aboutsummaryrefslogtreecommitdiffstats
path: root/tools/lib/bpf/relo_core.c
blob: b5b8956a1be85dedcf0b247b2bd1134a077c7440 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
// SPDX-License-Identifier: (LGPL-2.1 OR BSD-2-Clause)
/* Copyright (c) 2019 Facebook */

#include <stdio.h>
#include <string.h>
#include <errno.h>
#include <ctype.h>
#include <linux/err.h>

#include "libbpf.h"
#include "bpf.h"
#include "btf.h"
#include "str_error.h"
#include "libbpf_internal.h"

#define BPF_CORE_SPEC_MAX_LEN 64

/* represents BPF CO-RE field or array element accessor */
struct bpf_core_accessor {
	__u32 type_id;		/* struct/union type or array element type */
	__u32 idx;		/* field index or array index */
	const char *name;	/* field name or NULL for array accessor */
};

struct bpf_core_spec {
	const struct btf *btf;
	/* high-level spec: named fields and array indices only */
	struct bpf_core_accessor spec[BPF_CORE_SPEC_MAX_LEN];
	/* original unresolved (no skip_mods_or_typedefs) root type ID */
	__u32 root_type_id;
	/* CO-RE relocation kind */
	enum bpf_core_relo_kind relo_kind;
	/* high-level spec length */
	int len;
	/* raw, low-level spec: 1-to-1 with accessor spec string */
	int raw_spec[BPF_CORE_SPEC_MAX_LEN];
	/* raw spec length */
	int raw_len;
	/* field bit offset represented by spec */
	__u32 bit_offset;
};

static bool is_flex_arr(const struct btf *btf,
			const struct bpf_core_accessor *acc,
			const struct btf_array *arr)
{
	const struct btf_type *t;

	/* not a flexible array, if not inside a struct or has non-zero size */
	if (!acc->name || arr->nelems > 0)
		return false;

	/* has to be the last member of enclosing struct */
	t = btf__type_by_id(btf, acc->type_id);
	return acc->idx == btf_vlen(t) - 1;
}

static const char *core_relo_kind_str(enum bpf_core_relo_kind kind)
{
	switch (kind) {
	case BPF_FIELD_BYTE_OFFSET: return "byte_off";
	case BPF_FIELD_BYTE_SIZE: return "byte_sz";
	case BPF_FIELD_EXISTS: return "field_exists";
	case BPF_FIELD_SIGNED: return "signed";
	case BPF_FIELD_LSHIFT_U64: return "lshift_u64";
	case BPF_FIELD_RSHIFT_U64: return "rshift_u64";
	case BPF_TYPE_ID_LOCAL: return "local_type_id";
	case BPF_TYPE_ID_TARGET: return "target_type_id";
	case BPF_TYPE_EXISTS: return "type_exists";
	case BPF_TYPE_SIZE: return "type_size";
	case BPF_ENUMVAL_EXISTS: return "enumval_exists";
	case BPF_ENUMVAL_VALUE: return "enumval_value";
	default: return "unknown";
	}
}

static bool core_relo_is_field_based(enum bpf_core_relo_kind kind)
{
	switch (kind) {
	case BPF_FIELD_BYTE_OFFSET:
	case BPF_FIELD_BYTE_SIZE:
	case BPF_FIELD_EXISTS:
	case BPF_FIELD_SIGNED:
	case BPF_FIELD_LSHIFT_U64:
	case BPF_FIELD_RSHIFT_U64:
		return true;
	default:
		return false;
	}
}

static bool core_relo_is_type_based(enum bpf_core_relo_kind kind)
{
	switch (kind) {
	case BPF_TYPE_ID_LOCAL:
	case BPF_TYPE_ID_TARGET:
	case BPF_TYPE_EXISTS:
	case BPF_TYPE_SIZE:
		return true;
	default:
		return false;
	}
}

static bool core_relo_is_enumval_based(enum bpf_core_relo_kind kind)
{
	switch (kind) {
	case BPF_ENUMVAL_EXISTS:
	case BPF_ENUMVAL_VALUE:
		return true;
	default:
		return false;
	}
}

/*
 * Turn bpf_core_relo into a low- and high-level spec representation,
 * validating correctness along the way, as well as calculating resulting
 * field bit offset, specified by accessor string. Low-level spec captures
 * every single level of nestedness, including traversing anonymous
 * struct/union members. High-level one only captures semantically meaningful
 * "turning points": named fields and array indicies.
 * E.g., for this case:
 *
 *   struct sample {
 *       int __unimportant;
 *       struct {
 *           int __1;
 *           int __2;
 *           int a[7];
 *       };
 *   };
 *
 *   struct sample *s = ...;
 *
 *   int x = &s->a[3]; // access string = '0:1:2:3'
 *
 * Low-level spec has 1:1 mapping with each element of access string (it's
 * just a parsed access string representation): [0, 1, 2, 3].
 *
 * High-level spec will capture only 3 points:
 *   - intial zero-index access by pointer (&s->... is the same as &s[0]...);
 *   - field 'a' access (corresponds to '2' in low-level spec);
 *   - array element #3 access (corresponds to '3' in low-level spec).
 *
 * Type-based relocations (TYPE_EXISTS/TYPE_SIZE,
 * TYPE_ID_LOCAL/TYPE_ID_TARGET) don't capture any field information. Their
 * spec and raw_spec are kept empty.
 *
 * Enum value-based relocations (ENUMVAL_EXISTS/ENUMVAL_VALUE) use access
 * string to specify enumerator's value index that need to be relocated.
 */
static int bpf_core_parse_spec(const struct btf *btf,
			       __u32 type_id,
			       const char *spec_str,
			       enum bpf_core_relo_kind relo_kind,
			       struct bpf_core_spec *spec)
{
	int access_idx, parsed_len, i;
	struct bpf_core_accessor *acc;
	const struct btf_type *t;
	const char *name;
	__u32 id;
	__s64 sz;

	if (str_is_empty(spec_str) || *spec_str == ':')
		return -EINVAL;

	memset(spec, 0, sizeof(*spec));
	spec->btf = btf;
	spec->root_type_id = type_id;
	spec->relo_kind = relo_kind;

	/* type-based relocations don't have a field access string */
	if (core_relo_is_type_based(relo_kind)) {
		if (strcmp(spec_str, "0"))
			return -EINVAL;
		return 0;
	}

	/* parse spec_str="0:1:2:3:4" into array raw_spec=[0, 1, 2, 3, 4] */
	while (*spec_str) {
		if (*spec_str == ':')
			++spec_str;
		if (sscanf(spec_str, "%d%n", &access_idx, &parsed_len) != 1)
			return -EINVAL;
		if (spec->raw_len == BPF_CORE_SPEC_MAX_LEN)
			return -E2BIG;
		spec_str += parsed_len;
		spec->raw_spec[spec->raw_len++] = access_idx;
	}

	if (spec->raw_len == 0)
		return -EINVAL;

	t = skip_mods_and_typedefs(btf, type_id, &id);
	if (!t)
		return -EINVAL;

	access_idx = spec->raw_spec[0];
	acc = &spec->spec[0];
	acc->type_id = id;
	acc->idx = access_idx;
	spec->len++;

	if (core_relo_is_enumval_based(relo_kind)) {
		if (!btf_is_enum(t) || spec->raw_len > 1 || access_idx >= btf_vlen(t))
			return -EINVAL;

		/* record enumerator name in a first accessor */
		acc->name = btf__name_by_offset(btf, btf_enum(t)[access_idx].name_off);
		return 0;
	}

	if (!core_relo_is_field_based(relo_kind))
		return -EINVAL;

	sz = btf__resolve_size(btf, id);
	if (sz < 0)
		return sz;
	spec->bit_offset = access_idx * sz * 8;

	for (i = 1; i < spec->raw_len; i++) {
		t = skip_mods_and_typedefs(btf, id, &id);
		if (!t)
			return -EINVAL;

		access_idx = spec->raw_spec[i];
		acc = &spec->spec[spec->len];

		if (btf_is_composite(t)) {
			const struct btf_member *m;
			__u32 bit_offset;

			if (access_idx >= btf_vlen(t))
				return -EINVAL;

			bit_offset = btf_member_bit_offset(t, access_idx);
			spec->bit_offset += bit_offset;

			m = btf_members(t) + access_idx;
			if (m->name_off) {
				name = btf__name_by_offset(btf, m->name_off);
				if (str_is_empty(name))
					return -EINVAL;

				acc->type_id = id;
				acc->idx = access_idx;
				acc->name = name;
				spec->len++;
			}

			id = m->type;
		} else if (btf_is_array(t)) {
			const struct btf_array *a = btf_array(t);
			bool flex;

			t = skip_mods_and_typedefs(btf, a->type, &id);
			if (!t)
				return -EINVAL;

			flex = is_flex_arr(btf, acc - 1, a);
			if (!flex && access_idx >= a->nelems)
				return -EINVAL;

			spec->spec[spec->len].type_id = id;
			spec->spec[spec->len].idx = access_idx;
			spec->len++;

			sz = btf__resolve_size(btf, id);
			if (sz < 0)
				return sz;
			spec->bit_offset += access_idx * sz * 8;
		} else {
			pr_warn("relo for [%u] %s (at idx %d) captures type [%d] of unexpected kind %s\n",
				type_id, spec_str, i, id, btf_kind_str(t));
			return -EINVAL;
		}
	}

	return 0;
}

/* Check two types for compatibility for the purpose of field access
 * relocation. const/volatile/restrict and typedefs are skipped to ensure we
 * are relocating semantically compatible entities:
 *   - any two STRUCTs/UNIONs are compatible and can be mixed;
 *   - any two FWDs are compatible, if their names match (modulo flavor suffix);
 *   - any two PTRs are always compatible;
 *   - for ENUMs, names should be the same (ignoring flavor suffix) or at
 *     least one of enums should be anonymous;
 *   - for ENUMs, check sizes, names are ignored;
 *   - for INT, size and signedness are ignored;
 *   - any two FLOATs are always compatible;
 *   - for ARRAY, dimensionality is ignored, element types are checked for
 *     compatibility recursively;
 *   - everything else shouldn't be ever a target of relocation.
 * These rules are not set in stone and probably will be adjusted as we get
 * more experience with using BPF CO-RE relocations.
 */
static int bpf_core_fields_are_compat(const struct btf *local_btf,
				      __u32 local_id,
				      const struct btf *targ_btf,
				      __u32 targ_id)
{
	const struct btf_type *local_type, *targ_type;

recur:
	local_type = skip_mods_and_typedefs(local_btf, local_id, &local_id);
	targ_type = skip_mods_and_typedefs(targ_btf, targ_id, &targ_id);
	if (!local_type || !targ_type)
		return -EINVAL;

	if (btf_is_composite(local_type) && btf_is_composite(targ_type))
		return 1;
	if (btf_kind(local_type) != btf_kind(targ_type))
		return 0;

	switch (btf_kind(local_type)) {
	case BTF_KIND_PTR:
	case BTF_KIND_FLOAT:
		return 1;
	case BTF_KIND_FWD:
	case BTF_KIND_ENUM: {
		const char *local_name, *targ_name;
		size_t local_len, targ_len;

		local_name = btf__name_by_offset(local_btf,
						 local_type->name_off);
		targ_name = btf__name_by_offset(targ_btf, targ_type->name_off);
		local_len = bpf_core_essential_name_len(local_name);
		targ_len = bpf_core_essential_name_len(targ_name);
		/* one of them is anonymous or both w/ same flavor-less names */
		return local_len == 0 || targ_len == 0 ||
		       (local_len == targ_len &&
			strncmp(local_name, targ_name, local_len) == 0);
	}
	case BTF_KIND_INT:
		/* just reject deprecated bitfield-like integers; all other
		 * integers are by default compatible between each other
		 */
		return btf_int_offset(local_type) == 0 &&
		       btf_int_offset(targ_type) == 0;
	case BTF_KIND_ARRAY:
		local_id = btf_array(local_type)->type;
		targ_id = btf_array(targ_type)->type;
		goto recur;
	default:
		pr_warn("unexpected kind %d relocated, local [%d], target [%d]\n",
			btf_kind(local_type), local_id, targ_id);
		return 0;
	}
}

/*
 * Given single high-level named field accessor in local type, find
 * corresponding high-level accessor for a target type. Along the way,
 * maintain low-level spec for target as well. Also keep updating target
 * bit offset.
 *
 * Searching is performed through recursive exhaustive enumeration of all
 * fields of a struct/union. If there are any anonymous (embedded)
 * structs/unions, they are recursively searched as well. If field with
 * desired name is found, check compatibility between local and target types,
 * before returning result.
 *
 * 1 is returned, if field is found.
 * 0 is returned if no compatible field is found.
 * <0 is returned on error.
 */
static int bpf_core_match_member(const struct btf *local_btf,
				 const struct bpf_core_accessor *local_acc,
				 const struct btf *targ_btf,
				 __u32 targ_id,
				 struct bpf_core_spec *spec,
				 __u32 *next_targ_id)
{
	const struct btf_type *local_type, *targ_type;
	const struct btf_member *local_member, *m;
	const char *local_name, *targ_name;
	__u32 local_id;
	int i, n, found;

	targ_type = skip_mods_and_typedefs(targ_btf, targ_id, &targ_id);
	if (!targ_type)
		return -EINVAL;
	if (!btf_is_composite(targ_type))
		return 0;

	local_id = local_acc->type_id;
	local_type = btf__type_by_id(local_btf, local_id);
	local_member = btf_members(local_type) + local_acc->idx;
	local_name = btf__name_by_offset(local_btf, local_member->name_off);

	n = btf_vlen(targ_type);
	m = btf_members(targ_type);
	for (i = 0; i < n; i++, m++) {
		__u32 bit_offset;

		bit_offset = btf_member_bit_offset(targ_type, i);

		/* too deep struct/union/array nesting */
		if (spec->raw_len == BPF_CORE_SPEC_MAX_LEN)
			return -E2BIG;

		/* speculate this member will be the good one */
		spec->bit_offset += bit_offset;
		spec->raw_spec[spec->raw_len++] = i;

		targ_name = btf__name_by_offset(targ_btf, m->name_off);
		if (str_is_empty(targ_name)) {
			/* embedded struct/union, we need to go deeper */
			found = bpf_core_match_member(local_btf, local_acc,
						      targ_btf, m->type,
						      spec, next_targ_id);
			if (found) /* either found or error */
				return found;
		} else if (strcmp(local_name, targ_name) == 0) {
			/* matching named field */
			struct bpf_core_accessor *targ_acc;

			targ_acc = &spec->spec[spec->len++];
			targ_acc->type_id = targ_id;
			targ_acc->idx = i;
			targ_acc->name = targ_name;

			*next_targ_id = m->type;
			found = bpf_core_fields_are_compat(local_btf,
							   local_member->type,
							   targ_btf, m->type);
			if (!found)
				spec->len--; /* pop accessor */
			return found;
		}
		/* member turned out not to be what we looked for */
		spec->bit_offset -= bit_offset;
		spec->raw_len--;
	}

	return 0;
}

/*
 * Try to match local spec to a target type and, if successful, produce full
 * target spec (high-level, low-level + bit offset).
 */
static int bpf_core_spec_match(struct bpf_core_spec *local_spec,
			       const struct btf *targ_btf, __u32 targ_id,
			       struct bpf_core_spec *targ_spec)
{
	const struct btf_type *targ_type;
	const struct bpf_core_accessor *local_acc;
	struct bpf_core_accessor *targ_acc;
	int i, sz, matched;

	memset(targ_spec, 0, sizeof(*targ_spec));
	targ_spec->btf = targ_btf;
	targ_spec->root_type_id = targ_id;
	targ_spec->relo_kind = local_spec->relo_kind;

	if (core_relo_is_type_based(local_spec->relo_kind)) {
		return bpf_core_types_are_compat(local_spec->btf,
						 local_spec->root_type_id,
						 targ_btf, targ_id);
	}

	local_acc = &local_spec->spec[0];
	targ_acc = &targ_spec->spec[0];

	if (core_relo_is_enumval_based(local_spec->relo_kind)) {
		size_t local_essent_len, targ_essent_len;
		const struct btf_enum *e;
		const char *targ_name;

		/* has to resolve to an enum */
		targ_type = skip_mods_and_typedefs(targ_spec->btf, targ_id, &targ_id);
		if (!btf_is_enum(targ_type))
			return 0;

		local_essent_len = bpf_core_essential_name_len(local_acc->name);

		for (i = 0, e = btf_enum(targ_type); i < btf_vlen(targ_type); i++, e++) {
			targ_name = btf__name_by_offset(targ_spec->btf, e->name_off);
			targ_essent_len = bpf_core_essential_name_len(targ_name);
			if (targ_essent_len != local_essent_len)
				continue;
			if (strncmp(local_acc->name, targ_name, local_essent_len) == 0) {
				targ_acc->type_id = targ_id;
				targ_acc->idx = i;
				targ_acc->name = targ_name;
				targ_spec->len++;
				targ_spec->raw_spec[targ_spec->raw_len] = targ_acc->idx;
				targ_spec->raw_len++;
				return 1;
			}
		}
		return 0;
	}

	if (!core_relo_is_field_based(local_spec->relo_kind))
		return -EINVAL;

	for (i = 0; i < local_spec->len; i++, local_acc++, targ_acc++) {
		targ_type = skip_mods_and_typedefs(targ_spec->btf, targ_id,
						   &targ_id);
		if (!targ_type)
			return -EINVAL;

		if (local_acc->name) {
			matched = bpf_core_match_member(local_spec->btf,
							local_acc,
							targ_btf, targ_id,
							targ_spec, &targ_id);
			if (matched <= 0)
				return matched;
		} else {
			/* for i=0, targ_id is already treated as array element
			 * type (because it's the original struct), for others
			 * we should find array element type first
			 */
			if (i > 0) {
				const struct btf_array *a;
				bool flex;

				if (!btf_is_array(targ_type))
					return 0;

				a = btf_array(targ_type);
				flex = is_flex_arr(targ_btf, targ_acc - 1, a);
				if (!flex && local_acc->idx >= a->nelems)
					return 0;
				if (!skip_mods_and_typedefs(targ_btf, a->type,
							    &targ_id))
					return -EINVAL;
			}

			/* too deep struct/union/array nesting */
			if (targ_spec->raw_len == BPF_CORE_SPEC_MAX_LEN)
				return -E2BIG;

			targ_acc->type_id = targ_id;
			targ_acc->idx = local_acc->idx;
			targ_acc->name = NULL;
			targ_spec->len++;
			targ_spec->raw_spec[targ_spec->raw_len] = targ_acc->idx;
			targ_spec->raw_len++;

			sz = btf__resolve_size(targ_btf, targ_id);
			if (sz < 0)
				return sz;
			targ_spec->bit_offset += local_acc->idx * sz * 8;
		}
	}

	return 1;
}

static int bpf_core_calc_field_relo(const char *prog_name,
				    const struct bpf_core_relo *relo,
				    const struct bpf_core_spec *spec,
				    __u32 *val, __u32 *field_sz, __u32 *type_id,
				    bool *validate)
{
	const struct bpf_core_accessor *acc;
	const struct btf_type *t;
	__u32 byte_off, byte_sz, bit_off, bit_sz, field_type_id;
	const struct btf_member *m;
	const struct btf_type *mt;
	bool bitfield;
	__s64 sz;

	*field_sz = 0;

	if (relo->kind == BPF_FIELD_EXISTS) {
		*val = spec ? 1 : 0;
		return 0;
	}

	if (!spec)
		return -EUCLEAN; /* request instruction poisoning */

	acc = &spec->spec[spec->len - 1];
	t = btf__type_by_id(spec->btf, acc->type_id);

	/* a[n] accessor needs special handling */
	if (!acc->name) {
		if (relo->kind == BPF_FIELD_BYTE_OFFSET) {
			*val = spec->bit_offset / 8;
			/* remember field size for load/store mem size */
			sz = btf__resolve_size(spec->btf, acc->type_id);
			if (sz < 0)
				return -EINVAL;
			*field_sz = sz;
			*type_id = acc->type_id;
		} else if (relo->kind == BPF_FIELD_BYTE_SIZE) {
			sz = btf__resolve_size(spec->btf, acc->type_id);
			if (sz < 0)
				return -EINVAL;
			*val = sz;
		} else {
			pr_warn("prog '%s': relo %d at insn #%d can't be applied to array access\n",
				prog_name, relo->kind, relo->insn_off / 8);
			return -EINVAL;
		}
		if (validate)
			*validate = true;
		return 0;
	}

	m = btf_members(t) + acc->idx;
	mt = skip_mods_and_typedefs(spec->btf, m->type, &field_type_id);
	bit_off = spec->bit_offset;
	bit_sz = btf_member_bitfield_size(t, acc->idx);

	bitfield = bit_sz > 0;
	if (bitfield) {
		byte_sz = mt->size;
		byte_off = bit_off / 8 / byte_sz * byte_sz;
		/* figure out smallest int size necessary for bitfield load */
		while (bit_off + bit_sz - byte_off * 8 > byte_sz * 8) {
			if (byte_sz >= 8) {
				/* bitfield can't be read with 64-bit read */
				pr_warn("prog '%s': relo %d at insn #%d can't be satisfied for bitfield\n",
					prog_name, relo->kind, relo->insn_off / 8);
				return -E2BIG;
			}
			byte_sz *= 2;
			byte_off = bit_off / 8 / byte_sz * byte_sz;
		}
	} else {
		sz = btf__resolve_size(spec->btf, field_type_id);
		if (sz < 0)
			return -EINVAL;
		byte_sz = sz;
		byte_off = spec->bit_offset / 8;
		bit_sz = byte_sz * 8;
	}

	/* for bitfields, all the relocatable aspects are ambiguous and we
	 * might disagree with compiler, so turn off validation of expected
	 * value, except for signedness
	 */
	if (validate)
		*validate = !bitfield;

	switch (relo->kind) {
	case BPF_FIELD_BYTE_OFFSET:
		*val = byte_off;
		if (!bitfield) {
			*field_sz = byte_sz;
			*type_id = field_type_id;
		}
		break;
	case BPF_FIELD_BYTE_SIZE:
		*val = byte_sz;
		break;
	case BPF_FIELD_SIGNED:
		/* enums will be assumed unsigned */
		*val = btf_is_enum(mt) ||
		       (btf_int_encoding(mt) & BTF_INT_SIGNED);
		if (validate)
			*validate = true; /* signedness is never ambiguous */
		break;
	case BPF_FIELD_LSHIFT_U64:
#if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__
		*val = 64 - (bit_off + bit_sz - byte_off  * 8);
#else
		*val = (8 - byte_sz) * 8 + (bit_off - byte_off * 8);
#endif
		break;
	case BPF_FIELD_RSHIFT_U64:
		*val = 64 - bit_sz;
		if (validate)
			*validate = true; /* right shift is never ambiguous */
		break;
	case BPF_FIELD_EXISTS:
	default:
		return -EOPNOTSUPP;
	}

	return 0;
}

static int bpf_core_calc_type_relo(const struct bpf_core_relo *relo,
				   const struct bpf_core_spec *spec,
				   __u32 *val)
{
	__s64 sz;

	/* type-based relos return zero when target type is not found */
	if (!spec) {
		*val = 0;
		return 0;
	}

	switch (relo->kind) {
	case BPF_TYPE_ID_TARGET:
		*val = spec->root_type_id;
		break;
	case BPF_TYPE_EXISTS:
		*val = 1;
		break;
	case BPF_TYPE_SIZE:
		sz = btf__resolve_size(spec->btf, spec->root_type_id);
		if (sz < 0)
			return -EINVAL;
		*val = sz;
		break;
	case BPF_TYPE_ID_LOCAL:
	/* BPF_TYPE_ID_LOCAL is handled specially and shouldn't get here */
	default:
		return -EOPNOTSUPP;
	}

	return 0;
}

static int bpf_core_calc_enumval_relo(const struct bpf_core_relo *relo,
				      const struct bpf_core_spec *spec,
				      __u32 *val)
{
	const struct btf_type *t;
	const struct btf_enum *e;

	switch (relo->kind) {
	case BPF_ENUMVAL_EXISTS:
		*val = spec ? 1 : 0;
		break;
	case BPF_ENUMVAL_VALUE:
		if (!spec)
			return -EUCLEAN; /* request instruction poisoning */
		t = btf__type_by_id(spec->btf, spec->spec[0].type_id);
		e = btf_enum(t) + spec->spec[0].idx;
		*val = e->val;
		break;
	default:
		return -EOPNOTSUPP;
	}

	return 0;
}

struct bpf_core_relo_res
{
	/* expected value in the instruction, unless validate == false */
	__u32 orig_val;
	/* new value that needs to be patched up to */
	__u32 new_val;
	/* relocation unsuccessful, poison instruction, but don't fail load */
	bool poison;
	/* some relocations can't be validated against orig_val */
	bool validate;
	/* for field byte offset relocations or the forms:
	 *     *(T *)(rX + <off>) = rY
	 *     rX = *(T *)(rY + <off>),
	 * we remember original and resolved field size to adjust direct
	 * memory loads of pointers and integers; this is necessary for 32-bit
	 * host kernel architectures, but also allows to automatically
	 * relocate fields that were resized from, e.g., u32 to u64, etc.
	 */
	bool fail_memsz_adjust;
	__u32 orig_sz;
	__u32 orig_type_id;
	__u32 new_sz;
	__u32 new_type_id;
};

/* Calculate original and target relocation values, given local and target
 * specs and relocation kind. These values are calculated for each candidate.
 * If there are multiple candidates, resulting values should all be consistent
 * with each other. Otherwise, libbpf will refuse to proceed due to ambiguity.
 * If instruction has to be poisoned, *poison will be set to true.
 */
static int bpf_core_calc_relo(const char *prog_name,
			      const struct bpf_core_relo *relo,
			      int relo_idx,
			      const struct bpf_core_spec *local_spec,
			      const struct bpf_core_spec *targ_spec,
			      struct bpf_core_relo_res *res)
{
	int err = -EOPNOTSUPP;

	res->orig_val = 0;
	res->new_val = 0;
	res->poison = false;
	res->validate = true;
	res->fail_memsz_adjust = false;
	res->orig_sz = res->new_sz = 0;
	res->orig_type_id = res->new_type_id = 0;

	if (core_relo_is_field_based(relo->kind)) {
		err = bpf_core_calc_field_relo(prog_name, relo, local_spec,
					       &res->orig_val, &res->orig_sz,
					       &res->orig_type_id, &res->validate);
		err = err ?: bpf_core_calc_field_relo(prog_name, relo, targ_spec,
						      &res->new_val, &res->new_sz,
						      &res->new_type_id, NULL);
		if (err)
			goto done;
		/* Validate if it's safe to adjust load/store memory size.
		 * Adjustments are performed only if original and new memory
		 * sizes differ.
		 */
		res->fail_memsz_adjust = false;
		if (res->orig_sz != res->new_sz) {
			const struct btf_type *orig_t, *new_t;

			orig_t = btf__type_by_id(local_spec->btf, res->orig_type_id);
			new_t = btf__type_by_id(targ_spec->btf, res->new_type_id);

			/* There are two use cases in which it's safe to
			 * adjust load/store's mem size:
			 *   - reading a 32-bit kernel pointer, while on BPF
			 *   size pointers are always 64-bit; in this case
			 *   it's safe to "downsize" instruction size due to
			 *   pointer being treated as unsigned integer with
			 *   zero-extended upper 32-bits;
			 *   - reading unsigned integers, again due to
			 *   zero-extension is preserving the value correctly.
			 *
			 * In all other cases it's incorrect to attempt to
			 * load/store field because read value will be
			 * incorrect, so we poison relocated instruction.
			 */
			if (btf_is_ptr(orig_t) && btf_is_ptr(new_t))
				goto done;
			if (btf_is_int(orig_t) && btf_is_int(new_t) &&
			    btf_int_encoding(orig_t) != BTF_INT_SIGNED &&
			    btf_int_encoding(new_t) != BTF_INT_SIGNED)
				goto done;

			/* mark as invalid mem size adjustment, but this will
			 * only be checked for LDX/STX/ST insns
			 */
			res->fail_memsz_adjust = true;
		}
	} else if (core_relo_is_type_based(relo->kind)) {
		err = bpf_core_calc_type_relo(relo, local_spec, &res->orig_val);
		err = err ?: bpf_core_calc_type_relo(relo, targ_spec, &res->new_val);
	} else if (core_relo_is_enumval_based(relo->kind)) {
		err = bpf_core_calc_enumval_relo(relo, local_spec, &res->orig_val);
		err = err ?: bpf_core_calc_enumval_relo(relo, targ_spec, &res->new_val);
	}

done:
	if (err == -EUCLEAN) {
		/* EUCLEAN is used to signal instruction poisoning request */
		res->poison = true;
		err = 0;
	} else if (err == -EOPNOTSUPP) {
		/* EOPNOTSUPP means unknown/unsupported relocation */
		pr_warn("prog '%s': relo #%d: unrecognized CO-RE relocation %s (%d) at insn #%d\n",
			prog_name, relo_idx, core_relo_kind_str(relo->kind),
			relo->kind, relo->insn_off / 8);
	}

	return err;
}

/*
 * Turn instruction for which CO_RE relocation failed into invalid one with
 * distinct signature.
 */
static void bpf_core_poison_insn(const char *prog_name, int relo_idx,
				 int insn_idx, struct bpf_insn *insn)
{
	pr_debug("prog '%s': relo #%d: substituting insn #%d w/ invalid insn\n",
		 prog_name, relo_idx, insn_idx);
	insn->code = BPF_JMP | BPF_CALL;
	insn->dst_reg = 0;
	insn->src_reg = 0;
	insn->off = 0;
	/* if this instruction is reachable (not a dead code),
	 * verifier will complain with the following message:
	 * invalid func unknown#195896080
	 */
	insn->imm = 195896080; /* => 0xbad2310 => "bad relo" */
}

static int insn_bpf_size_to_bytes(struct bpf_insn *insn)
{
	switch (BPF_SIZE(insn->code)) {
	case BPF_DW: return 8;
	case BPF_W: return 4;
	case BPF_H: return 2;
	case BPF_B: return 1;
	default: return -1;
	}
}

static int insn_bytes_to_bpf_size(__u32 sz)
{
	switch (sz) {
	case 8: return BPF_DW;
	case 4: return BPF_W;
	case 2: return BPF_H;
	case 1: return BPF_B;
	default: return -1;
	}
}

/*
 * Patch relocatable BPF instruction.
 *
 * Patched value is determined by relocation kind and target specification.
 * For existence relocations target spec will be NULL if field/type is not found.
 * Expected insn->imm value is determined using relocation kind and local
 * spec, and is checked before patching instruction. If actual insn->imm value
 * is wrong, bail out with error.
 *
 * Currently supported classes of BPF instruction are:
 * 1. rX = <imm> (assignment with immediate operand);
 * 2. rX += <imm> (arithmetic operations with immediate operand);
 * 3. rX = <imm64> (load with 64-bit immediate value);
 * 4. rX = *(T *)(rY + <off>), where T is one of {u8, u16, u32, u64};
 * 5. *(T *)(rX + <off>) = rY, where T is one of {u8, u16, u32, u64};
 * 6. *(T *)(rX + <off>) = <imm>, where T is one of {u8, u16, u32, u64}.
 */
static int bpf_core_patch_insn(const char *prog_name, struct bpf_insn *insn,
			       int insn_idx, const struct bpf_core_relo *relo,
			       int relo_idx, const struct bpf_core_relo_res *res)
{
	__u32 orig_val, new_val;
	__u8 class;

	class = BPF_CLASS(insn->code);

	if (res->poison) {
poison:
		/* poison second part of ldimm64 to avoid confusing error from
		 * verifier about "unknown opcode 00"
		 */
		if (is_ldimm64_insn(insn))
			bpf_core_poison_insn(prog_name, relo_idx, insn_idx + 1, insn + 1);
		bpf_core_poison_insn(prog_name, relo_idx, insn_idx, insn);
		return 0;
	}

	orig_val = res->orig_val;
	new_val = res->new_val;

	switch (class) {
	case BPF_ALU:
	case BPF_ALU64:
		if (BPF_SRC(insn->code) != BPF_K)
			return -EINVAL;
		if (res->validate && insn->imm != orig_val) {
			pr_warn("prog '%s': relo #%d: unexpected insn #%d (ALU/ALU64) value: got %u, exp %u -> %u\n",
				prog_name, relo_idx,
				insn_idx, insn->imm, orig_val, new_val);
			return -EINVAL;
		}
		orig_val = insn->imm;
		insn->imm = new_val;
		pr_debug("prog '%s': relo #%d: patched insn #%d (ALU/ALU64) imm %u -> %u\n",
			 prog_name, relo_idx, insn_idx,
			 orig_val, new_val);
		break;
	case BPF_LDX:
	case BPF_ST:
	case BPF_STX:
		if (res->validate && insn->off != orig_val) {
			pr_warn("prog '%s': relo #%d: unexpected insn #%d (LDX/ST/STX) value: got %u, exp %u -> %u\n",
				prog_name, relo_idx, insn_idx, insn->off, orig_val, new_val);
			return -EINVAL;
		}
		if (new_val > SHRT_MAX) {
			pr_warn("prog '%s': relo #%d: insn #%d (LDX/ST/STX) value too big: %u\n",
				prog_name, relo_idx, insn_idx, new_val);
			return -ERANGE;
		}
		if (res->fail_memsz_adjust) {
			pr_warn("prog '%s': relo #%d: insn #%d (LDX/ST/STX) accesses field incorrectly. "
				"Make sure you are accessing pointers, unsigned integers, or fields of matching type and size.\n",
				prog_name, relo_idx, insn_idx);
			goto poison;
		}

		orig_val = insn->off;
		insn->off = new_val;
		pr_debug("prog '%s': relo #%d: patched insn #%d (LDX/ST/STX) off %u -> %u\n",
			 prog_name, relo_idx, insn_idx, orig_val, new_val);

		if (res->new_sz != res->orig_sz) {
			int insn_bytes_sz, insn_bpf_sz;

			insn_bytes_sz = insn_bpf_size_to_bytes(insn);
			if (insn_bytes_sz != res->orig_sz) {
				pr_warn("prog '%s': relo #%d: insn #%d (LDX/ST/STX) unexpected mem size: got %d, exp %u\n",
					prog_name, relo_idx, insn_idx, insn_bytes_sz, res->orig_sz);
				return -EINVAL;
			}

			insn_bpf_sz = insn_bytes_to_bpf_size(res->new_sz);
			if (insn_bpf_sz < 0) {
				pr_warn("prog '%s': relo #%d: insn #%d (LDX/ST/STX) invalid new mem size: %u\n",
					prog_name, relo_idx, insn_idx, res->new_sz);
				return -EINVAL;
			}

			insn->code = BPF_MODE(insn->code) | insn_bpf_sz | BPF_CLASS(insn->code);
			pr_debug("prog '%s': relo #%d: patched insn #%d (LDX/ST/STX) mem_sz %u -> %u\n",
				 prog_name, relo_idx, insn_idx, res->orig_sz, res->new_sz);
		}
		break;
	case BPF_LD: {
		__u64 imm;

		if (!is_ldimm64_insn(insn) ||
		    insn[0].src_reg != 0 || insn[0].off != 0 ||
		    insn[1].code != 0 || insn[1].dst_reg != 0 ||
		    insn[1].src_reg != 0 || insn[1].off != 0) {
			pr_warn("prog '%s': relo #%d: insn #%d (LDIMM64) has unexpected form\n",
				prog_name, relo_idx, insn_idx);
			return -EINVAL;
		}

		imm = insn[0].imm + ((__u64)insn[1].imm << 32);
		if (res->validate && imm != orig_val) {
			pr_warn("prog '%s': relo #%d: unexpected insn #%d (LDIMM64) value: got %llu, exp %u -> %u\n",
				prog_name, relo_idx,
				insn_idx, (unsigned long long)imm,
				orig_val, new_val);
			return -EINVAL;
		}

		insn[0].imm = new_val;
		insn[1].imm = 0; /* currently only 32-bit values are supported */
		pr_debug("prog '%s': relo #%d: patched insn #%d (LDIMM64) imm64 %llu -> %u\n",
			 prog_name, relo_idx, insn_idx,
			 (unsigned long long)imm, new_val);
		break;
	}
	default:
		pr_warn("prog '%s': relo #%d: trying to relocate unrecognized insn #%d, code:0x%x, src:0x%x, dst:0x%x, off:0x%x, imm:0x%x\n",
			prog_name, relo_idx, insn_idx, insn->code,
			insn->src_reg, insn->dst_reg, insn->off, insn->imm);
		return -EINVAL;
	}

	return 0;
}

/* Output spec definition in the format:
 * [<type-id>] (<type-name>) + <raw-spec> => <offset>@<spec>,
 * where <spec> is a C-syntax view of recorded field access, e.g.: x.a[3].b
 */
static void bpf_core_dump_spec(int level, const struct bpf_core_spec *spec)
{
	const struct btf_type *t;
	const struct btf_enum *e;
	const char *s;
	__u32 type_id;
	int i;

	type_id = spec->root_type_id;
	t = btf__type_by_id(spec->btf, type_id);
	s = btf__name_by_offset(spec->btf, t->name_off);

	libbpf_print(level, "[%u] %s %s", type_id, btf_kind_str(t), str_is_empty(s) ? "<anon>" : s);

	if (core_relo_is_type_based(spec->relo_kind))
		return;

	if (core_relo_is_enumval_based(spec->relo_kind)) {
		t = skip_mods_and_typedefs(spec->btf, type_id, NULL);
		e = btf_enum(t) + spec->raw_spec[0];
		s = btf__name_by_offset(spec->btf, e->name_off);

		libbpf_print(level, "::%s = %u", s, e->val);
		return;
	}

	if (core_relo_is_field_based(spec->relo_kind)) {
		for (i = 0; i < spec->len; i++) {
			if (spec->spec[i].name)
				libbpf_print(level, ".%s", spec->spec[i].name);
			else if (i > 0 || spec->spec[i].idx > 0)
				libbpf_print(level, "[%u]", spec->spec[i].idx);
		}

		libbpf_print(level, " (");
		for (i = 0; i < spec->raw_len; i++)
			libbpf_print(level, "%s%d", i == 0 ? "" : ":", spec->raw_spec[i]);

		if (spec->bit_offset % 8)
			libbpf_print(level, " @ offset %u.%u)",
				     spec->bit_offset / 8, spec->bit_offset % 8);
		else
			libbpf_print(level, " @ offset %u)", spec->bit_offset / 8);
		return;
	}
}

/*
 * CO-RE relocate single instruction.
 *
 * The outline and important points of the algorithm:
 * 1. For given local type, find corresponding candidate target types.
 *    Candidate type is a type with the same "essential" name, ignoring
 *    everything after last triple underscore (___). E.g., `sample`,
 *    `sample___flavor_one`, `sample___flavor_another_one`, are all candidates
 *    for each other. Names with triple underscore are referred to as
 *    "flavors" and are useful, among other things, to allow to
 *    specify/support incompatible variations of the same kernel struct, which
 *    might differ between different kernel versions and/or build
 *    configurations.
 *
 *    N.B. Struct "flavors" could be generated by bpftool's BTF-to-C
 *    converter, when deduplicated BTF of a kernel still contains more than
 *    one different types with the same name. In that case, ___2, ___3, etc
 *    are appended starting from second name conflict. But start flavors are
 *    also useful to be defined "locally", in BPF program, to extract same
 *    data from incompatible changes between different kernel
 *    versions/configurations. For instance, to handle field renames between
 *    kernel versions, one can use two flavors of the struct name with the
 *    same common name and use conditional relocations to extract that field,
 *    depending on target kernel version.
 * 2. For each candidate type, try to match local specification to this
 *    candidate target type. Matching involves finding corresponding
 *    high-level spec accessors, meaning that all named fields should match,
 *    as well as all array accesses should be within the actual bounds. Also,
 *    types should be compatible (see bpf_core_fields_are_compat for details).
 * 3. It is supported and expected that there might be multiple flavors
 *    matching the spec. As long as all the specs resolve to the same set of
 *    offsets across all candidates, there is no error. If there is any
 *    ambiguity, CO-RE relocation will fail. This is necessary to accomodate
 *    imprefection of BTF deduplication, which can cause slight duplication of
 *    the same BTF type, if some directly or indirectly referenced (by
 *    pointer) type gets resolved to different actual types in different
 *    object files. If such situation occurs, deduplicated BTF will end up
 *    with two (or more) structurally identical types, which differ only in
 *    types they refer to through pointer. This should be OK in most cases and
 *    is not an error.
 * 4. Candidate types search is performed by linearly scanning through all
 *    types in target BTF. It is anticipated that this is overall more
 *    efficient memory-wise and not significantly worse (if not better)
 *    CPU-wise compared to prebuilding a map from all local type names to
 *    a list of candidate type names. It's also sped up by caching resolved
 *    list of matching candidates per each local "root" type ID, that has at
 *    least one bpf_core_relo associated with it. This list is shared
 *    between multiple relocations for the same type ID and is updated as some
 *    of the candidates are pruned due to structural incompatibility.
 */
int bpf_core_apply_relo_insn(const char *prog_name, struct bpf_insn *insn,
			     int insn_idx,
			     const struct bpf_core_relo *relo,
			     int relo_idx,
			     const struct btf *local_btf,
			     struct bpf_core_cand_list *cands)
{
	struct bpf_core_spec local_spec, cand_spec, targ_spec = {};
	struct bpf_core_relo_res cand_res, targ_res;
	const struct btf_type *local_type;
	const char *local_name;
	__u32 local_id;
	const char *spec_str;
	int i, j, err;

	local_id = relo->type_id;
	local_type = btf__type_by_id(local_btf, local_id);
	if (!local_type)
		return -EINVAL;

	local_name = btf__name_by_offset(local_btf, local_type->name_off);
	if (!local_name)
		return -EINVAL;

	spec_str = btf__name_by_offset(local_btf, relo->access_str_off);
	if (str_is_empty(spec_str))
		return -EINVAL;

	err = bpf_core_parse_spec(local_btf, local_id, spec_str, relo->kind, &local_spec);
	if (err) {
		pr_warn("prog '%s': relo #%d: parsing [%d] %s %s + %s failed: %d\n",
			prog_name, relo_idx, local_id, btf_kind_str(local_type),
			str_is_empty(local_name) ? "<anon>" : local_name,
			spec_str, err);
		return -EINVAL;
	}

	pr_debug("prog '%s': relo #%d: kind <%s> (%d), spec is ", prog_name,
		 relo_idx, core_relo_kind_str(relo->kind), relo->kind);
	bpf_core_dump_spec(LIBBPF_DEBUG, &local_spec);
	libbpf_print(LIBBPF_DEBUG, "\n");

	/* TYPE_ID_LOCAL relo is special and doesn't need candidate search */
	if (relo->kind == BPF_TYPE_ID_LOCAL) {
		targ_res.validate = true;
		targ_res.poison = false;
		targ_res.orig_val = local_spec.root_type_id;
		targ_res.new_val = local_spec.root_type_id;
		goto patch_insn;
	}

	/* libbpf doesn't support candidate search for anonymous types */
	if (str_is_empty(spec_str)) {
		pr_warn("prog '%s': relo #%d: <%s> (%d) relocation doesn't support anonymous types\n",
			prog_name, relo_idx, core_relo_kind_str(relo->kind), relo->kind);
		return -EOPNOTSUPP;
	}


	for (i = 0, j = 0; i < cands->len; i++) {
		err = bpf_core_spec_match(&local_spec, cands->cands[i].btf,
					  cands->cands[i].id, &cand_spec);
		if (err < 0) {
			pr_warn("prog '%s': relo #%d: error matching candidate #%d ",
				prog_name, relo_idx, i);
			bpf_core_dump_spec(LIBBPF_WARN, &cand_spec);
			libbpf_print(LIBBPF_WARN, ": %d\n", err);
			return err;
		}

		pr_debug("prog '%s': relo #%d: %s candidate #%d ", prog_name,
			 relo_idx, err == 0 ? "non-matching" : "matching", i);
		bpf_core_dump_spec(LIBBPF_DEBUG, &cand_spec);
		libbpf_print(LIBBPF_DEBUG, "\n");

		if (err == 0)
			continue;

		err = bpf_core_calc_relo(prog_name, relo, relo_idx, &local_spec, &cand_spec, &cand_res);
		if (err)
			return err;

		if (j == 0) {
			targ_res = cand_res;
			targ_spec = cand_spec;
		} else if (cand_spec.bit_offset != targ_spec.bit_offset) {
			/* if there are many field relo candidates, they
			 * should all resolve to the same bit offset
			 */
			pr_warn("prog '%s': relo #%d: field offset ambiguity: %u != %u\n",
				prog_name, relo_idx, cand_spec.bit_offset,
				targ_spec.bit_offset);
			return -EINVAL;
		} else if (cand_res.poison != targ_res.poison || cand_res.new_val != targ_res.new_val) {
			/* all candidates should result in the same relocation
			 * decision and value, otherwise it's dangerous to
			 * proceed due to ambiguity
			 */
			pr_warn("prog '%s': relo #%d: relocation decision ambiguity: %s %u != %s %u\n",
				prog_name, relo_idx,
				cand_res.poison ? "failure" : "success", cand_res.new_val,
				targ_res.poison ? "failure" : "success", targ_res.new_val);
			return -EINVAL;
		}

		cands->cands[j++] = cands->cands[i];
	}

	/*
	 * For BPF_FIELD_EXISTS relo or when used BPF program has field
	 * existence checks or kernel version/config checks, it's expected
	 * that we might not find any candidates. In this case, if field
	 * wasn't found in any candidate, the list of candidates shouldn't
	 * change at all, we'll just handle relocating appropriately,
	 * depending on relo's kind.
	 */
	if (j > 0)
		cands->len = j;

	/*
	 * If no candidates were found, it might be both a programmer error,
	 * as well as expected case, depending whether instruction w/
	 * relocation is guarded in some way that makes it unreachable (dead
	 * code) if relocation can't be resolved. This is handled in
	 * bpf_core_patch_insn() uniformly by replacing that instruction with
	 * BPF helper call insn (using invalid helper ID). If that instruction
	 * is indeed unreachable, then it will be ignored and eliminated by
	 * verifier. If it was an error, then verifier will complain and point
	 * to a specific instruction number in its log.
	 */
	if (j == 0) {
		pr_debug("prog '%s': relo #%d: no matching targets found\n",
			 prog_name, relo_idx);

		/* calculate single target relo result explicitly */
		err = bpf_core_calc_relo(prog_name, relo, relo_idx, &local_spec, NULL, &targ_res);
		if (err)
			return err;
	}

patch_insn:
	/* bpf_core_patch_insn() should know how to handle missing targ_spec */
	err = bpf_core_patch_insn(prog_name, insn, insn_idx, relo, relo_idx, &targ_res);
	if (err) {
		pr_warn("prog '%s': relo #%d: failed to patch insn #%u: %d\n",
			prog_name, relo_idx, relo->insn_off / 8, err);
		return -EINVAL;
	}

	return 0;
}