aboutsummaryrefslogtreecommitdiffstats
path: root/tools/perf/util/bpf_counter.c
blob: 1d0b9742f72719660fed0684ca97c346306c0263 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
// SPDX-License-Identifier: GPL-2.0

/* Copyright (c) 2019 Facebook */

#include <assert.h>
#include <limits.h>
#include <unistd.h>
#include <sys/file.h>
#include <sys/time.h>
#include <linux/err.h>
#include <linux/zalloc.h>
#include <api/fs/fs.h>
#include <perf/bpf_perf.h>

#include "bpf_counter.h"
#include "counts.h"
#include "debug.h"
#include "evsel.h"
#include "evlist.h"
#include "target.h"
#include "cgroup.h"
#include "cpumap.h"
#include "thread_map.h"

#include "bpf_skel/bpf_prog_profiler.skel.h"
#include "bpf_skel/bperf_u.h"
#include "bpf_skel/bperf_leader.skel.h"
#include "bpf_skel/bperf_follower.skel.h"

#define ATTR_MAP_SIZE 16

static inline void *u64_to_ptr(__u64 ptr)
{
	return (void *)(unsigned long)ptr;
}

static struct bpf_counter *bpf_counter_alloc(void)
{
	struct bpf_counter *counter;

	counter = zalloc(sizeof(*counter));
	if (counter)
		INIT_LIST_HEAD(&counter->list);
	return counter;
}

static int bpf_program_profiler__destroy(struct evsel *evsel)
{
	struct bpf_counter *counter, *tmp;

	list_for_each_entry_safe(counter, tmp,
				 &evsel->bpf_counter_list, list) {
		list_del_init(&counter->list);
		bpf_prog_profiler_bpf__destroy(counter->skel);
		free(counter);
	}
	assert(list_empty(&evsel->bpf_counter_list));

	return 0;
}

static char *bpf_target_prog_name(int tgt_fd)
{
	struct bpf_prog_info_linear *info_linear;
	struct bpf_func_info *func_info;
	const struct btf_type *t;
	char *name = NULL;
	struct btf *btf;

	info_linear = bpf_program__get_prog_info_linear(
		tgt_fd, 1UL << BPF_PROG_INFO_FUNC_INFO);
	if (IS_ERR_OR_NULL(info_linear)) {
		pr_debug("failed to get info_linear for prog FD %d\n", tgt_fd);
		return NULL;
	}

	if (info_linear->info.btf_id == 0 ||
	    btf__get_from_id(info_linear->info.btf_id, &btf)) {
		pr_debug("prog FD %d doesn't have valid btf\n", tgt_fd);
		goto out;
	}

	func_info = u64_to_ptr(info_linear->info.func_info);
	t = btf__type_by_id(btf, func_info[0].type_id);
	if (!t) {
		pr_debug("btf %d doesn't have type %d\n",
			 info_linear->info.btf_id, func_info[0].type_id);
		goto out;
	}
	name = strdup(btf__name_by_offset(btf, t->name_off));
out:
	free(info_linear);
	return name;
}

static int bpf_program_profiler_load_one(struct evsel *evsel, u32 prog_id)
{
	struct bpf_prog_profiler_bpf *skel;
	struct bpf_counter *counter;
	struct bpf_program *prog;
	char *prog_name;
	int prog_fd;
	int err;

	prog_fd = bpf_prog_get_fd_by_id(prog_id);
	if (prog_fd < 0) {
		pr_err("Failed to open fd for bpf prog %u\n", prog_id);
		return -1;
	}
	counter = bpf_counter_alloc();
	if (!counter) {
		close(prog_fd);
		return -1;
	}

	skel = bpf_prog_profiler_bpf__open();
	if (!skel) {
		pr_err("Failed to open bpf skeleton\n");
		goto err_out;
	}

	skel->rodata->num_cpu = evsel__nr_cpus(evsel);

	bpf_map__resize(skel->maps.events, evsel__nr_cpus(evsel));
	bpf_map__resize(skel->maps.fentry_readings, 1);
	bpf_map__resize(skel->maps.accum_readings, 1);

	prog_name = bpf_target_prog_name(prog_fd);
	if (!prog_name) {
		pr_err("Failed to get program name for bpf prog %u. Does it have BTF?\n", prog_id);
		goto err_out;
	}

	bpf_object__for_each_program(prog, skel->obj) {
		err = bpf_program__set_attach_target(prog, prog_fd, prog_name);
		if (err) {
			pr_err("bpf_program__set_attach_target failed.\n"
			       "Does bpf prog %u have BTF?\n", prog_id);
			goto err_out;
		}
	}
	set_max_rlimit();
	err = bpf_prog_profiler_bpf__load(skel);
	if (err) {
		pr_err("bpf_prog_profiler_bpf__load failed\n");
		goto err_out;
	}

	assert(skel != NULL);
	counter->skel = skel;
	list_add(&counter->list, &evsel->bpf_counter_list);
	close(prog_fd);
	return 0;
err_out:
	bpf_prog_profiler_bpf__destroy(skel);
	free(counter);
	close(prog_fd);
	return -1;
}

static int bpf_program_profiler__load(struct evsel *evsel, struct target *target)
{
	char *bpf_str, *bpf_str_, *tok, *saveptr = NULL, *p;
	u32 prog_id;
	int ret;

	bpf_str_ = bpf_str = strdup(target->bpf_str);
	if (!bpf_str)
		return -1;

	while ((tok = strtok_r(bpf_str, ",", &saveptr)) != NULL) {
		prog_id = strtoul(tok, &p, 10);
		if (prog_id == 0 || prog_id == UINT_MAX ||
		    (*p != '\0' && *p != ',')) {
			pr_err("Failed to parse bpf prog ids %s\n",
			       target->bpf_str);
			return -1;
		}

		ret = bpf_program_profiler_load_one(evsel, prog_id);
		if (ret) {
			bpf_program_profiler__destroy(evsel);
			free(bpf_str_);
			return -1;
		}
		bpf_str = NULL;
	}
	free(bpf_str_);
	return 0;
}

static int bpf_program_profiler__enable(struct evsel *evsel)
{
	struct bpf_counter *counter;
	int ret;

	list_for_each_entry(counter, &evsel->bpf_counter_list, list) {
		assert(counter->skel != NULL);
		ret = bpf_prog_profiler_bpf__attach(counter->skel);
		if (ret) {
			bpf_program_profiler__destroy(evsel);
			return ret;
		}
	}
	return 0;
}

static int bpf_program_profiler__disable(struct evsel *evsel)
{
	struct bpf_counter *counter;

	list_for_each_entry(counter, &evsel->bpf_counter_list, list) {
		assert(counter->skel != NULL);
		bpf_prog_profiler_bpf__detach(counter->skel);
	}
	return 0;
}

static int bpf_program_profiler__read(struct evsel *evsel)
{
	// perf_cpu_map uses /sys/devices/system/cpu/online
	int num_cpu = evsel__nr_cpus(evsel);
	// BPF_MAP_TYPE_PERCPU_ARRAY uses /sys/devices/system/cpu/possible
	// Sometimes possible > online, like on a Ryzen 3900X that has 24
	// threads but its possible showed 0-31 -acme
	int num_cpu_bpf = libbpf_num_possible_cpus();
	struct bpf_perf_event_value values[num_cpu_bpf];
	struct bpf_counter *counter;
	int reading_map_fd;
	__u32 key = 0;
	int err, cpu;

	if (list_empty(&evsel->bpf_counter_list))
		return -EAGAIN;

	for (cpu = 0; cpu < num_cpu; cpu++) {
		perf_counts(evsel->counts, cpu, 0)->val = 0;
		perf_counts(evsel->counts, cpu, 0)->ena = 0;
		perf_counts(evsel->counts, cpu, 0)->run = 0;
	}
	list_for_each_entry(counter, &evsel->bpf_counter_list, list) {
		struct bpf_prog_profiler_bpf *skel = counter->skel;

		assert(skel != NULL);
		reading_map_fd = bpf_map__fd(skel->maps.accum_readings);

		err = bpf_map_lookup_elem(reading_map_fd, &key, values);
		if (err) {
			pr_err("failed to read value\n");
			return err;
		}

		for (cpu = 0; cpu < num_cpu; cpu++) {
			perf_counts(evsel->counts, cpu, 0)->val += values[cpu].counter;
			perf_counts(evsel->counts, cpu, 0)->ena += values[cpu].enabled;
			perf_counts(evsel->counts, cpu, 0)->run += values[cpu].running;
		}
	}
	return 0;
}

static int bpf_program_profiler__install_pe(struct evsel *evsel, int cpu,
					    int fd)
{
	struct bpf_prog_profiler_bpf *skel;
	struct bpf_counter *counter;
	int ret;

	list_for_each_entry(counter, &evsel->bpf_counter_list, list) {
		skel = counter->skel;
		assert(skel != NULL);

		ret = bpf_map_update_elem(bpf_map__fd(skel->maps.events),
					  &cpu, &fd, BPF_ANY);
		if (ret)
			return ret;
	}
	return 0;
}

struct bpf_counter_ops bpf_program_profiler_ops = {
	.load       = bpf_program_profiler__load,
	.enable	    = bpf_program_profiler__enable,
	.disable    = bpf_program_profiler__disable,
	.read       = bpf_program_profiler__read,
	.destroy    = bpf_program_profiler__destroy,
	.install_pe = bpf_program_profiler__install_pe,
};

static bool bperf_attr_map_compatible(int attr_map_fd)
{
	struct bpf_map_info map_info = {0};
	__u32 map_info_len = sizeof(map_info);
	int err;

	err = bpf_obj_get_info_by_fd(attr_map_fd, &map_info, &map_info_len);

	if (err)
		return false;
	return (map_info.key_size == sizeof(struct perf_event_attr)) &&
		(map_info.value_size == sizeof(struct perf_event_attr_map_entry));
}

static int bperf_lock_attr_map(struct target *target)
{
	char path[PATH_MAX];
	int map_fd, err;

	if (target->attr_map) {
		scnprintf(path, PATH_MAX, "%s", target->attr_map);
	} else {
		scnprintf(path, PATH_MAX, "%s/fs/bpf/%s", sysfs__mountpoint(),
			  BPF_PERF_DEFAULT_ATTR_MAP_PATH);
	}

	if (access(path, F_OK)) {
		map_fd = bpf_create_map(BPF_MAP_TYPE_HASH,
					sizeof(struct perf_event_attr),
					sizeof(struct perf_event_attr_map_entry),
					ATTR_MAP_SIZE, 0);
		if (map_fd < 0)
			return -1;

		err = bpf_obj_pin(map_fd, path);
		if (err) {
			/* someone pinned the map in parallel? */
			close(map_fd);
			map_fd = bpf_obj_get(path);
			if (map_fd < 0)
				return -1;
		}
	} else {
		map_fd = bpf_obj_get(path);
		if (map_fd < 0)
			return -1;
	}

	if (!bperf_attr_map_compatible(map_fd)) {
		close(map_fd);
		return -1;

	}
	err = flock(map_fd, LOCK_EX);
	if (err) {
		close(map_fd);
		return -1;
	}
	return map_fd;
}

static int bperf_check_target(struct evsel *evsel,
			      struct target *target,
			      enum bperf_filter_type *filter_type,
			      __u32 *filter_entry_cnt)
{
	if (evsel->leader->core.nr_members > 1) {
		pr_err("bpf managed perf events do not yet support groups.\n");
		return -1;
	}

	/* determine filter type based on target */
	if (target->system_wide) {
		*filter_type = BPERF_FILTER_GLOBAL;
		*filter_entry_cnt = 1;
	} else if (target->cpu_list) {
		*filter_type = BPERF_FILTER_CPU;
		*filter_entry_cnt = perf_cpu_map__nr(evsel__cpus(evsel));
	} else if (target->tid) {
		*filter_type = BPERF_FILTER_PID;
		*filter_entry_cnt = perf_thread_map__nr(evsel->core.threads);
	} else if (target->pid || evsel->evlist->workload.pid != -1) {
		*filter_type = BPERF_FILTER_TGID;
		*filter_entry_cnt = perf_thread_map__nr(evsel->core.threads);
	} else {
		pr_err("bpf managed perf events do not yet support these targets.\n");
		return -1;
	}

	return 0;
}

static	struct perf_cpu_map *all_cpu_map;

static int bperf_reload_leader_program(struct evsel *evsel, int attr_map_fd,
				       struct perf_event_attr_map_entry *entry)
{
	struct bperf_leader_bpf *skel = bperf_leader_bpf__open();
	int link_fd, diff_map_fd, err;
	struct bpf_link *link = NULL;

	if (!skel) {
		pr_err("Failed to open leader skeleton\n");
		return -1;
	}

	bpf_map__resize(skel->maps.events, libbpf_num_possible_cpus());
	err = bperf_leader_bpf__load(skel);
	if (err) {
		pr_err("Failed to load leader skeleton\n");
		goto out;
	}

	link = bpf_program__attach(skel->progs.on_switch);
	if (IS_ERR(link)) {
		pr_err("Failed to attach leader program\n");
		err = PTR_ERR(link);
		goto out;
	}

	link_fd = bpf_link__fd(link);
	diff_map_fd = bpf_map__fd(skel->maps.diff_readings);
	entry->link_id = bpf_link_get_id(link_fd);
	entry->diff_map_id = bpf_map_get_id(diff_map_fd);
	err = bpf_map_update_elem(attr_map_fd, &evsel->core.attr, entry, BPF_ANY);
	assert(err == 0);

	evsel->bperf_leader_link_fd = bpf_link_get_fd_by_id(entry->link_id);
	assert(evsel->bperf_leader_link_fd >= 0);

	/*
	 * save leader_skel for install_pe, which is called within
	 * following evsel__open_per_cpu call
	 */
	evsel->leader_skel = skel;
	evsel__open_per_cpu(evsel, all_cpu_map, -1);

out:
	bperf_leader_bpf__destroy(skel);
	bpf_link__destroy(link);
	return err;
}

static int bperf__load(struct evsel *evsel, struct target *target)
{
	struct perf_event_attr_map_entry entry = {0xffffffff, 0xffffffff};
	int attr_map_fd, diff_map_fd = -1, err;
	enum bperf_filter_type filter_type;
	__u32 filter_entry_cnt, i;

	if (bperf_check_target(evsel, target, &filter_type, &filter_entry_cnt))
		return -1;

	if (!all_cpu_map) {
		all_cpu_map = perf_cpu_map__new(NULL);
		if (!all_cpu_map)
			return -1;
	}

	evsel->bperf_leader_prog_fd = -1;
	evsel->bperf_leader_link_fd = -1;

	/*
	 * Step 1: hold a fd on the leader program and the bpf_link, if
	 * the program is not already gone, reload the program.
	 * Use flock() to ensure exclusive access to the perf_event_attr
	 * map.
	 */
	attr_map_fd = bperf_lock_attr_map(target);
	if (attr_map_fd < 0) {
		pr_err("Failed to lock perf_event_attr map\n");
		return -1;
	}

	err = bpf_map_lookup_elem(attr_map_fd, &evsel->core.attr, &entry);
	if (err) {
		err = bpf_map_update_elem(attr_map_fd, &evsel->core.attr, &entry, BPF_ANY);
		if (err)
			goto out;
	}

	evsel->bperf_leader_link_fd = bpf_link_get_fd_by_id(entry.link_id);
	if (evsel->bperf_leader_link_fd < 0 &&
	    bperf_reload_leader_program(evsel, attr_map_fd, &entry)) {
		err = -1;
		goto out;
	}
	/*
	 * The bpf_link holds reference to the leader program, and the
	 * leader program holds reference to the maps. Therefore, if
	 * link_id is valid, diff_map_id should also be valid.
	 */
	evsel->bperf_leader_prog_fd = bpf_prog_get_fd_by_id(
		bpf_link_get_prog_id(evsel->bperf_leader_link_fd));
	assert(evsel->bperf_leader_prog_fd >= 0);

	diff_map_fd = bpf_map_get_fd_by_id(entry.diff_map_id);
	assert(diff_map_fd >= 0);

	/*
	 * bperf uses BPF_PROG_TEST_RUN to get accurate reading. Check
	 * whether the kernel support it
	 */
	err = bperf_trigger_reading(evsel->bperf_leader_prog_fd, 0);
	if (err) {
		pr_err("The kernel does not support test_run for raw_tp BPF programs.\n"
		       "Therefore, --use-bpf might show inaccurate readings\n");
		goto out;
	}

	/* Step 2: load the follower skeleton */
	evsel->follower_skel = bperf_follower_bpf__open();
	if (!evsel->follower_skel) {
		err = -1;
		pr_err("Failed to open follower skeleton\n");
		goto out;
	}

	/* attach fexit program to the leader program */
	bpf_program__set_attach_target(evsel->follower_skel->progs.fexit_XXX,
				       evsel->bperf_leader_prog_fd, "on_switch");

	/* connect to leader diff_reading map */
	bpf_map__reuse_fd(evsel->follower_skel->maps.diff_readings, diff_map_fd);

	/* set up reading map */
	bpf_map__set_max_entries(evsel->follower_skel->maps.accum_readings,
				 filter_entry_cnt);
	/* set up follower filter based on target */
	bpf_map__set_max_entries(evsel->follower_skel->maps.filter,
				 filter_entry_cnt);
	err = bperf_follower_bpf__load(evsel->follower_skel);
	if (err) {
		pr_err("Failed to load follower skeleton\n");
		bperf_follower_bpf__destroy(evsel->follower_skel);
		evsel->follower_skel = NULL;
		goto out;
	}

	for (i = 0; i < filter_entry_cnt; i++) {
		int filter_map_fd;
		__u32 key;

		if (filter_type == BPERF_FILTER_PID ||
		    filter_type == BPERF_FILTER_TGID)
			key = evsel->core.threads->map[i].pid;
		else if (filter_type == BPERF_FILTER_CPU)
			key = evsel->core.cpus->map[i];
		else
			break;

		filter_map_fd = bpf_map__fd(evsel->follower_skel->maps.filter);
		bpf_map_update_elem(filter_map_fd, &key, &i, BPF_ANY);
	}

	evsel->follower_skel->bss->type = filter_type;

	err = bperf_follower_bpf__attach(evsel->follower_skel);

out:
	if (err && evsel->bperf_leader_link_fd >= 0)
		close(evsel->bperf_leader_link_fd);
	if (err && evsel->bperf_leader_prog_fd >= 0)
		close(evsel->bperf_leader_prog_fd);
	if (diff_map_fd >= 0)
		close(diff_map_fd);

	flock(attr_map_fd, LOCK_UN);
	close(attr_map_fd);

	return err;
}

static int bperf__install_pe(struct evsel *evsel, int cpu, int fd)
{
	struct bperf_leader_bpf *skel = evsel->leader_skel;

	return bpf_map_update_elem(bpf_map__fd(skel->maps.events),
				   &cpu, &fd, BPF_ANY);
}

/*
 * trigger the leader prog on each cpu, so the accum_reading map could get
 * the latest readings.
 */
static int bperf_sync_counters(struct evsel *evsel)
{
	int num_cpu, i, cpu;

	num_cpu = all_cpu_map->nr;
	for (i = 0; i < num_cpu; i++) {
		cpu = all_cpu_map->map[i];
		bperf_trigger_reading(evsel->bperf_leader_prog_fd, cpu);
	}
	return 0;
}

static int bperf__enable(struct evsel *evsel)
{
	evsel->follower_skel->bss->enabled = 1;
	return 0;
}

static int bperf__disable(struct evsel *evsel)
{
	evsel->follower_skel->bss->enabled = 0;
	return 0;
}

static int bperf__read(struct evsel *evsel)
{
	struct bperf_follower_bpf *skel = evsel->follower_skel;
	__u32 num_cpu_bpf = cpu__max_cpu();
	struct bpf_perf_event_value values[num_cpu_bpf];
	int reading_map_fd, err = 0;
	__u32 i, j, num_cpu;

	bperf_sync_counters(evsel);
	reading_map_fd = bpf_map__fd(skel->maps.accum_readings);

	for (i = 0; i < bpf_map__max_entries(skel->maps.accum_readings); i++) {
		__u32 cpu;

		err = bpf_map_lookup_elem(reading_map_fd, &i, values);
		if (err)
			goto out;
		switch (evsel->follower_skel->bss->type) {
		case BPERF_FILTER_GLOBAL:
			assert(i == 0);

			num_cpu = all_cpu_map->nr;
			for (j = 0; j < num_cpu; j++) {
				cpu = all_cpu_map->map[j];
				perf_counts(evsel->counts, cpu, 0)->val = values[cpu].counter;
				perf_counts(evsel->counts, cpu, 0)->ena = values[cpu].enabled;
				perf_counts(evsel->counts, cpu, 0)->run = values[cpu].running;
			}
			break;
		case BPERF_FILTER_CPU:
			cpu = evsel->core.cpus->map[i];
			perf_counts(evsel->counts, i, 0)->val = values[cpu].counter;
			perf_counts(evsel->counts, i, 0)->ena = values[cpu].enabled;
			perf_counts(evsel->counts, i, 0)->run = values[cpu].running;
			break;
		case BPERF_FILTER_PID:
		case BPERF_FILTER_TGID:
			perf_counts(evsel->counts, 0, i)->val = 0;
			perf_counts(evsel->counts, 0, i)->ena = 0;
			perf_counts(evsel->counts, 0, i)->run = 0;

			for (cpu = 0; cpu < num_cpu_bpf; cpu++) {
				perf_counts(evsel->counts, 0, i)->val += values[cpu].counter;
				perf_counts(evsel->counts, 0, i)->ena += values[cpu].enabled;
				perf_counts(evsel->counts, 0, i)->run += values[cpu].running;
			}
			break;
		default:
			break;
		}
	}
out:
	return err;
}

static int bperf__destroy(struct evsel *evsel)
{
	bperf_follower_bpf__destroy(evsel->follower_skel);
	close(evsel->bperf_leader_prog_fd);
	close(evsel->bperf_leader_link_fd);
	return 0;
}

/*
 * bperf: share hardware PMCs with BPF
 *
 * perf uses performance monitoring counters (PMC) to monitor system
 * performance. The PMCs are limited hardware resources. For example,
 * Intel CPUs have 3x fixed PMCs and 4x programmable PMCs per cpu.
 *
 * Modern data center systems use these PMCs in many different ways:
 * system level monitoring, (maybe nested) container level monitoring, per
 * process monitoring, profiling (in sample mode), etc. In some cases,
 * there are more active perf_events than available hardware PMCs. To allow
 * all perf_events to have a chance to run, it is necessary to do expensive
 * time multiplexing of events.
 *
 * On the other hand, many monitoring tools count the common metrics
 * (cycles, instructions). It is a waste to have multiple tools create
 * multiple perf_events of "cycles" and occupy multiple PMCs.
 *
 * bperf tries to reduce such wastes by allowing multiple perf_events of
 * "cycles" or "instructions" (at different scopes) to share PMUs. Instead
 * of having each perf-stat session to read its own perf_events, bperf uses
 * BPF programs to read the perf_events and aggregate readings to BPF maps.
 * Then, the perf-stat session(s) reads the values from these BPF maps.
 *
 *                                ||
 *       shared progs and maps <- || -> per session progs and maps
 *                                ||
 *   ---------------              ||
 *   | perf_events |              ||
 *   ---------------       fexit  ||      -----------------
 *          |             --------||----> | follower prog |
 *       --------------- /        || ---  -----------------
 * cs -> | leader prog |/         ||/        |         |
 *   --> ---------------         /||  --------------  ------------------
 *  /       |         |         / ||  | filter map |  | accum_readings |
 * /  ------------  ------------  ||  --------------  ------------------
 * |  | prev map |  | diff map |  ||                        |
 * |  ------------  ------------  ||                        |
 *  \                             ||                        |
 * = \ ==================================================== | ============
 *    \                                                    /   user space
 *     \                                                  /
 *      \                                                /
 *    BPF_PROG_TEST_RUN                    BPF_MAP_LOOKUP_ELEM
 *        \                                            /
 *         \                                          /
 *          \------  perf-stat ----------------------/
 *
 * The figure above shows the architecture of bperf. Note that the figure
 * is divided into 3 regions: shared progs and maps (top left), per session
 * progs and maps (top right), and user space (bottom).
 *
 * The leader prog is triggered on each context switch (cs). The leader
 * prog reads perf_events and stores the difference (current_reading -
 * previous_reading) to the diff map. For the same metric, e.g. "cycles",
 * multiple perf-stat sessions share the same leader prog.
 *
 * Each perf-stat session creates a follower prog as fexit program to the
 * leader prog. It is possible to attach up to BPF_MAX_TRAMP_PROGS (38)
 * follower progs to the same leader prog. The follower prog checks current
 * task and processor ID to decide whether to add the value from the diff
 * map to its accumulated reading map (accum_readings).
 *
 * Finally, perf-stat user space reads the value from accum_reading map.
 *
 * Besides context switch, it is also necessary to trigger the leader prog
 * before perf-stat reads the value. Otherwise, the accum_reading map may
 * not have the latest reading from the perf_events. This is achieved by
 * triggering the event via sys_bpf(BPF_PROG_TEST_RUN) to each CPU.
 *
 * Comment before the definition of struct perf_event_attr_map_entry
 * describes how different sessions of perf-stat share information about
 * the leader prog.
 */

struct bpf_counter_ops bperf_ops = {
	.load       = bperf__load,
	.enable     = bperf__enable,
	.disable    = bperf__disable,
	.read       = bperf__read,
	.install_pe = bperf__install_pe,
	.destroy    = bperf__destroy,
};

extern struct bpf_counter_ops bperf_cgrp_ops;

static inline bool bpf_counter_skip(struct evsel *evsel)
{
	return list_empty(&evsel->bpf_counter_list) &&
		evsel->follower_skel == NULL;
}

int bpf_counter__install_pe(struct evsel *evsel, int cpu, int fd)
{
	if (bpf_counter_skip(evsel))
		return 0;
	return evsel->bpf_counter_ops->install_pe(evsel, cpu, fd);
}

int bpf_counter__load(struct evsel *evsel, struct target *target)
{
	if (target->bpf_str)
		evsel->bpf_counter_ops = &bpf_program_profiler_ops;
	else if (cgrp_event_expanded && target->use_bpf)
		evsel->bpf_counter_ops = &bperf_cgrp_ops;
	else if (target->use_bpf || evsel->bpf_counter ||
		 evsel__match_bpf_counter_events(evsel->name))
		evsel->bpf_counter_ops = &bperf_ops;

	if (evsel->bpf_counter_ops)
		return evsel->bpf_counter_ops->load(evsel, target);
	return 0;
}

int bpf_counter__enable(struct evsel *evsel)
{
	if (bpf_counter_skip(evsel))
		return 0;
	return evsel->bpf_counter_ops->enable(evsel);
}

int bpf_counter__disable(struct evsel *evsel)
{
	if (bpf_counter_skip(evsel))
		return 0;
	return evsel->bpf_counter_ops->disable(evsel);
}

int bpf_counter__read(struct evsel *evsel)
{
	if (bpf_counter_skip(evsel))
		return -EAGAIN;
	return evsel->bpf_counter_ops->read(evsel);
}

void bpf_counter__destroy(struct evsel *evsel)
{
	if (bpf_counter_skip(evsel))
		return;
	evsel->bpf_counter_ops->destroy(evsel);
	evsel->bpf_counter_ops = NULL;
}