aboutsummaryrefslogtreecommitdiffstats
path: root/drivers/mtd/nand/raw/s3c2410.c
blob: 0009c1820e217c0dea3e997674d3477b30ec553a (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
// SPDX-License-Identifier: GPL-2.0-or-later
/*
 * Copyright © 2004-2008 Simtec Electronics
 *	http://armlinux.simtec.co.uk/
 *	Ben Dooks <ben@simtec.co.uk>
 *
 * Samsung S3C2410/S3C2440/S3C2412 NAND driver
*/

#define pr_fmt(fmt) "nand-s3c2410: " fmt

#ifdef CONFIG_MTD_NAND_S3C2410_DEBUG
#define DEBUG
#endif

#include <linux/module.h>
#include <linux/types.h>
#include <linux/kernel.h>
#include <linux/string.h>
#include <linux/io.h>
#include <linux/ioport.h>
#include <linux/platform_device.h>
#include <linux/delay.h>
#include <linux/err.h>
#include <linux/slab.h>
#include <linux/clk.h>
#include <linux/cpufreq.h>
#include <linux/of.h>
#include <linux/of_device.h>

#include <linux/mtd/mtd.h>
#include <linux/mtd/rawnand.h>
#include <linux/mtd/nand_ecc.h>
#include <linux/mtd/partitions.h>

#include <linux/platform_data/mtd-nand-s3c2410.h>

#define S3C2410_NFREG(x) (x)

#define S3C2410_NFCONF		S3C2410_NFREG(0x00)
#define S3C2410_NFCMD		S3C2410_NFREG(0x04)
#define S3C2410_NFADDR		S3C2410_NFREG(0x08)
#define S3C2410_NFDATA		S3C2410_NFREG(0x0C)
#define S3C2410_NFSTAT		S3C2410_NFREG(0x10)
#define S3C2410_NFECC		S3C2410_NFREG(0x14)
#define S3C2440_NFCONT		S3C2410_NFREG(0x04)
#define S3C2440_NFCMD		S3C2410_NFREG(0x08)
#define S3C2440_NFADDR		S3C2410_NFREG(0x0C)
#define S3C2440_NFDATA		S3C2410_NFREG(0x10)
#define S3C2440_NFSTAT		S3C2410_NFREG(0x20)
#define S3C2440_NFMECC0		S3C2410_NFREG(0x2C)
#define S3C2412_NFSTAT		S3C2410_NFREG(0x28)
#define S3C2412_NFMECC0		S3C2410_NFREG(0x34)
#define S3C2410_NFCONF_EN		(1<<15)
#define S3C2410_NFCONF_INITECC		(1<<12)
#define S3C2410_NFCONF_nFCE		(1<<11)
#define S3C2410_NFCONF_TACLS(x)		((x)<<8)
#define S3C2410_NFCONF_TWRPH0(x)	((x)<<4)
#define S3C2410_NFCONF_TWRPH1(x)	((x)<<0)
#define S3C2410_NFSTAT_BUSY		(1<<0)
#define S3C2440_NFCONF_TACLS(x)		((x)<<12)
#define S3C2440_NFCONF_TWRPH0(x)	((x)<<8)
#define S3C2440_NFCONF_TWRPH1(x)	((x)<<4)
#define S3C2440_NFCONT_INITECC		(1<<4)
#define S3C2440_NFCONT_nFCE		(1<<1)
#define S3C2440_NFCONT_ENABLE		(1<<0)
#define S3C2440_NFSTAT_READY		(1<<0)
#define S3C2412_NFCONF_NANDBOOT		(1<<31)
#define S3C2412_NFCONT_INIT_MAIN_ECC	(1<<5)
#define S3C2412_NFCONT_nFCE0		(1<<1)
#define S3C2412_NFSTAT_READY		(1<<0)

/* new oob placement block for use with hardware ecc generation
 */
static int s3c2410_ooblayout_ecc(struct mtd_info *mtd, int section,
				 struct mtd_oob_region *oobregion)
{
	if (section)
		return -ERANGE;

	oobregion->offset = 0;
	oobregion->length = 3;

	return 0;
}

static int s3c2410_ooblayout_free(struct mtd_info *mtd, int section,
				  struct mtd_oob_region *oobregion)
{
	if (section)
		return -ERANGE;

	oobregion->offset = 8;
	oobregion->length = 8;

	return 0;
}

static const struct mtd_ooblayout_ops s3c2410_ooblayout_ops = {
	.ecc = s3c2410_ooblayout_ecc,
	.free = s3c2410_ooblayout_free,
};

/* controller and mtd information */

struct s3c2410_nand_info;

/**
 * struct s3c2410_nand_mtd - driver MTD structure
 * @mtd: The MTD instance to pass to the MTD layer.
 * @chip: The NAND chip information.
 * @set: The platform information supplied for this set of NAND chips.
 * @info: Link back to the hardware information.
*/
struct s3c2410_nand_mtd {
	struct nand_chip		chip;
	struct s3c2410_nand_set		*set;
	struct s3c2410_nand_info	*info;
};

enum s3c_cpu_type {
	TYPE_S3C2410,
	TYPE_S3C2412,
	TYPE_S3C2440,
};

enum s3c_nand_clk_state {
	CLOCK_DISABLE	= 0,
	CLOCK_ENABLE,
	CLOCK_SUSPEND,
};

/* overview of the s3c2410 nand state */

/**
 * struct s3c2410_nand_info - NAND controller state.
 * @mtds: An array of MTD instances on this controoler.
 * @platform: The platform data for this board.
 * @device: The platform device we bound to.
 * @clk: The clock resource for this controller.
 * @regs: The area mapped for the hardware registers.
 * @sel_reg: Pointer to the register controlling the NAND selection.
 * @sel_bit: The bit in @sel_reg to select the NAND chip.
 * @mtd_count: The number of MTDs created from this controller.
 * @save_sel: The contents of @sel_reg to be saved over suspend.
 * @clk_rate: The clock rate from @clk.
 * @clk_state: The current clock state.
 * @cpu_type: The exact type of this controller.
 */
struct s3c2410_nand_info {
	/* mtd info */
	struct nand_controller		controller;
	struct s3c2410_nand_mtd		*mtds;
	struct s3c2410_platform_nand	*platform;

	/* device info */
	struct device			*device;
	struct clk			*clk;
	void __iomem			*regs;
	void __iomem			*sel_reg;
	int				sel_bit;
	int				mtd_count;
	unsigned long			save_sel;
	unsigned long			clk_rate;
	enum s3c_nand_clk_state		clk_state;

	enum s3c_cpu_type		cpu_type;

#ifdef CONFIG_ARM_S3C24XX_CPUFREQ
	struct notifier_block	freq_transition;
#endif
};

struct s3c24XX_nand_devtype_data {
	enum s3c_cpu_type type;
};

static const struct s3c24XX_nand_devtype_data s3c2410_nand_devtype_data = {
	.type = TYPE_S3C2410,
};

static const struct s3c24XX_nand_devtype_data s3c2412_nand_devtype_data = {
	.type = TYPE_S3C2412,
};

static const struct s3c24XX_nand_devtype_data s3c2440_nand_devtype_data = {
	.type = TYPE_S3C2440,
};

/* conversion functions */

static struct s3c2410_nand_mtd *s3c2410_nand_mtd_toours(struct mtd_info *mtd)
{
	return container_of(mtd_to_nand(mtd), struct s3c2410_nand_mtd,
			    chip);
}

static struct s3c2410_nand_info *s3c2410_nand_mtd_toinfo(struct mtd_info *mtd)
{
	return s3c2410_nand_mtd_toours(mtd)->info;
}

static struct s3c2410_nand_info *to_nand_info(struct platform_device *dev)
{
	return platform_get_drvdata(dev);
}

static struct s3c2410_platform_nand *to_nand_plat(struct platform_device *dev)
{
	return dev_get_platdata(&dev->dev);
}

static inline int allow_clk_suspend(struct s3c2410_nand_info *info)
{
#ifdef CONFIG_MTD_NAND_S3C2410_CLKSTOP
	return 1;
#else
	return 0;
#endif
}

/**
 * s3c2410_nand_clk_set_state - Enable, disable or suspend NAND clock.
 * @info: The controller instance.
 * @new_state: State to which clock should be set.
 */
static void s3c2410_nand_clk_set_state(struct s3c2410_nand_info *info,
		enum s3c_nand_clk_state new_state)
{
	if (!allow_clk_suspend(info) && new_state == CLOCK_SUSPEND)
		return;

	if (info->clk_state == CLOCK_ENABLE) {
		if (new_state != CLOCK_ENABLE)
			clk_disable_unprepare(info->clk);
	} else {
		if (new_state == CLOCK_ENABLE)
			clk_prepare_enable(info->clk);
	}

	info->clk_state = new_state;
}

/* timing calculations */

#define NS_IN_KHZ 1000000

/**
 * s3c_nand_calc_rate - calculate timing data.
 * @wanted: The cycle time in nanoseconds.
 * @clk: The clock rate in kHz.
 * @max: The maximum divider value.
 *
 * Calculate the timing value from the given parameters.
 */
static int s3c_nand_calc_rate(int wanted, unsigned long clk, int max)
{
	int result;

	result = DIV_ROUND_UP((wanted * clk), NS_IN_KHZ);

	pr_debug("result %d from %ld, %d\n", result, clk, wanted);

	if (result > max) {
		pr_err("%d ns is too big for current clock rate %ld\n",
			wanted, clk);
		return -1;
	}

	if (result < 1)
		result = 1;

	return result;
}

#define to_ns(ticks, clk) (((ticks) * NS_IN_KHZ) / (unsigned int)(clk))

/* controller setup */

/**
 * s3c2410_nand_setrate - setup controller timing information.
 * @info: The controller instance.
 *
 * Given the information supplied by the platform, calculate and set
 * the necessary timing registers in the hardware to generate the
 * necessary timing cycles to the hardware.
 */
static int s3c2410_nand_setrate(struct s3c2410_nand_info *info)
{
	struct s3c2410_platform_nand *plat = info->platform;
	int tacls_max = (info->cpu_type == TYPE_S3C2412) ? 8 : 4;
	int tacls, twrph0, twrph1;
	unsigned long clkrate = clk_get_rate(info->clk);
	unsigned long uninitialized_var(set), cfg, uninitialized_var(mask);
	unsigned long flags;

	/* calculate the timing information for the controller */

	info->clk_rate = clkrate;
	clkrate /= 1000;	/* turn clock into kHz for ease of use */

	if (plat != NULL) {
		tacls = s3c_nand_calc_rate(plat->tacls, clkrate, tacls_max);
		twrph0 = s3c_nand_calc_rate(plat->twrph0, clkrate, 8);
		twrph1 = s3c_nand_calc_rate(plat->twrph1, clkrate, 8);
	} else {
		/* default timings */
		tacls = tacls_max;
		twrph0 = 8;
		twrph1 = 8;
	}

	if (tacls < 0 || twrph0 < 0 || twrph1 < 0) {
		dev_err(info->device, "cannot get suitable timings\n");
		return -EINVAL;
	}

	dev_info(info->device, "Tacls=%d, %dns Twrph0=%d %dns, Twrph1=%d %dns\n",
		tacls, to_ns(tacls, clkrate), twrph0, to_ns(twrph0, clkrate),
						twrph1, to_ns(twrph1, clkrate));

	switch (info->cpu_type) {
	case TYPE_S3C2410:
		mask = (S3C2410_NFCONF_TACLS(3) |
			S3C2410_NFCONF_TWRPH0(7) |
			S3C2410_NFCONF_TWRPH1(7));
		set = S3C2410_NFCONF_EN;
		set |= S3C2410_NFCONF_TACLS(tacls - 1);
		set |= S3C2410_NFCONF_TWRPH0(twrph0 - 1);
		set |= S3C2410_NFCONF_TWRPH1(twrph1 - 1);
		break;

	case TYPE_S3C2440:
	case TYPE_S3C2412:
		mask = (S3C2440_NFCONF_TACLS(tacls_max - 1) |
			S3C2440_NFCONF_TWRPH0(7) |
			S3C2440_NFCONF_TWRPH1(7));

		set = S3C2440_NFCONF_TACLS(tacls - 1);
		set |= S3C2440_NFCONF_TWRPH0(twrph0 - 1);
		set |= S3C2440_NFCONF_TWRPH1(twrph1 - 1);
		break;

	default:
		BUG();
	}

	local_irq_save(flags);

	cfg = readl(info->regs + S3C2410_NFCONF);
	cfg &= ~mask;
	cfg |= set;
	writel(cfg, info->regs + S3C2410_NFCONF);

	local_irq_restore(flags);

	dev_dbg(info->device, "NF_CONF is 0x%lx\n", cfg);

	return 0;
}

/**
 * s3c2410_nand_inithw - basic hardware initialisation
 * @info: The hardware state.
 *
 * Do the basic initialisation of the hardware, using s3c2410_nand_setrate()
 * to setup the hardware access speeds and set the controller to be enabled.
*/
static int s3c2410_nand_inithw(struct s3c2410_nand_info *info)
{
	int ret;

	ret = s3c2410_nand_setrate(info);
	if (ret < 0)
		return ret;

	switch (info->cpu_type) {
	case TYPE_S3C2410:
	default:
		break;

	case TYPE_S3C2440:
	case TYPE_S3C2412:
		/* enable the controller and de-assert nFCE */

		writel(S3C2440_NFCONT_ENABLE, info->regs + S3C2440_NFCONT);
	}

	return 0;
}

/**
 * s3c2410_nand_select_chip - select the given nand chip
 * @this: NAND chip object.
 * @chip: The chip number.
 *
 * This is called by the MTD layer to either select a given chip for the
 * @mtd instance, or to indicate that the access has finished and the
 * chip can be de-selected.
 *
 * The routine ensures that the nFCE line is correctly setup, and any
 * platform specific selection code is called to route nFCE to the specific
 * chip.
 */
static void s3c2410_nand_select_chip(struct nand_chip *this, int chip)
{
	struct s3c2410_nand_info *info;
	struct s3c2410_nand_mtd *nmtd;
	unsigned long cur;

	nmtd = nand_get_controller_data(this);
	info = nmtd->info;

	if (chip != -1)
		s3c2410_nand_clk_set_state(info, CLOCK_ENABLE);

	cur = readl(info->sel_reg);

	if (chip == -1) {
		cur |= info->sel_bit;
	} else {
		if (nmtd->set != NULL && chip > nmtd->set->nr_chips) {
			dev_err(info->device, "invalid chip %d\n", chip);
			return;
		}

		if (info->platform != NULL) {
			if (info->platform->select_chip != NULL)
				(info->platform->select_chip) (nmtd->set, chip);
		}

		cur &= ~info->sel_bit;
	}

	writel(cur, info->sel_reg);

	if (chip == -1)
		s3c2410_nand_clk_set_state(info, CLOCK_SUSPEND);
}

/* s3c2410_nand_hwcontrol
 *
 * Issue command and address cycles to the chip
*/

static void s3c2410_nand_hwcontrol(struct nand_chip *chip, int cmd,
				   unsigned int ctrl)
{
	struct mtd_info *mtd = nand_to_mtd(chip);
	struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);

	if (cmd == NAND_CMD_NONE)
		return;

	if (ctrl & NAND_CLE)
		writeb(cmd, info->regs + S3C2410_NFCMD);
	else
		writeb(cmd, info->regs + S3C2410_NFADDR);
}

/* command and control functions */

static void s3c2440_nand_hwcontrol(struct nand_chip *chip, int cmd,
				   unsigned int ctrl)
{
	struct mtd_info *mtd = nand_to_mtd(chip);
	struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);

	if (cmd == NAND_CMD_NONE)
		return;

	if (ctrl & NAND_CLE)
		writeb(cmd, info->regs + S3C2440_NFCMD);
	else
		writeb(cmd, info->regs + S3C2440_NFADDR);
}

/* s3c2410_nand_devready()
 *
 * returns 0 if the nand is busy, 1 if it is ready
*/

static int s3c2410_nand_devready(struct nand_chip *chip)
{
	struct mtd_info *mtd = nand_to_mtd(chip);
	struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
	return readb(info->regs + S3C2410_NFSTAT) & S3C2410_NFSTAT_BUSY;
}

static int s3c2440_nand_devready(struct nand_chip *chip)
{
	struct mtd_info *mtd = nand_to_mtd(chip);
	struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
	return readb(info->regs + S3C2440_NFSTAT) & S3C2440_NFSTAT_READY;
}

static int s3c2412_nand_devready(struct nand_chip *chip)
{
	struct mtd_info *mtd = nand_to_mtd(chip);
	struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
	return readb(info->regs + S3C2412_NFSTAT) & S3C2412_NFSTAT_READY;
}

/* ECC handling functions */

static int s3c2410_nand_correct_data(struct nand_chip *chip, u_char *dat,
				     u_char *read_ecc, u_char *calc_ecc)
{
	struct mtd_info *mtd = nand_to_mtd(chip);
	struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
	unsigned int diff0, diff1, diff2;
	unsigned int bit, byte;

	pr_debug("%s(%p,%p,%p,%p)\n", __func__, mtd, dat, read_ecc, calc_ecc);

	diff0 = read_ecc[0] ^ calc_ecc[0];
	diff1 = read_ecc[1] ^ calc_ecc[1];
	diff2 = read_ecc[2] ^ calc_ecc[2];

	pr_debug("%s: rd %*phN calc %*phN diff %02x%02x%02x\n",
		 __func__, 3, read_ecc, 3, calc_ecc,
		 diff0, diff1, diff2);

	if (diff0 == 0 && diff1 == 0 && diff2 == 0)
		return 0;		/* ECC is ok */

	/* sometimes people do not think about using the ECC, so check
	 * to see if we have an 0xff,0xff,0xff read ECC and then ignore
	 * the error, on the assumption that this is an un-eccd page.
	 */
	if (read_ecc[0] == 0xff && read_ecc[1] == 0xff && read_ecc[2] == 0xff
	    && info->platform->ignore_unset_ecc)
		return 0;

	/* Can we correct this ECC (ie, one row and column change).
	 * Note, this is similar to the 256 error code on smartmedia */

	if (((diff0 ^ (diff0 >> 1)) & 0x55) == 0x55 &&
	    ((diff1 ^ (diff1 >> 1)) & 0x55) == 0x55 &&
	    ((diff2 ^ (diff2 >> 1)) & 0x55) == 0x55) {
		/* calculate the bit position of the error */

		bit  = ((diff2 >> 3) & 1) |
		       ((diff2 >> 4) & 2) |
		       ((diff2 >> 5) & 4);

		/* calculate the byte position of the error */

		byte = ((diff2 << 7) & 0x100) |
		       ((diff1 << 0) & 0x80)  |
		       ((diff1 << 1) & 0x40)  |
		       ((diff1 << 2) & 0x20)  |
		       ((diff1 << 3) & 0x10)  |
		       ((diff0 >> 4) & 0x08)  |
		       ((diff0 >> 3) & 0x04)  |
		       ((diff0 >> 2) & 0x02)  |
		       ((diff0 >> 1) & 0x01);

		dev_dbg(info->device, "correcting error bit %d, byte %d\n",
			bit, byte);

		dat[byte] ^= (1 << bit);
		return 1;
	}

	/* if there is only one bit difference in the ECC, then
	 * one of only a row or column parity has changed, which
	 * means the error is most probably in the ECC itself */

	diff0 |= (diff1 << 8);
	diff0 |= (diff2 << 16);

	/* equal to "(diff0 & ~(1 << __ffs(diff0)))" */
	if ((diff0 & (diff0 - 1)) == 0)
		return 1;

	return -1;
}

/* ECC functions
 *
 * These allow the s3c2410 and s3c2440 to use the controller's ECC
 * generator block to ECC the data as it passes through]
*/

static void s3c2410_nand_enable_hwecc(struct nand_chip *chip, int mode)
{
	struct s3c2410_nand_info *info;
	unsigned long ctrl;

	info = s3c2410_nand_mtd_toinfo(nand_to_mtd(chip));
	ctrl = readl(info->regs + S3C2410_NFCONF);
	ctrl |= S3C2410_NFCONF_INITECC;
	writel(ctrl, info->regs + S3C2410_NFCONF);
}

static void s3c2412_nand_enable_hwecc(struct nand_chip *chip, int mode)
{
	struct s3c2410_nand_info *info;
	unsigned long ctrl;

	info = s3c2410_nand_mtd_toinfo(nand_to_mtd(chip));
	ctrl = readl(info->regs + S3C2440_NFCONT);
	writel(ctrl | S3C2412_NFCONT_INIT_MAIN_ECC,
	       info->regs + S3C2440_NFCONT);
}

static void s3c2440_nand_enable_hwecc(struct nand_chip *chip, int mode)
{
	struct s3c2410_nand_info *info;
	unsigned long ctrl;

	info = s3c2410_nand_mtd_toinfo(nand_to_mtd(chip));
	ctrl = readl(info->regs + S3C2440_NFCONT);
	writel(ctrl | S3C2440_NFCONT_INITECC, info->regs + S3C2440_NFCONT);
}

static int s3c2410_nand_calculate_ecc(struct nand_chip *chip,
				      const u_char *dat, u_char *ecc_code)
{
	struct mtd_info *mtd = nand_to_mtd(chip);
	struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);

	ecc_code[0] = readb(info->regs + S3C2410_NFECC + 0);
	ecc_code[1] = readb(info->regs + S3C2410_NFECC + 1);
	ecc_code[2] = readb(info->regs + S3C2410_NFECC + 2);

	pr_debug("%s: returning ecc %*phN\n", __func__, 3, ecc_code);

	return 0;
}

static int s3c2412_nand_calculate_ecc(struct nand_chip *chip,
				      const u_char *dat, u_char *ecc_code)
{
	struct mtd_info *mtd = nand_to_mtd(chip);
	struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
	unsigned long ecc = readl(info->regs + S3C2412_NFMECC0);

	ecc_code[0] = ecc;
	ecc_code[1] = ecc >> 8;
	ecc_code[2] = ecc >> 16;

	pr_debug("%s: returning ecc %*phN\n", __func__, 3, ecc_code);

	return 0;
}

static int s3c2440_nand_calculate_ecc(struct nand_chip *chip,
				      const u_char *dat, u_char *ecc_code)
{
	struct mtd_info *mtd = nand_to_mtd(chip);
	struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
	unsigned long ecc = readl(info->regs + S3C2440_NFMECC0);

	ecc_code[0] = ecc;
	ecc_code[1] = ecc >> 8;
	ecc_code[2] = ecc >> 16;

	pr_debug("%s: returning ecc %06lx\n", __func__, ecc & 0xffffff);

	return 0;
}

/* over-ride the standard functions for a little more speed. We can
 * use read/write block to move the data buffers to/from the controller
*/

static void s3c2410_nand_read_buf(struct nand_chip *this, u_char *buf, int len)
{
	readsb(this->legacy.IO_ADDR_R, buf, len);
}

static void s3c2440_nand_read_buf(struct nand_chip *this, u_char *buf, int len)
{
	struct mtd_info *mtd = nand_to_mtd(this);
	struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);

	readsl(info->regs + S3C2440_NFDATA, buf, len >> 2);

	/* cleanup if we've got less than a word to do */
	if (len & 3) {
		buf += len & ~3;

		for (; len & 3; len--)
			*buf++ = readb(info->regs + S3C2440_NFDATA);
	}
}

static void s3c2410_nand_write_buf(struct nand_chip *this, const u_char *buf,
				   int len)
{
	writesb(this->legacy.IO_ADDR_W, buf, len);
}

static void s3c2440_nand_write_buf(struct nand_chip *this, const u_char *buf,
				   int len)
{
	struct mtd_info *mtd = nand_to_mtd(this);
	struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);

	writesl(info->regs + S3C2440_NFDATA, buf, len >> 2);

	/* cleanup any fractional write */
	if (len & 3) {
		buf += len & ~3;

		for (; len & 3; len--, buf++)
			writeb(*buf, info->regs + S3C2440_NFDATA);
	}
}

/* cpufreq driver support */

#ifdef CONFIG_ARM_S3C24XX_CPUFREQ

static int s3c2410_nand_cpufreq_transition(struct notifier_block *nb,
					  unsigned long val, void *data)
{
	struct s3c2410_nand_info *info;
	unsigned long newclk;

	info = container_of(nb, struct s3c2410_nand_info, freq_transition);
	newclk = clk_get_rate(info->clk);

	if ((val == CPUFREQ_POSTCHANGE && newclk < info->clk_rate) ||
	    (val == CPUFREQ_PRECHANGE && newclk > info->clk_rate)) {
		s3c2410_nand_setrate(info);
	}

	return 0;
}

static inline int s3c2410_nand_cpufreq_register(struct s3c2410_nand_info *info)
{
	info->freq_transition.notifier_call = s3c2410_nand_cpufreq_transition;

	return cpufreq_register_notifier(&info->freq_transition,
					 CPUFREQ_TRANSITION_NOTIFIER);
}

static inline void
s3c2410_nand_cpufreq_deregister(struct s3c2410_nand_info *info)
{
	cpufreq_unregister_notifier(&info->freq_transition,
				    CPUFREQ_TRANSITION_NOTIFIER);
}

#else
static inline int s3c2410_nand_cpufreq_register(struct s3c2410_nand_info *info)
{
	return 0;
}

static inline void
s3c2410_nand_cpufreq_deregister(struct s3c2410_nand_info *info)
{
}
#endif

/* device management functions */

static int s3c24xx_nand_remove(struct platform_device *pdev)
{
	struct s3c2410_nand_info *info = to_nand_info(pdev);

	if (info == NULL)
		return 0;

	s3c2410_nand_cpufreq_deregister(info);

	/* Release all our mtds  and their partitions, then go through
	 * freeing the resources used
	 */

	if (info->mtds != NULL) {
		struct s3c2410_nand_mtd *ptr = info->mtds;
		int mtdno;

		for (mtdno = 0; mtdno < info->mtd_count; mtdno++, ptr++) {
			pr_debug("releasing mtd %d (%p)\n", mtdno, ptr);
			nand_release(&ptr->chip);
		}
	}

	/* free the common resources */

	if (!IS_ERR(info->clk))
		s3c2410_nand_clk_set_state(info, CLOCK_DISABLE);

	return 0;
}

static int s3c2410_nand_add_partition(struct s3c2410_nand_info *info,
				      struct s3c2410_nand_mtd *mtd,
				      struct s3c2410_nand_set *set)
{
	if (set) {
		struct mtd_info *mtdinfo = nand_to_mtd(&mtd->chip);

		mtdinfo->name = set->name;

		return mtd_device_register(mtdinfo, set->partitions,
					   set->nr_partitions);
	}

	return -ENODEV;
}

static int s3c2410_nand_setup_data_interface(struct nand_chip *chip, int csline,
					const struct nand_data_interface *conf)
{
	struct mtd_info *mtd = nand_to_mtd(chip);
	struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
	struct s3c2410_platform_nand *pdata = info->platform;
	const struct nand_sdr_timings *timings;
	int tacls;

	timings = nand_get_sdr_timings(conf);
	if (IS_ERR(timings))
		return -ENOTSUPP;

	tacls = timings->tCLS_min - timings->tWP_min;
	if (tacls < 0)
		tacls = 0;

	pdata->tacls  = DIV_ROUND_UP(tacls, 1000);
	pdata->twrph0 = DIV_ROUND_UP(timings->tWP_min, 1000);
	pdata->twrph1 = DIV_ROUND_UP(timings->tCLH_min, 1000);

	return s3c2410_nand_setrate(info);
}

/**
 * s3c2410_nand_init_chip - initialise a single instance of an chip
 * @info: The base NAND controller the chip is on.
 * @nmtd: The new controller MTD instance to fill in.
 * @set: The information passed from the board specific platform data.
 *
 * Initialise the given @nmtd from the information in @info and @set. This
 * readies the structure for use with the MTD layer functions by ensuring
 * all pointers are setup and the necessary control routines selected.
 */
static void s3c2410_nand_init_chip(struct s3c2410_nand_info *info,
				   struct s3c2410_nand_mtd *nmtd,
				   struct s3c2410_nand_set *set)
{
	struct device_node *np = info->device->of_node;
	struct nand_chip *chip = &nmtd->chip;
	void __iomem *regs = info->regs;

	nand_set_flash_node(chip, set->of_node);

	chip->legacy.write_buf    = s3c2410_nand_write_buf;
	chip->legacy.read_buf     = s3c2410_nand_read_buf;
	chip->legacy.select_chip  = s3c2410_nand_select_chip;
	chip->legacy.chip_delay   = 50;
	nand_set_controller_data(chip, nmtd);
	chip->options	   = set->options;
	chip->controller   = &info->controller;

	/*
	 * let's keep behavior unchanged for legacy boards booting via pdata and
	 * auto-detect timings only when booting with a device tree.
	 */
	if (!np)
		chip->options |= NAND_KEEP_TIMINGS;

	switch (info->cpu_type) {
	case TYPE_S3C2410:
		chip->legacy.IO_ADDR_W = regs + S3C2410_NFDATA;
		info->sel_reg   = regs + S3C2410_NFCONF;
		info->sel_bit	= S3C2410_NFCONF_nFCE;
		chip->legacy.cmd_ctrl  = s3c2410_nand_hwcontrol;
		chip->legacy.dev_ready = s3c2410_nand_devready;
		break;

	case TYPE_S3C2440:
		chip->legacy.IO_ADDR_W = regs + S3C2440_NFDATA;
		info->sel_reg   = regs + S3C2440_NFCONT;
		info->sel_bit	= S3C2440_NFCONT_nFCE;
		chip->legacy.cmd_ctrl  = s3c2440_nand_hwcontrol;
		chip->legacy.dev_ready = s3c2440_nand_devready;
		chip->legacy.read_buf  = s3c2440_nand_read_buf;
		chip->legacy.write_buf	= s3c2440_nand_write_buf;
		break;

	case TYPE_S3C2412:
		chip->legacy.IO_ADDR_W = regs + S3C2440_NFDATA;
		info->sel_reg   = regs + S3C2440_NFCONT;
		info->sel_bit	= S3C2412_NFCONT_nFCE0;
		chip->legacy.cmd_ctrl  = s3c2440_nand_hwcontrol;
		chip->legacy.dev_ready = s3c2412_nand_devready;

		if (readl(regs + S3C2410_NFCONF) & S3C2412_NFCONF_NANDBOOT)
			dev_info(info->device, "System booted from NAND\n");

		break;
	}

	chip->legacy.IO_ADDR_R = chip->legacy.IO_ADDR_W;

	nmtd->info	   = info;
	nmtd->set	   = set;

	chip->ecc.mode = info->platform->ecc_mode;

	/*
	 * If you use u-boot BBT creation code, specifying this flag will
	 * let the kernel fish out the BBT from the NAND.
	 */
	if (set->flash_bbt)
		chip->bbt_options |= NAND_BBT_USE_FLASH;
}

/**
 * s3c2410_nand_attach_chip - Init the ECC engine after NAND scan
 * @chip: The NAND chip
 *
 * This hook is called by the core after the identification of the NAND chip,
 * once the relevant per-chip information is up to date.. This call ensure that
 * we update the internal state accordingly.
 *
 * The internal state is currently limited to the ECC state information.
*/
static int s3c2410_nand_attach_chip(struct nand_chip *chip)
{
	struct mtd_info *mtd = nand_to_mtd(chip);
	struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);

	switch (chip->ecc.mode) {

	case NAND_ECC_NONE:
		dev_info(info->device, "ECC disabled\n");
		break;

	case NAND_ECC_SOFT:
		/*
		 * This driver expects Hamming based ECC when ecc_mode is set
		 * to NAND_ECC_SOFT. Force ecc.algo to NAND_ECC_HAMMING to
		 * avoid adding an extra ecc_algo field to
		 * s3c2410_platform_nand.
		 */
		chip->ecc.algo = NAND_ECC_HAMMING;
		dev_info(info->device, "soft ECC\n");
		break;

	case NAND_ECC_HW:
		chip->ecc.calculate = s3c2410_nand_calculate_ecc;
		chip->ecc.correct   = s3c2410_nand_correct_data;
		chip->ecc.strength  = 1;

		switch (info->cpu_type) {
		case TYPE_S3C2410:
			chip->ecc.hwctl	    = s3c2410_nand_enable_hwecc;
			chip->ecc.calculate = s3c2410_nand_calculate_ecc;
			break;

		case TYPE_S3C2412:
			chip->ecc.hwctl     = s3c2412_nand_enable_hwecc;
			chip->ecc.calculate = s3c2412_nand_calculate_ecc;
			break;

		case TYPE_S3C2440:
			chip->ecc.hwctl     = s3c2440_nand_enable_hwecc;
			chip->ecc.calculate = s3c2440_nand_calculate_ecc;
			break;
		}

		dev_dbg(info->device, "chip %p => page shift %d\n",
			chip, chip->page_shift);

		/* change the behaviour depending on whether we are using
		 * the large or small page nand device */
		if (chip->page_shift > 10) {
			chip->ecc.size	    = 256;
			chip->ecc.bytes	    = 3;
		} else {
			chip->ecc.size	    = 512;
			chip->ecc.bytes	    = 3;
			mtd_set_ooblayout(nand_to_mtd(chip),
					  &s3c2410_ooblayout_ops);
		}

		dev_info(info->device, "hardware ECC\n");
		break;

	default:
		dev_err(info->device, "invalid ECC mode!\n");
		return -EINVAL;
	}

	if (chip->bbt_options & NAND_BBT_USE_FLASH)
		chip->options |= NAND_SKIP_BBTSCAN;

	return 0;
}

static const struct nand_controller_ops s3c24xx_nand_controller_ops = {
	.attach_chip = s3c2410_nand_attach_chip,
	.setup_data_interface = s3c2410_nand_setup_data_interface,
};

static const struct of_device_id s3c24xx_nand_dt_ids[] = {
	{
		.compatible = "samsung,s3c2410-nand",
		.data = &s3c2410_nand_devtype_data,
	}, {
		/* also compatible with s3c6400 */
		.compatible = "samsung,s3c2412-nand",
		.data = &s3c2412_nand_devtype_data,
	}, {
		.compatible = "samsung,s3c2440-nand",
		.data = &s3c2440_nand_devtype_data,
	},
	{ /* sentinel */ }
};
MODULE_DEVICE_TABLE(of, s3c24xx_nand_dt_ids);

static int s3c24xx_nand_probe_dt(struct platform_device *pdev)
{
	const struct s3c24XX_nand_devtype_data *devtype_data;
	struct s3c2410_platform_nand *pdata;
	struct s3c2410_nand_info *info = platform_get_drvdata(pdev);
	struct device_node *np = pdev->dev.of_node, *child;
	struct s3c2410_nand_set *sets;

	devtype_data = of_device_get_match_data(&pdev->dev);
	if (!devtype_data)
		return -ENODEV;

	info->cpu_type = devtype_data->type;

	pdata = devm_kzalloc(&pdev->dev, sizeof(*pdata), GFP_KERNEL);
	if (!pdata)
		return -ENOMEM;

	pdev->dev.platform_data = pdata;

	pdata->nr_sets = of_get_child_count(np);
	if (!pdata->nr_sets)
		return 0;

	sets = devm_kcalloc(&pdev->dev, pdata->nr_sets, sizeof(*sets),
			    GFP_KERNEL);
	if (!sets)
		return -ENOMEM;

	pdata->sets = sets;

	for_each_available_child_of_node(np, child) {
		sets->name = (char *)child->name;
		sets->of_node = child;
		sets->nr_chips = 1;

		of_node_get(child);

		sets++;
	}

	return 0;
}

static int s3c24xx_nand_probe_pdata(struct platform_device *pdev)
{
	struct s3c2410_nand_info *info = platform_get_drvdata(pdev);

	info->cpu_type = platform_get_device_id(pdev)->driver_data;

	return 0;
}

/* s3c24xx_nand_probe
 *
 * called by device layer when it finds a device matching
 * one our driver can handled. This code checks to see if
 * it can allocate all necessary resources then calls the
 * nand layer to look for devices
*/
static int s3c24xx_nand_probe(struct platform_device *pdev)
{
	struct s3c2410_platform_nand *plat;
	struct s3c2410_nand_info *info;
	struct s3c2410_nand_mtd *nmtd;
	struct s3c2410_nand_set *sets;
	struct resource *res;
	int err = 0;
	int size;
	int nr_sets;
	int setno;

	info = devm_kzalloc(&pdev->dev, sizeof(*info), GFP_KERNEL);
	if (info == NULL) {
		err = -ENOMEM;
		goto exit_error;
	}

	platform_set_drvdata(pdev, info);

	nand_controller_init(&info->controller);
	info->controller.ops = &s3c24xx_nand_controller_ops;

	/* get the clock source and enable it */

	info->clk = devm_clk_get(&pdev->dev, "nand");
	if (IS_ERR(info->clk)) {
		dev_err(&pdev->dev, "failed to get clock\n");
		err = -ENOENT;
		goto exit_error;
	}

	s3c2410_nand_clk_set_state(info, CLOCK_ENABLE);

	if (pdev->dev.of_node)
		err = s3c24xx_nand_probe_dt(pdev);
	else
		err = s3c24xx_nand_probe_pdata(pdev);

	if (err)
		goto exit_error;

	plat = to_nand_plat(pdev);

	/* allocate and map the resource */

	/* currently we assume we have the one resource */
	res = pdev->resource;
	size = resource_size(res);

	info->device	= &pdev->dev;
	info->platform	= plat;

	info->regs = devm_ioremap_resource(&pdev->dev, res);
	if (IS_ERR(info->regs)) {
		err = PTR_ERR(info->regs);
		goto exit_error;
	}

	dev_dbg(&pdev->dev, "mapped registers at %p\n", info->regs);

	if (!plat->sets || plat->nr_sets < 1) {
		err = -EINVAL;
		goto exit_error;
	}

	sets = plat->sets;
	nr_sets = plat->nr_sets;

	info->mtd_count = nr_sets;

	/* allocate our information */

	size = nr_sets * sizeof(*info->mtds);
	info->mtds = devm_kzalloc(&pdev->dev, size, GFP_KERNEL);
	if (info->mtds == NULL) {
		err = -ENOMEM;
		goto exit_error;
	}

	/* initialise all possible chips */

	nmtd = info->mtds;

	for (setno = 0; setno < nr_sets; setno++, nmtd++, sets++) {
		struct mtd_info *mtd = nand_to_mtd(&nmtd->chip);

		pr_debug("initialising set %d (%p, info %p)\n",
			 setno, nmtd, info);

		mtd->dev.parent = &pdev->dev;
		s3c2410_nand_init_chip(info, nmtd, sets);

		err = nand_scan(&nmtd->chip, sets ? sets->nr_chips : 1);
		if (err)
			goto exit_error;

		s3c2410_nand_add_partition(info, nmtd, sets);
	}

	/* initialise the hardware */
	err = s3c2410_nand_inithw(info);
	if (err != 0)
		goto exit_error;

	err = s3c2410_nand_cpufreq_register(info);
	if (err < 0) {
		dev_err(&pdev->dev, "failed to init cpufreq support\n");
		goto exit_error;
	}

	if (allow_clk_suspend(info)) {
		dev_info(&pdev->dev, "clock idle support enabled\n");
		s3c2410_nand_clk_set_state(info, CLOCK_SUSPEND);
	}

	return 0;

 exit_error:
	s3c24xx_nand_remove(pdev);

	if (err == 0)
		err = -EINVAL;
	return err;
}

/* PM Support */
#ifdef CONFIG_PM

static int s3c24xx_nand_suspend(struct platform_device *dev, pm_message_t pm)
{
	struct s3c2410_nand_info *info = platform_get_drvdata(dev);

	if (info) {
		info->save_sel = readl(info->sel_reg);

		/* For the moment, we must ensure nFCE is high during
		 * the time we are suspended. This really should be
		 * handled by suspending the MTDs we are using, but
		 * that is currently not the case. */

		writel(info->save_sel | info->sel_bit, info->sel_reg);

		s3c2410_nand_clk_set_state(info, CLOCK_DISABLE);
	}

	return 0;
}

static int s3c24xx_nand_resume(struct platform_device *dev)
{
	struct s3c2410_nand_info *info = platform_get_drvdata(dev);
	unsigned long sel;

	if (info) {
		s3c2410_nand_clk_set_state(info, CLOCK_ENABLE);
		s3c2410_nand_inithw(info);

		/* Restore the state of the nFCE line. */

		sel = readl(info->sel_reg);
		sel &= ~info->sel_bit;
		sel |= info->save_sel & info->sel_bit;
		writel(sel, info->sel_reg);

		s3c2410_nand_clk_set_state(info, CLOCK_SUSPEND);
	}

	return 0;
}

#else
#define s3c24xx_nand_suspend NULL
#define s3c24xx_nand_resume NULL
#endif

/* driver device registration */

static const struct platform_device_id s3c24xx_driver_ids[] = {
	{
		.name		= "s3c2410-nand",
		.driver_data	= TYPE_S3C2410,
	}, {
		.name		= "s3c2440-nand",
		.driver_data	= TYPE_S3C2440,
	}, {
		.name		= "s3c2412-nand",
		.driver_data	= TYPE_S3C2412,
	}, {
		.name		= "s3c6400-nand",
		.driver_data	= TYPE_S3C2412, /* compatible with 2412 */
	},
	{ }
};

MODULE_DEVICE_TABLE(platform, s3c24xx_driver_ids);

static struct platform_driver s3c24xx_nand_driver = {
	.probe		= s3c24xx_nand_probe,
	.remove		= s3c24xx_nand_remove,
	.suspend	= s3c24xx_nand_suspend,
	.resume		= s3c24xx_nand_resume,
	.id_table	= s3c24xx_driver_ids,
	.driver		= {
		.name	= "s3c24xx-nand",
		.of_match_table = s3c24xx_nand_dt_ids,
	},
};

module_platform_driver(s3c24xx_nand_driver);

MODULE_LICENSE("GPL");
MODULE_AUTHOR("Ben Dooks <ben@simtec.co.uk>");
MODULE_DESCRIPTION("S3C24XX MTD NAND driver");