aboutsummaryrefslogtreecommitdiffstats
path: root/include/asm-sh/io.h
blob: 6ed34d8eac5f48026088535adcd931a053a2d609 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
#ifndef __ASM_SH_IO_H
#define __ASM_SH_IO_H

/*
 * Convention:
 *    read{b,w,l}/write{b,w,l} are for PCI,
 *    while in{b,w,l}/out{b,w,l} are for ISA
 * These may (will) be platform specific function.
 * In addition we have 'pausing' versions: in{b,w,l}_p/out{b,w,l}_p
 * and 'string' versions: ins{b,w,l}/outs{b,w,l}
 * For read{b,w,l} and write{b,w,l} there are also __raw versions, which
 * do not have a memory barrier after them.
 *
 * In addition, we have
 *   ctrl_in{b,w,l}/ctrl_out{b,w,l} for SuperH specific I/O.
 *   which are processor specific.
 */

/*
 * We follow the Alpha convention here:
 *  __inb expands to an inline function call (which calls via the mv)
 *  _inb  is a real function call (note ___raw fns are _ version of __raw)
 *  inb   by default expands to _inb, but the machine specific code may
 *        define it to __inb if it chooses.
 */
#include <asm/cache.h>
#include <asm/system.h>
#include <asm/addrspace.h>
#include <asm/machvec.h>
#include <asm/pgtable.h>
#include <asm-generic/iomap.h>

#ifdef __KERNEL__

/*
 * Depending on which platform we are running on, we need different
 * I/O functions.
 */
#define __IO_PREFIX	generic
#include <asm/io_generic.h>

#define maybebadio(port) \
  printk(KERN_ERR "bad PC-like io %s:%u for port 0x%lx at 0x%08x\n", \
	 __FUNCTION__, __LINE__, (port), (u32)__builtin_return_address(0))

/*
 * Since boards are able to define their own set of I/O routines through
 * their respective machine vector, we always wrap through the mv.
 *
 * Also, in the event that a board hasn't provided its own definition for
 * a given routine, it will be wrapped to generic code at run-time.
 */

#define __inb(p)	sh_mv.mv_inb((p))
#define __inw(p)	sh_mv.mv_inw((p))
#define __inl(p)	sh_mv.mv_inl((p))
#define __outb(x,p)	sh_mv.mv_outb((x),(p))
#define __outw(x,p)	sh_mv.mv_outw((x),(p))
#define __outl(x,p)	sh_mv.mv_outl((x),(p))

#define __inb_p(p)	sh_mv.mv_inb_p((p))
#define __inw_p(p)	sh_mv.mv_inw_p((p))
#define __inl_p(p)	sh_mv.mv_inl_p((p))
#define __outb_p(x,p)	sh_mv.mv_outb_p((x),(p))
#define __outw_p(x,p)	sh_mv.mv_outw_p((x),(p))
#define __outl_p(x,p)	sh_mv.mv_outl_p((x),(p))

#define __insb(p,b,c)	sh_mv.mv_insb((p), (b), (c))
#define __insw(p,b,c)	sh_mv.mv_insw((p), (b), (c))
#define __insl(p,b,c)	sh_mv.mv_insl((p), (b), (c))
#define __outsb(p,b,c)	sh_mv.mv_outsb((p), (b), (c))
#define __outsw(p,b,c)	sh_mv.mv_outsw((p), (b), (c))
#define __outsl(p,b,c)	sh_mv.mv_outsl((p), (b), (c))

#define __readb(a)	sh_mv.mv_readb((a))
#define __readw(a)	sh_mv.mv_readw((a))
#define __readl(a)	sh_mv.mv_readl((a))
#define __writeb(v,a)	sh_mv.mv_writeb((v),(a))
#define __writew(v,a)	sh_mv.mv_writew((v),(a))
#define __writel(v,a)	sh_mv.mv_writel((v),(a))

#define inb		__inb
#define inw		__inw
#define inl		__inl
#define outb		__outb
#define outw		__outw
#define outl		__outl

#define inb_p		__inb_p
#define inw_p		__inw_p
#define inl_p		__inl_p
#define outb_p		__outb_p
#define outw_p		__outw_p
#define outl_p		__outl_p

#define insb		__insb
#define insw		__insw
#define insl		__insl
#define outsb		__outsb
#define outsw		__outsw
#define outsl		__outsl

#define __raw_readb(a)		__readb((void __iomem *)(a))
#define __raw_readw(a)		__readw((void __iomem *)(a))
#define __raw_readl(a)		__readl((void __iomem *)(a))
#define __raw_writeb(v, a)	__writeb(v, (void __iomem *)(a))
#define __raw_writew(v, a)	__writew(v, (void __iomem *)(a))
#define __raw_writel(v, a)	__writel(v, (void __iomem *)(a))

void __raw_writesl(unsigned long addr, const void *data, int longlen);
void __raw_readsl(unsigned long addr, void *data, int longlen);

/*
 * The platform header files may define some of these macros to use
 * the inlined versions where appropriate.  These macros may also be
 * redefined by userlevel programs.
 */
#ifdef __readb
# define readb(a)	({ unsigned int r_ = __raw_readb(a); mb(); r_; })
#endif
#ifdef __raw_readw
# define readw(a)	({ unsigned int r_ = __raw_readw(a); mb(); r_; })
#endif
#ifdef __raw_readl
# define readl(a)	({ unsigned int r_ = __raw_readl(a); mb(); r_; })
#endif

#ifdef __raw_writeb
# define writeb(v,a)	({ __raw_writeb((v),(a)); mb(); })
#endif
#ifdef __raw_writew
# define writew(v,a)	({ __raw_writew((v),(a)); mb(); })
#endif
#ifdef __raw_writel
# define writel(v,a)	({ __raw_writel((v),(a)); mb(); })
#endif

#define __BUILD_MEMORY_STRING(bwlq, type)				\
									\
static inline void writes##bwlq(volatile void __iomem *mem,		\
				const void *addr, unsigned int count)	\
{									\
	const volatile type *__addr = addr;				\
									\
	while (count--) {						\
		__raw_write##bwlq(*__addr, mem);			\
		__addr++;						\
	}								\
}									\
									\
static inline void reads##bwlq(volatile void __iomem *mem, void *addr,	\
			       unsigned int count)			\
{									\
	volatile type *__addr = addr;					\
									\
	while (count--) {						\
		*__addr = __raw_read##bwlq(mem);			\
		__addr++;						\
	}								\
}

__BUILD_MEMORY_STRING(b, u8)
__BUILD_MEMORY_STRING(w, u16)
#define writesl __raw_writesl
#define readsl  __raw_readsl

#define readb_relaxed(a) readb(a)
#define readw_relaxed(a) readw(a)
#define readl_relaxed(a) readl(a)

/* Simple MMIO */
#define ioread8(a)		readb(a)
#define ioread16(a)		readw(a)
#define ioread16be(a)		be16_to_cpu(__raw_readw((a)))
#define ioread32(a)		readl(a)
#define ioread32be(a)		be32_to_cpu(__raw_readl((a)))

#define iowrite8(v,a)		writeb((v),(a))
#define iowrite16(v,a)		writew((v),(a))
#define iowrite16be(v,a)	__raw_writew(cpu_to_be16((v)),(a))
#define iowrite32(v,a)		writel((v),(a))
#define iowrite32be(v,a)	__raw_writel(cpu_to_be32((v)),(a))

#define ioread8_rep(a,d,c)	insb((a),(d),(c))
#define ioread16_rep(a,d,c)	insw((a),(d),(c))
#define ioread32_rep(a,d,c)	insl((a),(d),(c))

#define iowrite8_rep(a,s,c)	outsb((a),(s),(c))
#define iowrite16_rep(a,s,c)	outsw((a),(s),(c))
#define iowrite32_rep(a,s,c)	outsl((a),(s),(c))

#define mmiowb()	wmb()	/* synco on SH-4A, otherwise a nop */

/*
 * This function provides a method for the generic case where a board-specific
 * ioport_map simply needs to return the port + some arbitrary port base.
 *
 * We use this at board setup time to implicitly set the port base, and
 * as a result, we can use the generic ioport_map.
 */
static inline void __set_io_port_base(unsigned long pbase)
{
	extern unsigned long generic_io_base;

	generic_io_base = pbase;
}

/* We really want to try and get these to memcpy etc */
extern void memcpy_fromio(void *, volatile void __iomem *, unsigned long);
extern void memcpy_toio(volatile void __iomem *, const void *, unsigned long);
extern void memset_io(volatile void __iomem *, int, unsigned long);

/* SuperH on-chip I/O functions */
static inline unsigned char ctrl_inb(unsigned long addr)
{
	return *(volatile unsigned char*)addr;
}

static inline unsigned short ctrl_inw(unsigned long addr)
{
	return *(volatile unsigned short*)addr;
}

static inline unsigned int ctrl_inl(unsigned long addr)
{
	return *(volatile unsigned long*)addr;
}

static inline void ctrl_outb(unsigned char b, unsigned long addr)
{
	*(volatile unsigned char*)addr = b;
}

static inline void ctrl_outw(unsigned short b, unsigned long addr)
{
	*(volatile unsigned short*)addr = b;
}

static inline void ctrl_outl(unsigned int b, unsigned long addr)
{
        *(volatile unsigned long*)addr = b;
}

static inline void ctrl_delay(void)
{
	ctrl_inw(P2SEG);
}

#define IO_SPACE_LIMIT 0xffffffff

#ifdef CONFIG_MMU
/*
 * Change virtual addresses to physical addresses and vv.
 * These are trivial on the 1:1 Linux/SuperH mapping
 */
static inline unsigned long virt_to_phys(volatile void *address)
{
	return PHYSADDR(address);
}

static inline void *phys_to_virt(unsigned long address)
{
	return (void *)P1SEGADDR(address);
}
#else
#define phys_to_virt(address)	((void *)(address))
#define virt_to_phys(address)	((unsigned long)(address))
#endif

/*
 * readX/writeX() are used to access memory mapped devices. On some
 * architectures the memory mapped IO stuff needs to be accessed
 * differently. On the x86 architecture, we just read/write the
 * memory location directly.
 *
 * On SH, we traditionally have the whole physical address space mapped
 * at all times (as MIPS does), so "ioremap()" and "iounmap()" do not
 * need to do anything but place the address in the proper segment. This
 * is true for P1 and P2 addresses, as well as some P3 ones. However,
 * most of the P3 addresses and newer cores using extended addressing
 * need to map through page tables, so the ioremap() implementation
 * becomes a bit more complicated. See arch/sh/mm/ioremap.c for
 * additional notes on this.
 *
 * We cheat a bit and always return uncachable areas until we've fixed
 * the drivers to handle caching properly.
 */
#ifdef CONFIG_MMU
void __iomem *__ioremap(unsigned long offset, unsigned long size,
			unsigned long flags);
void __iounmap(void __iomem *addr);
#else
#define __ioremap(offset, size, flags)	((void __iomem *)(offset))
#define __iounmap(addr)			do { } while (0)
#endif /* CONFIG_MMU */

static inline void __iomem *
__ioremap_mode(unsigned long offset, unsigned long size, unsigned long flags)
{
	unsigned long last_addr = offset + size - 1;

	/*
	 * For P1 and P2 space this is trivial, as everything is already
	 * mapped. Uncached access for P1 addresses are done through P2.
	 * In the P3 case or for addresses outside of the 29-bit space,
	 * mapping must be done by the PMB or by using page tables.
	 */
	if (likely(PXSEG(offset) < P3SEG && PXSEG(last_addr) < P3SEG)) {
		if (unlikely(flags & _PAGE_CACHABLE))
			return (void __iomem *)P1SEGADDR(offset);

		return (void __iomem *)P2SEGADDR(offset);
	}

	return __ioremap(offset, size, flags);
}

#define ioremap(offset, size)				\
	__ioremap_mode((offset), (size), 0)
#define ioremap_nocache(offset, size)			\
	__ioremap_mode((offset), (size), 0)
#define ioremap_cache(offset, size)			\
	__ioremap_mode((offset), (size), _PAGE_CACHABLE)
#define p3_ioremap(offset, size, flags)			\
	__ioremap((offset), (size), (flags))
#define iounmap(addr)					\
	__iounmap((addr))

/*
 * Convert a physical pointer to a virtual kernel pointer for /dev/mem
 * access
 */
#define xlate_dev_mem_ptr(p)	__va(p)

/*
 * Convert a virtual cached pointer to an uncached pointer
 */
#define xlate_dev_kmem_ptr(p)	p

#endif /* __KERNEL__ */

#endif /* __ASM_SH_IO_H */