num;

			currentArea = &msVpdP->msAreaArray[area_num];
			numAreaBlocks = currentArea->numAdrRangeBlocks;
			printk("ms_vpd: processing area %2ld  blocks=%ld",
					area_num, numAreaBlocks);
			for (block_num = 0; block_num < numAreaBlocks;
					++block_num ) {
				/* Process an address range block */
				struct MemoryBlock tempBlock;
				unsigned long i;

				tempBlock.absStart =
					(unsigned long)currentArea->xAdrRangeBlock[block_num].blockStart;
				tempBlock.absEnd =
					(unsigned long)currentArea->xAdrRangeBlock[block_num].blockEnd;
				tempBlock.logicalStart = 0;
				tempBlock.logicalEnd   = 0;
				printk("\n          block %ld absStart=%016lx absEnd=%016lx",
						block_num, tempBlock.absStart,
						tempBlock.absEnd);

				for (i = 0; i < numSegmentBlocks; ++i) {
					if (mb_array[i].absStart ==
							tempBlock.absStart)
						break;
				}
				if (i == numSegmentBlocks) {
					if (numSegmentBlocks == max_entries)
						panic("iSeries_process_mainstore_vpd: too many memory blocks");
					mb_array[numSegmentBlocks] = tempBlock;
					++numSegmentBlocks;
				} else
					printk(" (duplicate)");
			}
			printk("\n");
		}
		existsBits <<= 1;
	}
	/* Now sort the blocks found into ascending sequence */
	if (numSegmentBlocks > 1) {
		unsigned long m, n;

		for (m = 0; m < numSegmentBlocks - 1; ++m) {
			for (n = numSegmentBlocks - 1; m < n; --n) {
				if (mb_array[n].absStart <
						mb_array[n-1].absStart) {
					struct MemoryBlock tempBlock;

					tempBlock = mb_array[n];
					mb_array[n] = mb_array[n-1];
					mb_array[n-1] = tempBlock;
				}
			}
		}
	}
	/*
	 * Assign "logical" addresses to each block.  These
	 * addresses correspond to the hypervisor "bitmap" space.
	 * Convert all addresses into units of 256K chunks.
	 */
	{
	unsigned long i, nextBitmapAddress;

	printk("ms_vpd: %ld sorted memory blocks\n", numSegmentBlocks);
	nextBitmapAddress = 0;
	for (i = 0; i < numSegmentBlocks; ++i) {
		unsigned long length = mb_array[i].absEnd -
			mb_array[i].absStart;

		mb_array[i].logicalStart = nextBitmapAddress;
		mb_array[i].logicalEnd = nextBitmapAddress + length;
		nextBitmapAddress += length;
		printk("          Bitmap range: %016lx - %016lx\n"
				"        Absolute range: %016lx - %016lx\n",
				mb_array[i].logicalStart,
				mb_array[i].logicalEnd,
				mb_array[i].absStart, mb_array[i].absEnd);
		mb_array[i].absStart = addr_to_chunk(mb_array[i].absStart &
				0x000fffffffffffff);
		mb_array[i].absEnd = addr_to_chunk(mb_array[i].absEnd &
				0x000fffffffffffff);
		mb_array[i].logicalStart =
			addr_to_chunk(mb_array[i].logicalStart);
		mb_array[i].logicalEnd = addr_to_chunk(mb_array[i].logicalEnd);
	}
	}

	return numSegmentBlocks;
}

static unsigned long iSeries_process_mainstore_vpd(struct MemoryBlock *mb_array,
		unsigned long max_entries)
{
	unsigned long i;
	unsigned long mem_blocks = 0;

	if (cpu_has_feature(CPU_FTR_SLB))
		mem_blocks = iSeries_process_Regatta_mainstore_vpd(mb_array,
				max_entries);
	else
		mem_blocks = iSeries_process_Condor_mainstore_vpd(mb_array,
				max_entries);

	printk("Mainstore_VPD: numMemoryBlocks = %ld \n", mem_blocks);
	for (i = 0; i < mem_blocks; ++i) {
		printk("Mainstore_VPD: block %3ld logical chunks %016lx - %016lx\n"
		       "                             abs chunks %016lx - %016lx\n",
			i, mb_array[i].logicalStart, mb_array[i].logicalEnd,
			mb_array[i].absStart, mb_array[i].absEnd);
	}
	return mem_blocks;
}

static void __init iSeries_get_cmdline(void)
{
	char *p, *q;

	/* copy the command line parameter from the primary VSP  */
	HvCallEvent_dmaToSp(cmd_line, 2 * 64* 1024, 256,
			HvLpDma_Direction_RemoteToLocal);

	p = cmd_line;
	q = cmd_line + 255;
	while(p < q) {
		if (!*p || *p == '\n')
			break;
		++p;
	}
	*p = 0;
}

static void __init iSeries_init_early(void)
{
	extern unsigned long memory_limit;

	DBG(" -> iSeries_init_early()\n");

	ppcdbg_initialize();

#if defined(CONFIG_BLK_DEV_INITRD)
	/*
	 * If the init RAM disk has been configured and there is
	 * a non-zero starting address for it, set it up
	 */
	if (naca.xRamDisk) {
		initrd_start = (unsigned long)__va(naca.xRamDisk);
		initrd_end = initrd_start + naca.xRamDiskSize * PAGE_SIZE;
		initrd_below_start_ok = 1;	// ramdisk in kernel space
		ROOT_DEV = Root_RAM0;
		if (((rd_size * 1024) / PAGE_SIZE) < naca.xRamDiskSize)
			rd_size = (naca.xRamDiskSize * PAGE_SIZE) / 1024;
	} else
#endif /* CONFIG_BLK_DEV_INITRD */
	{
	    /* ROOT_DEV = MKDEV(VIODASD_MAJOR, 1); */
	}

	iSeries_recal_tb = get_tb();
	iSeries_recal_titan = HvCallXm_loadTod();

	/*
	 * Cache sizes must be initialized before hpte_init_iSeries is called
	 * as the later need them for flush_icache_range()
	 */
	setup_iSeries_cache_sizes();

	/*
	 * Initialize the hash table management pointers
	 */
	hpte_init_iSeries();

	/*
	 * Initialize the DMA/TCE management
	 */
	iommu_init_early_iSeries();

	/*
	 * Initialize the table which translate Linux physical addresses to
	 * AS/400 absolute addresses
	 */
	build_iSeries_Memory_Map();

	iSeries_get_cmdline();

	/* Save unparsed command line copy for /proc/cmdline */
	strlcpy(saved_command_line, cmd_line, COMMAND_LINE_SIZE);

	/* Parse early parameters, in particular mem=x */
	parse_early_param();

	if (memory_limit) {
		if (memory_limit < systemcfg->physicalMemorySize)
			systemcfg->physicalMemorySize = memory_limit;
		else {
			printk("Ignoring mem=%lu >= ram_top.\n", memory_limit);
			memory_limit = 0;
		}
	}

	/* Bolt kernel mappings for all of memory (or just a bit if we've got a limit) */
	iSeries_bolt_kernel(0, systemcfg->physicalMemorySize);

	lmb_init();
	lmb_add(0, systemcfg->physicalMemorySize);
	lmb_analyze();
	lmb_reserve(0, __pa(klimit));

	/* Initialize machine-dependency vectors */
#ifdef CONFIG_SMP
	smp_init_iSeries();
#endif
	if (itLpNaca.xPirEnvironMode == 0)
		piranha_simulator = 1;

	/* Associate Lp Event Queue 0 with processor 0 */
	HvCallEvent_setLpEventQueueInterruptProc(0, 0);

	mf_init();
	mf_initialized = 1;
	mb();

	/* If we were passed an initrd, set the ROOT_DEV properly if the values
	 * look sensible. If not, clear initrd reference.
	 */
#ifdef CONFIG_BLK_DEV_INITRD
	if (initrd_start >= KERNELBASE && initrd_end >= KERNELBASE &&
	    initrd_end > initrd_start)
		ROOT_DEV = Root_RAM0;
	else
		initrd_start = initrd_end = 0;
#endif /* CONFIG_BLK_DEV_INITRD */

	DBG(" <- iSeries_init_early()\n");
}

/*
 * The iSeries may have very large memories ( > 128 GB ) and a partition
 * may get memory in "chunks" that may be anywhere in the 2**52 real
 * address space.  The chunks are 256K in size.  To map this to the
 * memory model Linux expects, the AS/400 specific code builds a
 * translation table to translate what Linux thinks are "physical"
 * addresses to the actual real addresses.  This allows us to make
 * it appear to Linux that we have contiguous memory starting at
 * physical address zero while in fact this could be far from the truth.
 * To avoid confusion, I'll let the words physical and/or real address
 * apply to the Linux addresses while I'll use "absolute address" to
 * refer to the actual hardware real address.
 *
 * build_iSeries_Memory_Map gets information from the Hypervisor and
 * looks at the Main Store VPD to determine the absolute addresses
 * of the memory that has been assigned to our partition and builds
 * a table used to translate Linux's physical addresses to these
 * absolute addresses.  Absolute addresses are needed when
 * communicating with the hypervisor (e.g. to build HPT entries)
 */

static void __init build_iSeries_Memory_Map(void)
{
	u32 loadAreaFirstChunk, loadAreaLastChunk, loadAreaSize;
	u32 nextPhysChunk;
	u32 hptFirstChunk, hptLastChunk, hptSizeChunks, hptSizePages;
	u32 num_ptegs;
	u32 totalChunks,moreChunks;
	u32 currChunk, thisChunk, absChunk;
	u32 currDword;
	u32 chunkBit;
	u64 map;
	struct MemoryBlock mb[32];
	unsigned long numMemoryBlocks, curBlock;

	/* Chunk size on iSeries is 256K bytes */
	totalChunks = (u32)HvLpConfig_getMsChunks();
	klimit = msChunks_alloc(klimit, totalChunks, 1UL << 18);

	/*
	 * Get absolute address of our load area
	 * and map it to physical address 0
	 * This guarantees that the loadarea ends up at physical 0
	 * otherwise, it might not be returned by PLIC as the first
	 * chunks
	 */

	loadAreaFirstChunk = (u32)addr_to_chunk(itLpNaca.xLoadAreaAddr);
	loadAreaSize =  itLpNaca.xLoadAreaChunks;

	/*
	 * Only add the pages already mapped here.
	 * Otherwise we might add the hpt pages
	 * The rest of the pages of the load area
	 * aren't in the HPT yet and can still
	 * be assigned an arbitrary physical address
	 */
	if ((loadAreaSize * 64) > HvPagesToMap)
		loadAreaSize = HvPagesToMap / 64;

	loadAreaLastChunk = loadAreaFirstChunk + loadAreaSize - 1;

	/*
	 * TODO Do we need to do something if the HPT is in the 64MB load area?
	 * This would be required if the itLpNaca.xLoadAreaChunks includes
	 * the HPT size
	 */

	printk("Mapping load area - physical addr = 0000000000000000\n"
		"                    absolute addr = %016lx\n",
		chunk_to_addr(loadAreaFirstChunk));
	printk("Load area size %dK\n", loadAreaSize * 256);

	for (nextPhysChunk = 0; nextPhysChunk < loadAreaSize; ++nextPhysChunk)
		msChunks.abs[nextPhysChunk] =
			loadAreaFirstChunk + nextPhysChunk;

	/*
	 * Get absolute address of our HPT and remember it so
	 * we won't map it to any physical address
	 */
	hptFirstChunk = (u32)addr_to_chunk(HvCallHpt_getHptAddress());
	hptSizePages = (u32)HvCallHpt_getHptPages();
	hptSizeChunks = hptSizePages >> (msChunks.chunk_shift - PAGE_SHIFT);
	hptLastChunk = hptFirstChunk + hptSizeChunks - 1;

	printk("HPT absolute addr = %016lx, size = %dK\n",
			chunk_to_addr(hptFirstChunk), hptSizeChunks * 256);

	/* Fill in the hashed page table hash mask */
	num_ptegs = hptSizePages *
		(PAGE_SIZE / (sizeof(HPTE) * HPTES_PER_GROUP));
	htab_hash_mask = num_ptegs - 1;

	/*
	 * The actual hashed page table is in the hypervisor,
	 * we have no direct access
	 */
	htab_address = NULL;

	/*
	 * Determine if absolute memory has any
	 * holes so that we can interpret the
	 * access map we get back from the hypervisor
	 * correctly.
	 */
	numMemoryBlocks = iSeries_process_mainstore_vpd(mb, 32);

	/*
	 * Process the main store access map from the hypervisor
	 * to build up our physical -> absolute translation table
	 */
	curBlock = 0;
	currChunk = 0;
	currDword = 0;
	moreChunks = totalChunks;

	while (moreChunks) {
		map = HvCallSm_get64BitsOfAccessMap(itLpNaca.xLpIndex,
				currDword);
		thisChunk = currChunk;
		while (map) {
			chunkBit = map >> 63;
			map <<= 1;
			if (chunkBit) {
				--moreChunks;
				while (thisChunk >= mb[curBlock].logicalEnd) {
					++curBlock;
					if (curBlock >= numMemoryBlocks)
						panic("out of memory blocks");
				}
				if (thisChunk < mb[curBlock].logicalStart)
					panic("memory block error");

				absChunk = mb[curBlock].absStart +
					(thisChunk - mb[curBlock].logicalStart);
				if (((absChunk < hptFirstChunk) ||
				     (absChunk > hptLastChunk)) &&
				    ((absChunk < loadAreaFirstChunk) ||
				     (absChunk > loadAreaLastChunk))) {
					msChunks.abs[nextPhysChunk] = absChunk;
					++nextPhysChunk;
				}
			}
			++thisChunk;
		}
		++currDword;
		currChunk += 64;
	}

	/*
	 * main store size (in chunks) is
	 *   totalChunks - hptSizeChunks
	 * which should be equal to
	 *   nextPhysChunk
	 */
	systemcfg->physicalMemorySize = chunk_to_addr(nextPhysChunk);
}

/*
 * Set up the variables that describe the cache line sizes
 * for this machine.
 */
static void __init setup_iSeries_cache_sizes(void)
{
	unsigned int i, n;
	unsigned int procIx = get_paca()->lppaca.dyn_hv_phys_proc_index;

	systemcfg->icache_size =
	ppc64_caches.isize = xIoHriProcessorVpd[procIx].xInstCacheSize * 1024;
	systemcfg->icache_line_size =
	ppc64_caches.iline_size =
		xIoHriProcessorVpd[procIx].xInstCacheOperandSize;
	systemcfg->dcache_size =
	ppc64_caches.dsize =
		xIoHriProcessorVpd[procIx].xDataL1CacheSizeKB * 1024;
	systemcfg->dcache_line_size =
	ppc64_caches.dline_size =
		xIoHriProcessorVpd[procIx].xDataCacheOperandSize;
	ppc64_caches.ilines_per_page = PAGE_SIZE / ppc64_caches.iline_size;
	ppc64_caches.dlines_per_page = PAGE_SIZE / ppc64_caches.dline_size;

	i = ppc64_caches.iline_size;
	n = 0;
	while ((i = (i / 2)))
		++n;
	ppc64_caches.log_iline_size = n;

	i = ppc64_caches.dline_size;
	n = 0;
	while ((i = (i / 2)))
		++n;
	ppc64_caches.log_dline_size = n;

	printk("D-cache line size = %d\n",
			(unsigned int)ppc64_caches.dline_size);
	printk("I-cache line size = %d\n",
			(unsigned int)ppc64_caches.iline_size);
}

/*
 * Create a pte. Used during initialization only.
 */
static void iSeries_make_pte(unsigned long va, unsigned long pa,
			     int mode)
{
	HPTE local_hpte, rhpte;
	unsigned long hash, vpn;
	long slot;

	vpn = va >> PAGE_SHIFT;
	hash = hpt_hash(vpn, 0);

	local_hpte.dw1.dword1 = pa | mode;
	local_hpte.dw0.dword0 = 0;
	local_hpte.dw0.dw0.avpn = va >> 23;
	local_hpte.dw0.dw0.bolted = 1;		/* bolted */
	local_hpte.dw0.dw0.v = 1;

	slot = HvCallHpt_findValid(&rhpte, vpn);
	if (slot < 0) {
		/* Must find space in primary group */
		panic("hash_page: hpte already exists\n");
	}
	HvCallHpt_addValidate(slot, 0, (HPTE *)&local_hpte );
}

/*
 * Bolt the kernel addr space into the HPT
 */
static void __init iSeries_bolt_kernel(unsigned long saddr, unsigned long eaddr)
{
	unsigned long pa;
	unsigned long mode_rw = _PAGE_ACCESSED | _PAGE_COHERENT | PP_RWXX;
	HPTE hpte;

	for (pa = saddr; pa < eaddr ;pa += PAGE_SIZE) {
		unsigned long ea = (unsigned long)__va(pa);
		unsigned long vsid = get_kernel_vsid(ea);
		unsigned long va = (vsid << 28) | (pa & 0xfffffff);
		unsigned long vpn = va >> PAGE_SHIFT;
		unsigned long slot = HvCallHpt_findValid(&hpte, vpn);

		/* Make non-kernel text non-executable */
		if (!in_kernel_text(ea))
			mode_rw |= HW_NO_EXEC;

		if (hpte.dw0.dw0.v) {
			/* HPTE exists, so just bolt it */
			HvCallHpt_setSwBits(slot, 0x10, 0);
			/* And make sure the pp bits are correct */
			HvCallHpt_setPp(slot, PP_RWXX);
		} else
			/* No HPTE exists, so create a new bolted one */
			iSeries_make_pte(va, phys_to_abs(pa), mode_rw);
	}
}

/*
 * Document me.
 */
static void __init iSeries_setup_arch(void)
{
	unsigned procIx = get_paca()->lppaca.dyn_hv_phys_proc_index;

	/* Add an eye catcher and the systemcfg layout version number */
	strcpy(systemcfg->eye_catcher, "SYSTEMCFG:PPC64");
	systemcfg->version.major = SYSTEMCFG_MAJOR;
	systemcfg->version.minor = SYSTEMCFG_MINOR;

	/* Setup the Lp Event Queue */
	setup_hvlpevent_queue();

	/* Compute processor frequency */
	procFreqHz = ((1UL << 34) * 1000000) /
			xIoHriProcessorVpd[procIx].xProcFreq;
	procFreqMhz = procFreqHz / 1000000;
	procFreqMhzHundreths = (procFreqHz / 10000) - (procFreqMhz * 100);
	ppc_proc_freq = procFreqHz;

	/* Compute time base frequency */
	tbFreqHz = ((1UL << 32) * 1000000) /
		xIoHriProcessorVpd[procIx].xTimeBaseFreq;
	tbFreqMhz = tbFreqHz / 1000000;
	tbFreqMhzHundreths = (tbFreqHz / 10000) - (tbFreqMhz * 100);
	ppc_tb_freq = tbFreqHz;

	printk("Max  logical processors = %d\n",
			itVpdAreas.xSlicMaxLogicalProcs);
	printk("Max physical processors = %d\n",
			itVpdAreas.xSlicMaxPhysicalProcs);
	printk("Processor frequency = %lu.%02lu\n", procFreqMhz,
			procFreqMhzHundreths);
	printk("Time base frequency = %lu.%02lu\n", tbFreqMhz,
			tbFreqMhzHundreths);
	systemcfg->processor = xIoHriProcessorVpd[procIx].xPVR;
	printk("Processor version = %x\n", systemcfg->processor);
}

static void iSeries_get_cpuinfo(struct seq_file *m)
{
	seq_printf(m, "machine\t\t: 64-bit iSeries Logical Partition\n");
}

/*
 * Document me.
 * and Implement me.
 */
static int iSeries_get_irq(struct pt_regs *regs)
{
	/* -2 means ignore this interrupt */
	return -2;
}

/*
 * Document me.
 */
static void iSeries_restart(char *cmd)
{
	mf_reboot();
}

/*
 * Document me.
 */
static void iSeries_power_off(void)
{
	mf_power_off();
}

/*
 * Document me.
 */
static void iSeries_halt(void)
{
	mf_power_off();
}

/*
 * void __init iSeries_calibrate_decr()
 *
 * Description:
 *   This routine retrieves the internal processor frequency from the VPD,
 *   and sets up the kernel timer decrementer based on that value.
 *
 */
static void __init iSeries_calibrate_decr(void)
{
	unsigned long	cyclesPerUsec;
	struct div_result divres;

	/* Compute decrementer (and TB) frequency in cycles/sec */
	cyclesPerUsec = ppc_tb_freq / 1000000;

	/*
	 * Set the amount to refresh the decrementer by.  This
	 * is the number of decrementer ticks it takes for
	 * 1/HZ seconds.
	 */
	tb_ticks_per_jiffy = ppc_tb_freq / HZ;

#if 0
	/* TEST CODE FOR ADJTIME */
	tb_ticks_per_jiffy += tb_ticks_per_jiffy / 5000;
	/* END OF TEST CODE */
#endif

	/*
	 * tb_ticks_per_sec = freq; would give better accuracy
	 * but tb_ticks_per_sec = tb_ticks_per_jiffy*HZ; assures
	 * that jiffies (and xtime) will match the time returned
	 * by do_gettimeofday.
	 */
	tb_ticks_per_sec = tb_ticks_per_jiffy * HZ;
	tb_ticks_per_usec = cyclesPerUsec;
	tb_to_us = mulhwu_scale_factor(ppc_tb_freq, 1000000);
	div128_by_32(1024 * 1024, 0, tb_ticks_per_sec, &divres);
	tb_to_xs = divres.result_low;
	setup_default_decr();
}

static void __init iSeries_progress(char * st, unsigned short code)
{
	printk("Progress: [%04x] - %s\n", (unsigned)code, st);
	if (!piranha_simulator && mf_initialized) {
		if (code != 0xffff)
			mf_display_progress(code);
		else
			mf_clear_src();
	}
}

static void __init iSeries_fixup_klimit(void)
{
	/*
	 * Change klimit to take into account any ram disk
	 * that may be included
	 */
	if (naca.xRamDisk)
		klimit = KERNELBASE + (u64)naca.xRamDisk +
			(naca.xRamDiskSize * PAGE_SIZE);
	else {
		/*
		 * No ram disk was included - check and see if there
		 * was an embedded system map.  Change klimit to take
		 * into account any embedded system map
		 */
		if (embedded_sysmap_end)
			klimit = KERNELBASE + ((embedded_sysmap_end + 4095) &
					0xfffffffffffff000);
	}
}

static int __init iSeries_src_init(void)
{
        /* clear the progress line */
        ppc_md.progress(" ", 0xffff);
        return 0;
}

late_initcall(iSeries_src_init);

static unsigned long maxYieldTime = 0;
static unsigned long minYieldTime = 0xffffffffffffffffUL;

static inline void process_iSeries_events(void)
{
	asm volatile ("li 0,0x5555; sc" : : : "r0", "r3");
}

static void yield_shared_processor(void)
{
	unsigned long tb;
	unsigned long yieldTime;

	HvCall_setEnabledInterrupts(HvCall_MaskIPI |
				    HvCall_MaskLpEvent |
				    HvCall_MaskLpProd |
				    HvCall_MaskTimeout);

	tb = get_tb();
	/* Compute future tb value when yield should expire */
	HvCall_yieldProcessor(HvCall_YieldTimed, tb+tb_ticks_per_jiffy);

	yieldTime = get_tb() - tb;
	if (yieldTime > maxYieldTime)
		maxYieldTime = yieldTime;

	if (yieldTime < minYieldTime)
		minYieldTime = yieldTime;

	/*
	 * The decrementer stops during the yield.  Force a fake decrementer
	 * here and let the timer_interrupt code sort out the actual time.
	 */
	get_paca()->lppaca.int_dword.fields.decr_int = 1;
	process_iSeries_events();
}

static int iSeries_idle(void)
{
	struct paca_struct *lpaca;
	long oldval;

	/* ensure iSeries run light will be out when idle */
	ppc64_runlatch_off();

	lpaca = get_paca();

	while (1) {
		if (lpaca->lppaca.shared_proc) {
			if (hvlpevent_is_pending())
				process_iSeries_events();
			if (!need_resched())
				yield_shared_processor();
		} else {
			oldval = test_and_clear_thread_flag(TIF_NEED_RESCHED);

			if (!oldval) {
				set_thread_flag(TIF_POLLING_NRFLAG);

				while (!need_resched()) {
					HMT_medium();
					if (hvlpevent_is_pending())
						process_iSeries_events();
					HMT_low();
				}

				HMT_medium();
				clear_thread_flag(TIF_POLLING_NRFLAG);
			} else {
				set_need_resched();
			}
		}

		ppc64_runlatch_on();
		schedule();
		ppc64_runlatch_off();
	}

	return 0;
}

#ifndef CONFIG_PCI
void __init iSeries_init_IRQ(void) { }
#endif

void __init iSeries_early_setup(void)
{
	iSeries_fixup_klimit();

	ppc_md.setup_arch = iSeries_setup_arch;
	ppc_md.get_cpuinfo = iSeries_get_cpuinfo;
	ppc_md.init_IRQ = iSeries_init_IRQ;
	ppc_md.get_irq = iSeries_get_irq;
	ppc_md.init_early = iSeries_init_early,

	ppc_md.pcibios_fixup  = iSeries_pci_final_fixup;

	ppc_md.restart = iSeries_restart;
	ppc_md.power_off = iSeries_power_off;
	ppc_md.halt = iSeries_halt;

	ppc_md.get_boot_time = iSeries_get_boot_time;
	ppc_md.set_rtc_time = iSeries_set_rtc_time;
	ppc_md.get_rtc_time = iSeries_get_rtc_time;
	ppc_md.calibrate_decr = iSeries_calibrate_decr;
	ppc_md.progress = iSeries_progress;
}