aboutsummaryrefslogtreecommitdiffstats
path: root/tools/testing/radix-tree/multiorder.c
blob: 9eae0fb5a67d1ef746e859958eb247df18a01f21 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
// SPDX-License-Identifier: GPL-2.0-only
/*
 * multiorder.c: Multi-order radix tree entry testing
 * Copyright (c) 2016 Intel Corporation
 * Author: Ross Zwisler <ross.zwisler@linux.intel.com>
 * Author: Matthew Wilcox <matthew.r.wilcox@intel.com>
 */
#include <linux/radix-tree.h>
#include <linux/slab.h>
#include <linux/errno.h>
#include <pthread.h>

#include "test.h"

static int item_insert_order(struct xarray *xa, unsigned long index,
			unsigned order)
{
	XA_STATE_ORDER(xas, xa, index, order);
	struct item *item = item_create(index, order);

	do {
		xas_lock(&xas);
		xas_store(&xas, item);
		xas_unlock(&xas);
	} while (xas_nomem(&xas, GFP_KERNEL));

	if (!xas_error(&xas))
		return 0;

	free(item);
	return xas_error(&xas);
}

void multiorder_iteration(struct xarray *xa)
{
	XA_STATE(xas, xa, 0);
	struct item *item;
	int i, j, err;

#define NUM_ENTRIES 11
	int index[NUM_ENTRIES] = {0, 2, 4, 8, 16, 32, 34, 36, 64, 72, 128};
	int order[NUM_ENTRIES] = {1, 1, 2, 3,  4,  1,  0,  1,  3,  0, 7};

	printv(1, "Multiorder iteration test\n");

	for (i = 0; i < NUM_ENTRIES; i++) {
		err = item_insert_order(xa, index[i], order[i]);
		assert(!err);
	}

	for (j = 0; j < 256; j++) {
		for (i = 0; i < NUM_ENTRIES; i++)
			if (j <= (index[i] | ((1 << order[i]) - 1)))
				break;

		xas_set(&xas, j);
		xas_for_each(&xas, item, ULONG_MAX) {
			int height = order[i] / XA_CHUNK_SHIFT;
			int shift = height * XA_CHUNK_SHIFT;
			unsigned long mask = (1UL << order[i]) - 1;

			assert((xas.xa_index | mask) == (index[i] | mask));
			assert(xas.xa_node->shift == shift);
			assert(!radix_tree_is_internal_node(item));
			assert((item->index | mask) == (index[i] | mask));
			assert(item->order == order[i]);
			i++;
		}
	}

	item_kill_tree(xa);
}

void multiorder_tagged_iteration(struct xarray *xa)
{
	XA_STATE(xas, xa, 0);
	struct item *item;
	int i, j;

#define MT_NUM_ENTRIES 9
	int index[MT_NUM_ENTRIES] = {0, 2, 4, 16, 32, 40, 64, 72, 128};
	int order[MT_NUM_ENTRIES] = {1, 0, 2, 4,  3,  1,  3,  0,   7};

#define TAG_ENTRIES 7
	int tag_index[TAG_ENTRIES] = {0, 4, 16, 40, 64, 72, 128};

	printv(1, "Multiorder tagged iteration test\n");

	for (i = 0; i < MT_NUM_ENTRIES; i++)
		assert(!item_insert_order(xa, index[i], order[i]));

	assert(!xa_marked(xa, XA_MARK_1));

	for (i = 0; i < TAG_ENTRIES; i++)
		xa_set_mark(xa, tag_index[i], XA_MARK_1);

	for (j = 0; j < 256; j++) {
		int k;

		for (i = 0; i < TAG_ENTRIES; i++) {
			for (k = i; index[k] < tag_index[i]; k++)
				;
			if (j <= (index[k] | ((1 << order[k]) - 1)))
				break;
		}

		xas_set(&xas, j);
		xas_for_each_marked(&xas, item, ULONG_MAX, XA_MARK_1) {
			unsigned long mask;
			for (k = i; index[k] < tag_index[i]; k++)
				;
			mask = (1UL << order[k]) - 1;

			assert((xas.xa_index | mask) == (tag_index[i] | mask));
			assert(!xa_is_internal(item));
			assert((item->index | mask) == (tag_index[i] | mask));
			assert(item->order == order[k]);
			i++;
		}
	}

	assert(tag_tagged_items(xa, 0, ULONG_MAX, TAG_ENTRIES, XA_MARK_1,
				XA_MARK_2) == TAG_ENTRIES);

	for (j = 0; j < 256; j++) {
		int mask, k;

		for (i = 0; i < TAG_ENTRIES; i++) {
			for (k = i; index[k] < tag_index[i]; k++)
				;
			if (j <= (index[k] | ((1 << order[k]) - 1)))
				break;
		}

		xas_set(&xas, j);
		xas_for_each_marked(&xas, item, ULONG_MAX, XA_MARK_2) {
			for (k = i; index[k] < tag_index[i]; k++)
				;
			mask = (1 << order[k]) - 1;

			assert((xas.xa_index | mask) == (tag_index[i] | mask));
			assert(!xa_is_internal(item));
			assert((item->index | mask) == (tag_index[i] | mask));
			assert(item->order == order[k]);
			i++;
		}
	}

	assert(tag_tagged_items(xa, 1, ULONG_MAX, MT_NUM_ENTRIES * 2, XA_MARK_1,
				XA_MARK_0) == TAG_ENTRIES);
	i = 0;
	xas_set(&xas, 0);
	xas_for_each_marked(&xas, item, ULONG_MAX, XA_MARK_0) {
		assert(xas.xa_index == tag_index[i]);
		i++;
	}
	assert(i == TAG_ENTRIES);

	item_kill_tree(xa);
}

bool stop_iteration = false;

static void *creator_func(void *ptr)
{
	/* 'order' is set up to ensure we have sibling entries */
	unsigned int order = RADIX_TREE_MAP_SHIFT - 1;
	struct radix_tree_root *tree = ptr;
	int i;

	for (i = 0; i < 10000; i++) {
		item_insert_order(tree, 0, order);
		item_delete_rcu(tree, 0);
	}

	stop_iteration = true;
	return NULL;
}

static void *iterator_func(void *ptr)
{
	XA_STATE(xas, ptr, 0);
	struct item *item;

	while (!stop_iteration) {
		rcu_read_lock();
		xas_for_each(&xas, item, ULONG_MAX) {
			if (xas_retry(&xas, item))
				continue;

			item_sanity(item, xas.xa_index);
		}
		rcu_read_unlock();
	}
	return NULL;
}

static void multiorder_iteration_race(struct xarray *xa)
{
	const int num_threads = sysconf(_SC_NPROCESSORS_ONLN);
	pthread_t worker_thread[num_threads];
	int i;

	pthread_create(&worker_thread[0], NULL, &creator_func, xa);
	for (i = 1; i < num_threads; i++)
		pthread_create(&worker_thread[i], NULL, &iterator_func, xa);

	for (i = 0; i < num_threads; i++)
		pthread_join(worker_thread[i], NULL);

	item_kill_tree(xa);
}

static DEFINE_XARRAY(array);

void multiorder_checks(void)
{
	multiorder_iteration(&array);
	multiorder_tagged_iteration(&array);
	multiorder_iteration_race(&array);

	radix_tree_cpu_dead(0);
}

int __weak main(void)
{
	radix_tree_init();
	multiorder_checks();
	return 0;
}