aboutsummaryrefslogtreecommitdiffstats
path: root/scripts/generate_rust_analyzer.py (unfollow)
AgeCommit message (Collapse)AuthorFilesLines
2022-11-29xfs: use iomap_valid method to detect stale cached iomapsDave Chinner5-27/+87
Now that iomap supports a mechanism to validate cached iomaps for buffered write operations, hook it up to the XFS buffered write ops so that we can avoid data corruptions that result from stale cached iomaps. See: https://lore.kernel.org/linux-xfs/20220817093627.GZ3600936@dread.disaster.area/ or the ->iomap_valid() introduction commit for exact details of the corruption vector. The validity cookie we store in the iomap is based on the type of iomap we return. It is expected that the iomap->flags we set in xfs_bmbt_to_iomap() is not perturbed by the iomap core and are returned to us in the iomap passed via the .iomap_valid() callback. This ensures that the validity cookie is always checking the correct inode fork sequence numbers to detect potential changes that affect the extent cached by the iomap. Signed-off-by: Dave Chinner <dchinner@redhat.com> Reviewed-by: Darrick J. Wong <djwong@kernel.org>
2022-11-29iomap: write iomap validity checksDave Chinner3-10/+81
A recent multithreaded write data corruption has been uncovered in the iomap write code. The core of the problem is partial folio writes can be flushed to disk while a new racing write can map it and fill the rest of the page: writeback new write allocate blocks blocks are unwritten submit IO ..... map blocks iomap indicates UNWRITTEN range loop { lock folio copyin data ..... IO completes runs unwritten extent conv blocks are marked written <iomap now stale> get next folio } Now add memory pressure such that memory reclaim evicts the partially written folio that has already been written to disk. When the new write finally gets to the last partial page of the new write, it does not find it in cache, so it instantiates a new page, sees the iomap is unwritten, and zeros the part of the page that it does not have data from. This overwrites the data on disk that was originally written. The full description of the corruption mechanism can be found here: https://lore.kernel.org/linux-xfs/20220817093627.GZ3600936@dread.disaster.area/ To solve this problem, we need to check whether the iomap is still valid after we lock each folio during the write. We have to do it after we lock the page so that we don't end up with state changes occurring while we wait for the folio to be locked. Hence we need a mechanism to be able to check that the cached iomap is still valid (similar to what we already do in buffered writeback), and we need a way for ->begin_write to back out and tell the high level iomap iterator that we need to remap the remaining write range. The iomap needs to grow some storage for the validity cookie that the filesystem provides to travel with the iomap. XFS, in particular, also needs to know some more information about what the iomap maps (attribute extents rather than file data extents) to for the validity cookie to cover all the types of iomaps we might need to validate. Signed-off-by: Dave Chinner <dchinner@redhat.com> Reviewed-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Darrick J. Wong <djwong@kernel.org>
2022-11-29xfs: xfs_bmap_punch_delalloc_range() should take a byte rangeDave Chinner4-21/+15
All the callers of xfs_bmap_punch_delalloc_range() jump through hoops to convert a byte range to filesystem blocks before calling xfs_bmap_punch_delalloc_range(). Instead, pass the byte range to xfs_bmap_punch_delalloc_range() and have it do the conversion to filesystem blocks internally. Signed-off-by: Dave Chinner <dchinner@redhat.com> Reviewed-by: Darrick J. Wong <djwong@kernel.org>
2022-11-29iomap: buffered write failure should not truncate the page cacheDave Chinner1-15/+180
iomap_file_buffered_write_punch_delalloc() currently invalidates the page cache over the unused range of the delalloc extent that was allocated. While the write allocated the delalloc extent, it does not own it exclusively as the write does not hold any locks that prevent either writeback or mmap page faults from changing the state of either the page cache or the extent state backing this range. Whilst xfs_bmap_punch_delalloc_range() already handles races in extent conversion - it will only punch out delalloc extents and it ignores any other type of extent - the page cache truncate does not discriminate between data written by this write or some other task. As a result, truncating the page cache can result in data corruption if the write races with mmap modifications to the file over the same range. generic/346 exercises this workload, and if we randomly fail writes (as will happen when iomap gets stale iomap detection later in the patchset), it will randomly corrupt the file data because it removes data written by mmap() in the same page as the write() that failed. Hence we do not want to punch out the page cache over the range of the extent we failed to write to - what we actually need to do is detect the ranges that have dirty data in cache over them and *not punch them out*. To do this, we have to walk the page cache over the range of the delalloc extent we want to remove. This is made complex by the fact we have to handle partially up-to-date folios correctly and this can happen even when the FSB size == PAGE_SIZE because we now support multi-page folios in the page cache. Because we are only interested in discovering the edges of data ranges in the page cache (i.e. hole-data boundaries) we can make use of mapping_seek_hole_data() to find those transitions in the page cache. As we hold the invalidate_lock, we know that the boundaries are not going to change while we walk the range. This interface is also byte-based and is sub-page block aware, so we can find the data ranges in the cache based on byte offsets rather than page, folio or fs block sized chunks. This greatly simplifies the logic of finding dirty cached ranges in the page cache. Once we've identified a range that contains cached data, we can then iterate the range folio by folio. This allows us to determine if the data is dirty and hence perform the correct delalloc extent punching operations. The seek interface we use to iterate data ranges will give us sub-folio start/end granularity, so we may end up looking up the same folio multiple times as the seek interface iterates across each discontiguous data region in the folio. Signed-off-by: Dave Chinner <dchinner@redhat.com> Reviewed-by: Darrick J. Wong <djwong@kernel.org>
2022-11-23xfs,iomap: move delalloc punching to iomapDave Chinner3-39/+72
Because that's what Christoph wants for this error handling path only XFS uses. It requires a new iomap export for handling errors over delalloc ranges. This is basically the XFS code as is stands, but even though Christoph wants this as iomap funcitonality, we still have to call it from the filesystem specific ->iomap_end callback, and call into the iomap code with yet another filesystem specific callback to punch the delalloc extent within the defined ranges. Signed-off-by: Dave Chinner <dchinner@redhat.com> Reviewed-by: Darrick J. Wong <djwong@kernel.org>
2022-11-23xfs: use byte ranges for write cleanup rangesDave Chinner1-15/+25
xfs_buffered_write_iomap_end() currently converts the byte ranges passed to it to filesystem blocks to pass them to the bmap code to punch out delalloc blocks, but then has to convert filesytem blocks back to byte ranges for page cache truncate. We're about to make the page cache truncate go away and replace it with a page cache walk, so having to convert everything to/from/to filesystem blocks is messy and error-prone. It is much easier to pass around byte ranges and convert to page indexes and/or filesystem blocks only where those units are needed. In preparation for the page cache walk being added, add a helper that converts byte ranges to filesystem blocks and calls xfs_bmap_punch_delalloc_range() and convert xfs_buffered_write_iomap_end() to calculate limits in byte ranges. Signed-off-by: Dave Chinner <dchinner@redhat.com> Reviewed-by: Darrick J. Wong <djwong@kernel.org>
2022-11-23xfs: punching delalloc extents on write failure is racyDave Chinner1-18/+23
xfs_buffered_write_iomap_end() has a comment about the safety of punching delalloc extents based holding the IOLOCK_EXCL. This comment is wrong, and punching delalloc extents is not race free. When we punch out a delalloc extent after a write failure in xfs_buffered_write_iomap_end(), we punch out the page cache with truncate_pagecache_range() before we punch out the delalloc extents. At this point, we only hold the IOLOCK_EXCL, so there is nothing stopping mmap() write faults racing with this cleanup operation, reinstantiating a folio over the range we are about to punch and hence requiring the delalloc extent to be kept. If this race condition is hit, we can end up with a dirty page in the page cache that has no delalloc extent or space reservation backing it. This leads to bad things happening at writeback time. To avoid this race condition, we need the page cache truncation to be atomic w.r.t. the extent manipulation. We can do this by holding the mapping->invalidate_lock exclusively across this operation - this will prevent new pages from being inserted into the page cache whilst we are removing the pages and the backing extent and space reservation. Taking the mapping->invalidate_lock exclusively in the buffered write IO path is safe - it naturally nests inside the IOLOCK (see truncate and fallocate paths). iomap_zero_range() can be called from under the mapping->invalidate_lock (from the truncate path via either xfs_zero_eof() or xfs_truncate_page(), but iomap_zero_iter() will not instantiate new delalloc pages (because it skips holes) and hence will not ever need to punch out delalloc extents on failure. Fix the locking issue, and clean up the code logic a little to avoid unnecessary work if we didn't allocate the delalloc extent or wrote the entire region we allocated. Signed-off-by: Dave Chinner <dchinner@redhat.com> Reviewed-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Darrick J. Wong <djwong@kernel.org>
2022-11-21xfs: fix incorrect i_nlink caused by inode racingLong Li1-0/+6
The following error occurred during the fsstress test: XFS: Assertion failed: VFS_I(ip)->i_nlink >= 2, file: fs/xfs/xfs_inode.c, line: 2452 The problem was that inode race condition causes incorrect i_nlink to be written to disk, and then it is read into memory. Consider the following call graph, inodes that are marked as both XFS_IFLUSHING and XFS_IRECLAIMABLE, i_nlink will be reset to 1 and then restored to original value in xfs_reinit_inode(). Therefore, the i_nlink of directory on disk may be set to 1. xfsaild xfs_inode_item_push xfs_iflush_cluster xfs_iflush xfs_inode_to_disk xfs_iget xfs_iget_cache_hit xfs_iget_recycle xfs_reinit_inode inode_init_always xfs_reinit_inode() needs to hold the ILOCK_EXCL as it is changing internal inode state and can race with other RCU protected inode lookups. On the read side, xfs_iflush_cluster() grabs the ILOCK_SHARED while under rcu + ip->i_flags_lock, and so xfs_iflush/xfs_inode_to_disk() are protected from racing inode updates (during transactions) by that lock. Fixes: ff7bebeb91f8 ("xfs: refactor the inode recycling code") # goes further back than this Signed-off-by: Long Li <leo.lilong@huawei.com> Reviewed-by: Darrick J. Wong <djwong@kernel.org> Signed-off-by: Darrick J. Wong <djwong@kernel.org>
2022-11-16xfs: Print XFS UUID on mount and umount events.Lukas Herbolt2-5/+7
As of now only device names are printed out over __xfs_printk(). The device names are not persistent across reboots which in case of searching for origin of corruption brings another task to properly identify the devices. This patch add XFS UUID upon every mount/umount event which will make the identification much easier. Signed-off-by: Lukas Herbolt <lukas@herbolt.com> [sandeen: rebase onto current upstream kernel] Signed-off-by: Eric Sandeen <sandeen@redhat.com> Reviewed-by: Darrick J. Wong <djwong@kernel.org> Signed-off-by: Darrick J. Wong <djwong@kernel.org> Reviewed-by: Dave Chinner <dchinner@redhat.com>
2022-11-16xfs: fix sb write verify for lazysbcountLong Li2-1/+18
When lazysbcount is enabled, fsstress and loop mount/unmount test report the following problems: XFS (loop0): SB summary counter sanity check failed XFS (loop0): Metadata corruption detected at xfs_sb_write_verify+0x13b/0x460, xfs_sb block 0x0 XFS (loop0): Unmount and run xfs_repair XFS (loop0): First 128 bytes of corrupted metadata buffer: 00000000: 58 46 53 42 00 00 10 00 00 00 00 00 00 28 00 00 XFSB.........(.. 00000010: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................ 00000020: 69 fb 7c cd 5f dc 44 af 85 74 e0 cc d4 e3 34 5a i.|._.D..t....4Z 00000030: 00 00 00 00 00 20 00 06 00 00 00 00 00 00 00 80 ..... .......... 00000040: 00 00 00 00 00 00 00 81 00 00 00 00 00 00 00 82 ................ 00000050: 00 00 00 01 00 0a 00 00 00 00 00 04 00 00 00 00 ................ 00000060: 00 00 0a 00 b4 b5 02 00 02 00 00 08 00 00 00 00 ................ 00000070: 00 00 00 00 00 00 00 00 0c 09 09 03 14 00 00 19 ................ XFS (loop0): Corruption of in-memory data (0x8) detected at _xfs_buf_ioapply +0xe1e/0x10e0 (fs/xfs/xfs_buf.c:1580). Shutting down filesystem. XFS (loop0): Please unmount the filesystem and rectify the problem(s) XFS (loop0): log mount/recovery failed: error -117 XFS (loop0): log mount failed This corruption will shutdown the file system and the file system will no longer be mountable. The following script can reproduce the problem, but it may take a long time. #!/bin/bash device=/dev/sda testdir=/mnt/test round=0 function fail() { echo "$*" exit 1 } mkdir -p $testdir while [ $round -lt 10000 ] do echo "******* round $round ********" mkfs.xfs -f $device mount $device $testdir || fail "mount failed!" fsstress -d $testdir -l 0 -n 10000 -p 4 >/dev/null & sleep 4 killall -w fsstress umount $testdir xfs_repair -e $device > /dev/null if [ $? -eq 2 ];then echo "ERR CODE 2: Dirty log exception during repair." exit 1 fi round=$(($round+1)) done With lazysbcount is enabled, There is no additional lock protection for reading m_ifree and m_icount in xfs_log_sb(), if other cpu modifies the m_ifree, this will make the m_ifree greater than m_icount. For example, consider the following sequence and ifreedelta is postive: CPU0 CPU1 xfs_log_sb xfs_trans_unreserve_and_mod_sb ---------- ------------------------------ percpu_counter_sum(&mp->m_icount) percpu_counter_add_batch(&mp->m_icount, idelta, XFS_ICOUNT_BATCH) percpu_counter_add(&mp->m_ifree, ifreedelta); percpu_counter_sum(&mp->m_ifree) After this, incorrect inode count (sb_ifree > sb_icount) will be writen to the log. In the subsequent writing of sb, incorrect inode count (sb_ifree > sb_icount) will fail to pass the boundary check in xfs_validate_sb_write() that cause the file system shutdown. When lazysbcount is enabled, we don't need to guarantee that Lazy sb counters are completely correct, but we do need to guarantee that sb_ifree <= sb_icount. On the other hand, the constraint that m_ifree <= m_icount must be satisfied any time that there /cannot/ be other threads allocating or freeing inode chunks. If the constraint is violated under these circumstances, sb_i{count,free} (the ondisk superblock inode counters) maybe incorrect and need to be marked sick at unmount, the count will be rebuilt on the next mount. Fixes: 8756a5af1819 ("libxfs: add more bounds checking to sb sanity checks") Signed-off-by: Long Li <leo.lilong@huawei.com> Reviewed-by: Darrick J. Wong <djwong@kernel.org> Signed-off-by: Darrick J. Wong <djwong@kernel.org>
2022-11-16xfs: fix incorrect error-out in xfs_removeDarrick J. Wong1-1/+1
Clean up resources if resetting the dotdot entry doesn't succeed. Observed through code inspection. Fixes: 5838d0356bb3 ("xfs: reset child dir '..' entry when unlinking child") Signed-off-by: Darrick J. Wong <djwong@kernel.org> Reviewed-by: Andrey Albershteyn <aalbersh@redhat.com>
2022-11-16xfs: check inode core when scrubbing metadata filesDarrick J. Wong1-6/+34
Metadata files (e.g. realtime bitmaps and quota files) do not show up in the bulkstat output, which means that scrub-by-handle does not work; they can only be checked through a specific scrub type. Therefore, each scrub type calls xchk_metadata_inode_forks to check the metadata for whatever's in the file. Unfortunately, that function doesn't actually check the inode record itself. Refactor the function a bit to make that happen. Signed-off-by: Darrick J. Wong <djwong@kernel.org> Reviewed-by: Dave Chinner <dchinner@redhat.com>
2022-11-16xfs: don't warn about files that are exactly s_maxbytes longDarrick J. Wong1-1/+1
We can handle files that are exactly s_maxbytes bytes long; we just can't handle anything larger than that. Signed-off-by: Darrick J. Wong <djwong@kernel.org> Reviewed-by: Dave Chinner <dchinner@redhat.com>
2022-11-16xfs: teach scrub to flag non-extents format cow forksDarrick J. Wong1-0/+2
CoW forks only exist in memory, which means that they can only ever have an incore extent tree. Hence they must always be FMT_EXTENTS, so check this when we're scrubbing them. Signed-off-by: Darrick J. Wong <djwong@kernel.org> Reviewed-by: Dave Chinner <dchinner@redhat.com>
2022-11-16xfs: check that CoW fork extents are not sharedDarrick J. Wong1-0/+2
Ensure that extents in an inode's CoW fork are not marked as shared in the refcount btree. Signed-off-by: Darrick J. Wong <djwong@kernel.org> Reviewed-by: Dave Chinner <dchinner@redhat.com>
2022-11-16xfs: check quota files for unwritten extentsDarrick J. Wong1-2/+4
Teach scrub to flag quota files containing unwritten extents. Signed-off-by: Darrick J. Wong <djwong@kernel.org> Reviewed-by: Dave Chinner <dchinner@redhat.com>
2022-11-16xfs: block map scrub should handle incore delalloc reservationsDarrick J. Wong1-19/+36
Enhance the block map scrubber to check delayed allocation reservations. Though there are no physical space allocations to check, we do need to make sure that the range of file offsets being mapped are correct, and to bump the lastoff cursor so that key order checking works correctly. Signed-off-by: Darrick J. Wong <djwong@kernel.org> Reviewed-by: Dave Chinner <dchinner@redhat.com>
2022-11-16xfs: teach scrub to check for adjacent bmaps when rmap larger than bmapDarrick J. Wong1-2/+72
When scrub is checking file fork mappings against rmap records and the rmap record starts before or ends after the bmap record, check the adjacent bmap records to make sure that they're adjacent to the one we're checking. This helps us to detect cases where the rmaps cover territory that the bmaps do not. Signed-off-by: Darrick J. Wong <djwong@kernel.org> Reviewed-by: Dave Chinner <dchinner@redhat.com>
2022-11-16xfs: fix perag loop in xchk_bmap_check_rmapsDarrick J. Wong1-7/+7
sparse complains that we can return an uninitialized error from this function and that pag could be uninitialized. We know that there are no zero-AG filesystems and hence we had to call xchk_bmap_check_ag_rmaps at least once, so this is not actually possible, but I'm too worn out from automated complaints from unsophisticated AIs so let's just fix this and move on to more interesting problems, eh? Signed-off-by: Darrick J. Wong <djwong@kernel.org> Reviewed-by: Dave Chinner <dchinner@redhat.com>
2022-11-16xfs: online checking of the free rt extent countDarrick J. Wong2-10/+84
Teach the summary count checker to count the number of free realtime extents and compare that to the superblock copy. Signed-off-by: Darrick J. Wong <djwong@kernel.org> Reviewed-by: Dave Chinner <dchinner@redhat.com>
2022-11-16xfs: make rtbitmap ILOCKing consistent when scanning the rt bitmap fileDarrick J. Wong2-4/+4
xfs_rtalloc_query_range scans the realtime bitmap file in order of increasing file offset, so this caller can take ILOCK_SHARED on the rt bitmap inode instead of ILOCK_EXCL. This isn't going to yield any practical benefits at mount time, but we'd like to make the locking usage consistent around xfs_rtalloc_query_all calls. Make all the places we do this use the same xfs_ilock lockflags for consistency. Fixes: 4c934c7dd60c ("xfs: report realtime space information via the rtbitmap") Signed-off-by: Darrick J. Wong <djwong@kernel.org> Reviewed-by: Dave Chinner <dchinner@redhat.com>
2022-11-16xfs: don't return -EFSCORRUPTED from repair when resources cannot be grabbedDarrick J. Wong1-2/+2
If we tried to repair something but the repair failed with -EDEADLOCK, that means that the repair function couldn't grab some resource it needed and wants us to try again. If we try again (with TRY_HARDER) but still can't get all the resources we need, the repair fails and errors remain on the filesystem. Right now, repair returns the -EDEADLOCK to the caller as -EFSCORRUPTED, which results in XFS_SCRUB_OFLAG_CORRUPT being passed out to userspace. This is not correct because repair has not determined that anything is corrupt. If the repair had been invoked on an object that could be optimized but wasn't corrupt (OFLAG_PREEN), the inability to grab resources will be reported to userspace as corrupt metadata, and users will be unnecessarily alarmed that their suboptimal metadata turned into a corruption. Fix this by returning zero so that the results of the actual scrub will be copied back out to userspace. Signed-off-by: Darrick J. Wong <djwong@kernel.org> Reviewed-by: Dave Chinner <dchinner@redhat.com>
2022-11-16xfs: skip fscounters comparisons when the scan is incompleteDarrick J. Wong1-1/+20
If any part of the per-AG summary counter scan loop aborts without collecting all of the data we need, the scrubber's observation data will be invalid. Set the incomplete flag so that we abort the scrub without reporting false corruptions. Document the data dependency here too. Signed-off-by: Darrick J. Wong <djwong@kernel.org> Reviewed-by: Dave Chinner <dchinner@redhat.com>
2022-11-16xfs: load rtbitmap and rtsummary extent mapping btrees at mount timeDarrick J. Wong2-4/+4
It turns out that GETFSMAP and online fsck have had a bug for years due to their use of ILOCK_SHARED to coordinate their linear scans of the realtime bitmap. If the bitmap file's data fork happens to be in BTREE format and the scan occurs immediately after mounting, the incore bmbt will not be populated, leading to ASSERTs tripping over the incorrect inode state. Because the bitmap scans always lock bitmap buffers in increasing order of file offset, it is appropriate for these two callers to take a shared ILOCK to improve scalability. To fix this problem, load both data and attr fork state into memory when mounting the realtime inodes. Realtime metadata files aren't supposed to have an attr fork so the second step is likely a nop. On most filesystems this is unlikely since the rtbitmap data fork is usually in extents format, but it's possible to craft a filesystem that will by fragmenting the free space in the data section and growfsing the rt section. Fixes: 4c934c7dd60c ("xfs: report realtime space information via the rtbitmap") Also-Fixes: 46d9bfb5e706 ("xfs: cross-reference the realtime bitmap") Signed-off-by: Darrick J. Wong <djwong@kernel.org> Reviewed-by: Dave Chinner <dchinner@redhat.com>
2022-11-16xfs: pivot online scrub away from kmem.[ch]Darrick J. Wong8-24/+24
Convert all the online scrub code to use the Linux slab allocator functions directly instead of going through the kmem wrappers. Signed-off-by: Darrick J. Wong <djwong@kernel.org> Reviewed-by: Dave Chinner <dchinner@redhat.com>
2022-11-16xfs: don't retry repairs harder when EAGAIN is returnedDarrick J. Wong1-1/+5
Repair functions will not return EAGAIN -- if they were not able to obtain resources, they should return EDEADLOCK (like the rest of online fsck) to signal that we need to grab all the resources and try again. Hence we don't need to deal with this case except as a debugging assertion. Signed-off-by: Darrick J. Wong <djwong@kernel.org> Reviewed-by: Dave Chinner <dchinner@redhat.com>
2022-11-16xfs: initialize the check_owner object fullyDarrick J. Wong1-1/+4
Initialize the check_owner list head so that we don't corrupt the list. Reduce the scope of the object pointer. Fixes: 858333dcf021 ("xfs: check btree block ownership with bnobt/rmapbt when scrubbing btree") Signed-off-by: Darrick J. Wong <djwong@kernel.org> Reviewed-by: Dave Chinner <dchinner@redhat.com>
2022-11-16xfs: fix return code when fatal signal encountered during dquot scrubDarrick J. Wong1-1/+1
If the scrub process is sent a fatal signal while we're checking dquots, the predicate for this will set the error code to -EINTR. Don't then squash that into -ECANCELED, because the wrong errno turns up in the trace output. Signed-off-by: Darrick J. Wong <djwong@kernel.org> Reviewed-by: Dave Chinner <dchinner@redhat.com>
2022-11-16xfs: return EINTR when a fatal signal terminates scrubDarrick J. Wong9-25/+25
If the program calling online fsck is terminated with a fatal signal, bail out to userspace by returning EINTR, not EAGAIN. EAGAIN is used by scrubbers to indicate that we should try again with more resources locked, and not to indicate that the operation was cancelled. The miswiring is mostly harmless, but it shows up in the trace data. Signed-off-by: Darrick J. Wong <djwong@kernel.org> Reviewed-by: Dave Chinner <dchinner@redhat.com>
2022-11-16xfs: make AGFL repair function avoid crosslinked blocksDarrick J. Wong1-12/+66
Teach the AGFL repair function to check each block of the proposed AGFL against the rmap btree. If the rmapbt finds any mappings that are not OWN_AG, strike that block from the list. Signed-off-by: Darrick J. Wong <djwong@kernel.org> Reviewed-by: Dave Chinner <dchinner@redhat.com>
2022-11-16xfs: standardize GFP flags usage in online scrubDarrick J. Wong1-4/+1
Memory allocation usage is the same throughout online fsck -- we want kernel memory, we have to be able to back out if we can't allocate memory, and we don't want to spray dmesg with memory allocation failure reports. Standardize the GFP flag usage and document these requirements. Signed-off-by: Darrick J. Wong <djwong@kernel.org> Reviewed-by: Dave Chinner <dchinner@redhat.com>
2022-11-16xfs: log the AGI/AGF buffers when rolling transactions during an AG repairDarrick J. Wong1-9/+21
Currently, the only way to lock an allocation group is to hold the AGI and AGF buffers. If a repair needs to roll the transaction while repairing some AG metadata, it maintains that lock by holding the two buffers across the transaction roll and joins them afterwards. However, repair is not like other parts of XFS that employ the bhold - roll - bjoin sequence because it's possible that the AGI or AGF buffers are not actually dirty before the roll. This presents two problems -- First, we need to redirty those buffers to keep them moving along in the log to avoid pinning the log tail. Second, a clean buffer log item can detach from the buffer. If this happens, the buffer type state is discarded along with the bli and must be reattached before the next time the buffer is logged. If it is not, the logging code will complain and log recovery will not work properly. An earlier version of this patch tried to fix the second problem by re-setting the buffer type in the bli after joining the buffer to the new transaction, but that looked weird and didn't solve the first problem. Instead, solve both problems by logging the buffer before rolling the transaction. Signed-off-by: Darrick J. Wong <djwong@kernel.org> Reviewed-by: Dave Chinner <dchinner@redhat.com>
2022-11-16xfs: don't track the AGFL buffer in the scrub AG contextDarrick J. Wong5-33/+35
While scrubbing an allocation group, we don't need to hold the AGFL buffer as part of the scrub context. All that is necessary to lock an AG is to hold the AGI and AGF buffers, so fix all the existing users of the AGFL buffer to grab them only when necessary. Signed-off-by: Darrick J. Wong <djwong@kernel.org> Reviewed-by: Dave Chinner <dchinner@redhat.com>
2022-11-16xfs: fully initialize xfs_da_args in xchk_directory_blocksDarrick J. Wong1-4/+6
While running the online fsck test suite, I noticed the following assertion in the kernel log (edited for brevity): XFS: Assertion failed: 0, file: fs/xfs/xfs_health.c, line: 571 ------------[ cut here ]------------ WARNING: CPU: 3 PID: 11667 at fs/xfs/xfs_message.c:104 assfail+0x46/0x4a [xfs] CPU: 3 PID: 11667 Comm: xfs_scrub Tainted: G W 5.19.0-rc7-xfsx #rc7 6e6475eb29fd9dda3181f81b7ca7ff961d277a40 Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 1.15.0-1 04/01/2014 RIP: 0010:assfail+0x46/0x4a [xfs] Call Trace: <TASK> xfs_dir2_isblock+0xcc/0xe0 xchk_directory_blocks+0xc7/0x420 xchk_directory+0x53/0xb0 xfs_scrub_metadata+0x2b6/0x6b0 xfs_scrubv_metadata+0x35e/0x4d0 xfs_ioc_scrubv_metadata+0x111/0x160 xfs_file_ioctl+0x4ec/0xef0 __x64_sys_ioctl+0x82/0xa0 do_syscall_64+0x2b/0x80 entry_SYSCALL_64_after_hwframe+0x46/0xb0 This assertion triggers in xfs_dirattr_mark_sick when the caller passes in a whichfork value that is neither of XFS_{DATA,ATTR}_FORK. The cause of this is that xchk_directory_blocks only partially initializes the xfs_da_args structure that is passed to xfs_dir2_isblock. If the data fork is not correct, the XFS_IS_CORRUPT clause will trigger. My development branch reports this failure to the health monitoring subsystem, which accesses the uninitialized args->whichfork field, leading the the assertion tripping. We really shouldn't be passing random stack contents around, so the solution here is to force the compiler to zero-initialize the struct. Found by fuzzing u3.bmx[0].blockcount = middlebit on xfs/1554. Signed-off-by: Darrick J. Wong <djwong@kernel.org> Reviewed-by: Dave Chinner <dchinner@redhat.com>
2022-11-07xfs: write page faults in iomap are not buffered writesDave Chinner3-1/+11
When we reserve a delalloc region in xfs_buffered_write_iomap_begin, we mark the iomap as IOMAP_F_NEW so that the the write context understands that it allocated the delalloc region. If we then fail that buffered write, xfs_buffered_write_iomap_end() checks for the IOMAP_F_NEW flag and if it is set, it punches out the unused delalloc region that was allocated for the write. The assumption this code makes is that all buffered write operations that can allocate space are run under an exclusive lock (i_rwsem). This is an invalid assumption: page faults in mmap()d regions call through this same function pair to map the file range being faulted and this runs only holding the inode->i_mapping->invalidate_lock in shared mode. IOWs, we can have races between page faults and write() calls that fail the nested page cache write operation that result in data loss. That is, the failing iomap_end call will punch out the data that the other racing iomap iteration brought into the page cache. This can be reproduced with generic/34[46] if we arbitrarily fail page cache copy-in operations from write() syscalls. Code analysis tells us that the iomap_page_mkwrite() function holds the already instantiated and uptodate folio locked across the iomap mapping iterations. Hence the folio cannot be removed from memory whilst we are mapping the range it covers, and as such we do not care if the mapping changes state underneath the iomap iteration loop: 1. if the folio is not already dirty, there is no writeback races possible. 2. if we allocated the mapping (delalloc or unwritten), the folio cannot already be dirty. See #1. 3. If the folio is already dirty, it must be up to date. As we hold it locked, it cannot be reclaimed from memory. Hence we always have valid data in the page cache while iterating the mapping. 4. Valid data in the page cache can exist when the underlying mapping is DELALLOC, UNWRITTEN or WRITTEN. Having the mapping change from DELALLOC->UNWRITTEN or UNWRITTEN->WRITTEN does not change the data in the page - it only affects actions if we are initialising a new page. Hence #3 applies and we don't care about these extent map transitions racing with iomap_page_mkwrite(). 5. iomap_page_mkwrite() checks for page invalidation races (truncate, hole punch, etc) after it locks the folio. We also hold the mapping->invalidation_lock here, and hence the mapping cannot change due to extent removal operations while we are iterating the folio. As such, filesystems that don't use bufferheads will never fail the iomap_folio_mkwrite_iter() operation on the current mapping, regardless of whether the iomap should be considered stale. Further, the range we are asked to iterate is limited to the range inside EOF that the folio spans. Hence, for XFS, we will only map the exact range we are asked for, and we will only do speculative preallocation with delalloc if we are mapping a hole at the EOF page. The iterator will consume the entire range of the folio that is within EOF, and anything beyond the EOF block cannot be accessed. We never need to truncate this post-EOF speculative prealloc away in the context of the iomap_page_mkwrite() iterator because if it remains unused we'll remove it when the last reference to the inode goes away. Hence we don't actually need an .iomap_end() cleanup/error handling path at all for iomap_page_mkwrite() for XFS. This means we can separate the page fault processing from the complexity of the .iomap_end() processing in the buffered write path. This also means that the buffered write path will also be able to take the mapping->invalidate_lock as necessary. Signed-off-by: Dave Chinner <dchinner@redhat.com> Reviewed-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Darrick J. Wong <djwong@kernel.org>
2022-11-06Linux 6.1-rc4Linus Torvalds1-1/+1
2022-11-06ext4: fix fortify warning in fs/ext4/fast_commit.c:1551Theodore Ts'o1-2/+3
With the new fortify string system, rework the memcpy to avoid this warning: memcpy: detected field-spanning write (size 60) of single field "&raw_inode->i_generation" at fs/ext4/fast_commit.c:1551 (size 4) Cc: stable@kernel.org Fixes: 54d9469bc515 ("fortify: Add run-time WARN for cross-field memcpy()") Signed-off-by: Theodore Ts'o <tytso@mit.edu>
2022-11-06ext4: fix wrong return err in ext4_load_and_init_journal()Jason Yan1-1/+1
The return value is wrong in ext4_load_and_init_journal(). The local variable 'err' need to be initialized before goto out. The original code in __ext4_fill_super() is fine because it has two return values 'ret' and 'err' and 'ret' is initialized as -EINVAL. After we factor out ext4_load_and_init_journal(), this code is broken. So fix it by directly returning -EINVAL in the error handler path. Cc: stable@kernel.org Fixes: 9c1dd22d7422 ("ext4: factor out ext4_load_and_init_journal()") Signed-off-by: Jason Yan <yanaijie@huawei.com> Reviewed-by: Jan Kara <jack@suse.cz> Link: https://lore.kernel.org/r/20221025040206.3134773-1-yanaijie@huawei.com Signed-off-by: Theodore Ts'o <tytso@mit.edu>
2022-11-06ext4: fix warning in 'ext4_da_release_space'Ye Bin1-1/+2
Syzkaller report issue as follows: EXT4-fs (loop0): Free/Dirty block details EXT4-fs (loop0): free_blocks=0 EXT4-fs (loop0): dirty_blocks=0 EXT4-fs (loop0): Block reservation details EXT4-fs (loop0): i_reserved_data_blocks=0 EXT4-fs warning (device loop0): ext4_da_release_space:1527: ext4_da_release_space: ino 18, to_free 1 with only 0 reserved data blocks ------------[ cut here ]------------ WARNING: CPU: 0 PID: 92 at fs/ext4/inode.c:1528 ext4_da_release_space+0x25e/0x370 fs/ext4/inode.c:1524 Modules linked in: CPU: 0 PID: 92 Comm: kworker/u4:4 Not tainted 6.0.0-syzkaller-09423-g493ffd6605b2 #0 Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 09/22/2022 Workqueue: writeback wb_workfn (flush-7:0) RIP: 0010:ext4_da_release_space+0x25e/0x370 fs/ext4/inode.c:1528 RSP: 0018:ffffc900015f6c90 EFLAGS: 00010296 RAX: 42215896cd52ea00 RBX: 0000000000000000 RCX: 42215896cd52ea00 RDX: 0000000000000000 RSI: 0000000080000001 RDI: 0000000000000000 RBP: 1ffff1100e907d96 R08: ffffffff816aa79d R09: fffff520002bece5 R10: fffff520002bece5 R11: 1ffff920002bece4 R12: ffff888021fd2000 R13: ffff88807483ecb0 R14: 0000000000000001 R15: ffff88807483e740 FS: 0000000000000000(0000) GS:ffff8880b9a00000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 00005555569ba628 CR3: 000000000c88e000 CR4: 00000000003506f0 DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400 Call Trace: <TASK> ext4_es_remove_extent+0x1ab/0x260 fs/ext4/extents_status.c:1461 mpage_release_unused_pages+0x24d/0xef0 fs/ext4/inode.c:1589 ext4_writepages+0x12eb/0x3be0 fs/ext4/inode.c:2852 do_writepages+0x3c3/0x680 mm/page-writeback.c:2469 __writeback_single_inode+0xd1/0x670 fs/fs-writeback.c:1587 writeback_sb_inodes+0xb3b/0x18f0 fs/fs-writeback.c:1870 wb_writeback+0x41f/0x7b0 fs/fs-writeback.c:2044 wb_do_writeback fs/fs-writeback.c:2187 [inline] wb_workfn+0x3cb/0xef0 fs/fs-writeback.c:2227 process_one_work+0x877/0xdb0 kernel/workqueue.c:2289 worker_thread+0xb14/0x1330 kernel/workqueue.c:2436 kthread+0x266/0x300 kernel/kthread.c:376 ret_from_fork+0x1f/0x30 arch/x86/entry/entry_64.S:306 </TASK> Above issue may happens as follows: ext4_da_write_begin ext4_create_inline_data ext4_clear_inode_flag(inode, EXT4_INODE_EXTENTS); ext4_set_inode_flag(inode, EXT4_INODE_INLINE_DATA); __ext4_ioctl ext4_ext_migrate -> will lead to eh->eh_entries not zero, and set extent flag ext4_da_write_begin ext4_da_convert_inline_data_to_extent ext4_da_write_inline_data_begin ext4_da_map_blocks ext4_insert_delayed_block if (!ext4_es_scan_clu(inode, &ext4_es_is_delonly, lblk)) if (!ext4_es_scan_clu(inode, &ext4_es_is_mapped, lblk)) ext4_clu_mapped(inode, EXT4_B2C(sbi, lblk)); -> will return 1 allocated = true; ext4_es_insert_delayed_block(inode, lblk, allocated); ext4_writepages mpage_map_and_submit_extent(handle, &mpd, &give_up_on_write); -> return -ENOSPC mpage_release_unused_pages(&mpd, give_up_on_write); -> give_up_on_write == 1 ext4_es_remove_extent ext4_da_release_space(inode, reserved); if (unlikely(to_free > ei->i_reserved_data_blocks)) -> to_free == 1 but ei->i_reserved_data_blocks == 0 -> then trigger warning as above To solve above issue, forbid inode do migrate which has inline data. Cc: stable@kernel.org Reported-by: syzbot+c740bb18df70ad00952e@syzkaller.appspotmail.com Signed-off-by: Ye Bin <yebin10@huawei.com> Reviewed-by: Jan Kara <jack@suse.cz> Link: https://lore.kernel.org/r/20221018022701.683489-1-yebin10@huawei.com Signed-off-by: Theodore Ts'o <tytso@mit.edu>
2022-11-06ext4: fix BUG_ON() when directory entry has invalid rec_lenLuís Henriques1-1/+9
The rec_len field in the directory entry has to be a multiple of 4. A corrupted filesystem image can be used to hit a BUG() in ext4_rec_len_to_disk(), called from make_indexed_dir(). ------------[ cut here ]------------ kernel BUG at fs/ext4/ext4.h:2413! ... RIP: 0010:make_indexed_dir+0x53f/0x5f0 ... Call Trace: <TASK> ? add_dirent_to_buf+0x1b2/0x200 ext4_add_entry+0x36e/0x480 ext4_add_nondir+0x2b/0xc0 ext4_create+0x163/0x200 path_openat+0x635/0xe90 do_filp_open+0xb4/0x160 ? __create_object.isra.0+0x1de/0x3b0 ? _raw_spin_unlock+0x12/0x30 do_sys_openat2+0x91/0x150 __x64_sys_open+0x6c/0xa0 do_syscall_64+0x3c/0x80 entry_SYSCALL_64_after_hwframe+0x46/0xb0 The fix simply adds a call to ext4_check_dir_entry() to validate the directory entry, returning -EFSCORRUPTED if the entry is invalid. CC: stable@kernel.org Link: https://bugzilla.kernel.org/show_bug.cgi?id=216540 Signed-off-by: Luís Henriques <lhenriques@suse.de> Link: https://lore.kernel.org/r/20221012131330.32456-1-lhenriques@suse.de Signed-off-by: Theodore Ts'o <tytso@mit.edu>
2022-11-04cifs: fix use-after-free on the link nameChenXiaoSong2-6/+25
xfstests generic/011 reported use-after-free bug as follows: BUG: KASAN: use-after-free in __d_alloc+0x269/0x859 Read of size 15 at addr ffff8880078933a0 by task dirstress/952 CPU: 1 PID: 952 Comm: dirstress Not tainted 6.1.0-rc3+ #77 Call Trace: __dump_stack+0x23/0x29 dump_stack_lvl+0x51/0x73 print_address_description+0x67/0x27f print_report+0x3e/0x5c kasan_report+0x7b/0xa8 kasan_check_range+0x1b2/0x1c1 memcpy+0x22/0x5d __d_alloc+0x269/0x859 d_alloc+0x45/0x20c d_alloc_parallel+0xb2/0x8b2 lookup_open+0x3b8/0x9f9 open_last_lookups+0x63d/0xc26 path_openat+0x11a/0x261 do_filp_open+0xcc/0x168 do_sys_openat2+0x13b/0x3f7 do_sys_open+0x10f/0x146 __se_sys_creat+0x27/0x2e __x64_sys_creat+0x55/0x6a do_syscall_64+0x40/0x96 entry_SYSCALL_64_after_hwframe+0x63/0xcd Allocated by task 952: kasan_save_stack+0x1f/0x42 kasan_set_track+0x21/0x2a kasan_save_alloc_info+0x17/0x1d __kasan_kmalloc+0x7e/0x87 __kmalloc_node_track_caller+0x59/0x155 kstrndup+0x60/0xe6 parse_mf_symlink+0x215/0x30b check_mf_symlink+0x260/0x36a cifs_get_inode_info+0x14e1/0x1690 cifs_revalidate_dentry_attr+0x70d/0x964 cifs_revalidate_dentry+0x36/0x62 cifs_d_revalidate+0x162/0x446 lookup_open+0x36f/0x9f9 open_last_lookups+0x63d/0xc26 path_openat+0x11a/0x261 do_filp_open+0xcc/0x168 do_sys_openat2+0x13b/0x3f7 do_sys_open+0x10f/0x146 __se_sys_creat+0x27/0x2e __x64_sys_creat+0x55/0x6a do_syscall_64+0x40/0x96 entry_SYSCALL_64_after_hwframe+0x63/0xcd Freed by task 950: kasan_save_stack+0x1f/0x42 kasan_set_track+0x21/0x2a kasan_save_free_info+0x1c/0x34 ____kasan_slab_free+0x1c1/0x1d5 __kasan_slab_free+0xe/0x13 __kmem_cache_free+0x29a/0x387 kfree+0xd3/0x10e cifs_fattr_to_inode+0xb6a/0xc8c cifs_get_inode_info+0x3cb/0x1690 cifs_revalidate_dentry_attr+0x70d/0x964 cifs_revalidate_dentry+0x36/0x62 cifs_d_revalidate+0x162/0x446 lookup_open+0x36f/0x9f9 open_last_lookups+0x63d/0xc26 path_openat+0x11a/0x261 do_filp_open+0xcc/0x168 do_sys_openat2+0x13b/0x3f7 do_sys_open+0x10f/0x146 __se_sys_creat+0x27/0x2e __x64_sys_creat+0x55/0x6a do_syscall_64+0x40/0x96 entry_SYSCALL_64_after_hwframe+0x63/0xcd When opened a symlink, link name is from 'inode->i_link', but it may be reset to a new value when revalidate the dentry. If some processes get the link name on the race scenario, then UAF will happen on link name. Fix this by implementing 'get_link' interface to duplicate the link name. Fixes: 76894f3e2f71 ("cifs: improve symlink handling for smb2+") Signed-off-by: ChenXiaoSong <chenxiaosong2@huawei.com> Reviewed-by: Paulo Alcantara (SUSE) <pc@cjr.nz> Signed-off-by: Steve French <stfrench@microsoft.com>
2022-11-04cifs: avoid unnecessary iteration of tcp sessionsShyam Prasad N3-51/+55
In a few places, we do unnecessary iterations of tcp sessions, even when the server struct is provided. The change avoids it and uses the server struct provided. Signed-off-by: Shyam Prasad N <sprasad@microsoft.com> Reviewed-by: Paulo Alcantara (SUSE) <pc@cjr.nz> Signed-off-by: Steve French <stfrench@microsoft.com>
2022-11-04cifs: always iterate smb sessions using primary channelShyam Prasad N4-5/+25
smb sessions and tcons currently hang off primary channel only. Secondary channels have the lists as empty. Whenever there's a need to iterate sessions or tcons, we should use the list in the corresponding primary channel. Signed-off-by: Shyam Prasad N <sprasad@microsoft.com> Reviewed-by: Paulo Alcantara (SUSE) <pc@cjr.nz> Signed-off-by: Steve French <stfrench@microsoft.com>
2022-11-04Revert "hwmon: (pmbus) Add regulator supply into macro"Guenter Roeck1-1/+0
This reverts commit 54cc3dbfc10dc3db7cb1cf49aee4477a8398fbde. Zev Weiss reports that the reverted patch may cause a regulator undercount. Here is his report: ... having regulator-dummy set as a supply on my PMBus regulators (instead of having them as their own top-level regulators without an upstream supply) leads to enable-count underflow errors when disabling them: # echo 0 > /sys/bus/platform/devices/efuse01/state [ 906.094477] regulator-dummy: Underflow of regulator enable count [ 906.100563] Failed to disable vout: -EINVAL [ 136.992676] reg-userspace-consumer efuse01: Failed to configure state: -22 Zev reports that reverting the patch fixes the problem. So let's do that for now. Fixes: 54cc3dbfc10d ("hwmon: (pmbus) Add regulator supply into macro") Cc: Marcello Sylvester Bauer <sylv@sylv.io> Reported-by: Zev Weiss <zev@bewilderbeest.net> Signed-off-by: Guenter Roeck <linux@roeck-us.net>
2022-11-04hwmon: (scmi) Register explicitly with Thermal FrameworkCristian Marussi1-13/+103
Available sensors are enumerated and reported by the SCMI platform server using a 16bit identification number; not all such sensors are of a type supported by hwmon subsystem and, among the supported ones, only a subset could be temperature sensors that have to be registered with the Thermal Framework. Potential clashes between hwmon channels indexes and the underlying real sensors IDs do not play well with the hwmon<-->thermal bridge automatic registration routines and could need a sensible number of fake dummy sensors to be made up in order to keep indexes and IDs in sync. Avoid to use the hwmon<-->thermal bridge dropping the HWMON_C_REGISTER_TZ attribute and instead explicit register temperature sensors directly with the Thermal Framework. Cc: Daniel Lezcano <daniel.lezcano@linaro.org> Cc: Guenter Roeck <linux@roeck-us.net> Cc: linux-hwmon@vger.kernel.org Signed-off-by: Cristian Marussi <cristian.marussi@arm.com> Acked-by: Sudeep Holla <sudeep.holla@arm.com> Link: https://lore.kernel.org/r/20221031114018.59048-1-cristian.marussi@arm.com Signed-off-by: Guenter Roeck <linux@roeck-us.net>
2022-11-04cxl/region: Recycle region idsDan Williams1-0/+20
At region creation time the next region-id is atomically cached so that there is predictability of region device names. If that region is destroyed and then a new one is created the region id increments. That ends up looking like a memory leak, or is otherwise surprising that identifiers roll forward even after destroying all previously created regions. Try to reuse rather than free old region ids at region release time. While this fixes a cosmetic issue, the needlessly advancing memory region-id gives the appearance of a memory leak, hence the "Fixes" tag, but no "Cc: stable" tag. Cc: Ben Widawsky <bwidawsk@kernel.org> Cc: Jonathan Cameron <Jonathan.Cameron@huawei.com> Fixes: 779dd20cfb56 ("cxl/region: Add region creation support") Reviewed-by: Dave Jiang <dave.jiang@intel.com> Reviewed-by: Vishal Verma <vishal.l.verma@intel.com> Link: https://lore.kernel.org/r/166752186062.947915.13200195701224993317.stgit@dwillia2-xfh.jf.intel.com Signed-off-by: Dan Williams <dan.j.williams@intel.com>
2022-11-04cxl/region: Fix 'distance' calculation with passthrough portsDan Williams3-3/+19
When programming port decode targets, the algorithm wants to ensure that two devices are compatible to be programmed as peers beneath a given port. A compatible peer is a target that shares the same dport, and where that target's interleave position also routes it to the same dport. Compatibility is determined by the device's interleave position being >= to distance. For example, if a given dport can only map every Nth position then positions less than N away from the last target programmed are incompatible. The @distance for the host-bridge's cxl_port in a simple dual-ported host-bridge configuration with 2 direct-attached devices is 1, i.e. An x2 region divided by 2 dports to reach 2 region targets. An x4 region under an x2 host-bridge would need 2 intervening switches where the @distance at the host bridge level is 2 (x4 region divided by 2 switches to reach 4 devices). However, the distance between peers underneath a single ported host-bridge is always zero because there is no limit to the number of devices that can be mapped. In other words, there are no decoders to program in a passthrough, all descendants are mapped and distance only starts matters for the intervening descendant ports of the passthrough port. Add tracking for the number of dports mapped to a port, and use that to detect the passthrough case for calculating @distance. Cc: <stable@vger.kernel.org> Reported-by: Bobo WL <lmw.bobo@gmail.com> Reported-by: Jonathan Cameron <Jonathan.Cameron@huawei.com> Link: http://lore.kernel.org/r/20221010172057.00001559@huawei.com Fixes: 27b3f8d13830 ("cxl/region: Program target lists") Reviewed-by: Vishal Verma <vishal.l.verma@intel.com> Link: https://lore.kernel.org/r/166752185440.947915.6617495912508299445.stgit@dwillia2-xfh.jf.intel.com Signed-off-by: Dan Williams <dan.j.williams@intel.com>
2022-11-04tools/testing/cxl: Add a single-port host-bridge regression configDan Williams1-19/+278
Jonathan reports that region creation fails when a single-port host-bridge connects to a multi-port switch. Mock up that configuration so a fix can be tested and regression tested going forward. Reported-by: Bobo WL <lmw.bobo@gmail.com> Reported-by: Jonathan Cameron <Jonathan.Cameron@huawei.com> Link: http://lore.kernel.org/r/20221010172057.00001559@huawei.com Reviewed-by: Vishal Verma <vishal.l.verma@intel.com> Link: https://lore.kernel.org/r/166752184838.947915.2167957540894293891.stgit@dwillia2-xfh.jf.intel.com Signed-off-by: Dan Williams <dan.j.williams@intel.com>
2022-11-04tools/testing/cxl: Fix some error exitsDan Williams1-2/+2
Fix a few typos where 'goto err_port' was used rather than the object specific cleanup. Reviewed-by: Dave Jiang <dave.jiang@intel.com> Reviewed-by: Vishal Verma <vishal.l.verma@intel.com> Link: https://lore.kernel.org/r/166752184255.947915.16163477849330181425.stgit@dwillia2-xfh.jf.intel.com Signed-off-by: Dan Williams <dan.j.williams@intel.com>
2022-11-04cxl/pmem: Fix cxl_pmem_region and cxl_memdev leakDan Williams3-37/+68
When a cxl_nvdimm object goes through a ->remove() event (device physically removed, nvdimm-bridge disabled, or nvdimm device disabled), then any associated regions must also be disabled. As highlighted by the cxl-create-region.sh test [1], a single device may host multiple regions, but the driver was only tracking one region at a time. This leads to a situation where only the last enabled region per nvdimm device is cleaned up properly. Other regions are leaked, and this also causes cxl_memdev reference leaks. Fix the tracking by allowing cxl_nvdimm objects to track multiple region associations. Cc: <stable@vger.kernel.org> Link: https://github.com/pmem/ndctl/blob/main/test/cxl-create-region.sh [1] Reported-by: Vishal Verma <vishal.l.verma@intel.com> Fixes: 04ad63f086d1 ("cxl/region: Introduce cxl_pmem_region objects") Reviewed-by: Dave Jiang <dave.jiang@intel.com> Reviewed-by: Vishal Verma <vishal.l.verma@intel.com> Link: https://lore.kernel.org/r/166752183647.947915.2045230911503793901.stgit@dwillia2-xfh.jf.intel.com Signed-off-by: Dan Williams <dan.j.williams@intel.com>