Age | Commit message (Collapse) | Author | Files | Lines |
|
Implement hooks in TDX to propagate changes of mirror page table to private
EPT, including changes for page table page adding/removing, guest page
adding/removing.
TDX invokes corresponding SEAMCALLs in the hooks.
- Hook link_external_spt
propagates adding page table page into private EPT.
- Hook set_external_spte
tdx_sept_set_private_spte() in this patch only handles adding of guest
private page when TD is finalized.
Later patches will handle the case of adding guest private pages before
TD finalization.
- Hook free_external_spt
It is invoked when page table page is removed in mirror page table, which
currently must occur at TD tear down phase, after hkid is freed.
- Hook remove_external_spte
It is invoked when guest private page is removed in mirror page table,
which can occur when TD is active, e.g. during shared <-> private
conversion and slot move/deletion.
This hook is ensured to be triggered before hkid is freed, because
gmem fd is released along with all private leaf mappings zapped before
freeing hkid at VM destroy.
TDX invokes below SEAMCALLs sequentially:
1) TDH.MEM.RANGE.BLOCK (remove RWX bits from a private EPT entry),
2) TDH.MEM.TRACK (increases TD epoch)
3) TDH.MEM.PAGE.REMOVE (remove the private EPT entry and untrack the
guest page).
TDH.MEM.PAGE.REMOVE can't succeed without TDH.MEM.RANGE.BLOCK and
TDH.MEM.TRACK being called successfully.
SEAMCALL TDH.MEM.TRACK is called in function tdx_track() to enforce that
TLB tracking will be performed by TDX module for private EPT.
Signed-off-by: Isaku Yamahata <isaku.yamahata@intel.com>
Co-developed-by: Rick Edgecombe <rick.p.edgecombe@intel.com>
Signed-off-by: Rick Edgecombe <rick.p.edgecombe@intel.com>
Co-developed-by: Yan Zhao <yan.y.zhao@intel.com>
Signed-off-by: Yan Zhao <yan.y.zhao@intel.com>
---
- Remove TDX_ERROR_SEPT_BUSY and Add tdx_operand_busy() helper (Binbin)
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
Handle TLB tracking for TDX by introducing function tdx_track() for private
memory TLB tracking and implementing flush_tlb* hooks to flush TLBs for
shared memory.
Introduce function tdx_track() to do TLB tracking on private memory, which
basically does two things: calling TDH.MEM.TRACK to increase TD epoch and
kicking off all vCPUs. The private EPT will then be flushed when each vCPU
re-enters the TD. This function is unused temporarily in this patch and
will be called on a page-by-page basis on removal of private guest page in
a later patch.
In earlier revisions, tdx_track() relied on an atomic counter to coordinate
the synchronization between the actions of kicking off vCPUs, incrementing
the TD epoch, and the vCPUs waiting for the incremented TD epoch after
being kicked off.
However, the core MMU only actually needs to call tdx_track() while
aleady under a write mmu_lock. So this sychnonization can be made to be
unneeded. vCPUs are kicked off only after the successful execution of
TDH.MEM.TRACK, eliminating the need for vCPUs to wait for TDH.MEM.TRACK
completion after being kicked off. tdx_track() is therefore able to send
requests KVM_REQ_OUTSIDE_GUEST_MODE rather than KVM_REQ_TLB_FLUSH.
Hooks for flush_remote_tlb and flush_remote_tlbs_range are not necessary
for TDX, as tdx_track() will handle TLB tracking of private memory on
page-by-page basis when private guest pages are removed. There is no need
to invoke tdx_track() again in kvm_flush_remote_tlbs() even after changes
to the mirrored page table.
For hooks flush_tlb_current and flush_tlb_all, which are invoked during
kvm_mmu_load() and vcpu load for normal VMs, let VMM to flush all EPTs in
the two hooks for simplicity, since TDX does not depend on the two
hooks to notify TDX module to flush private EPT in those cases.
Signed-off-by: Isaku Yamahata <isaku.yamahata@intel.com>
Co-developed-by: Rick Edgecombe <rick.p.edgecombe@intel.com>
Signed-off-by: Rick Edgecombe <rick.p.edgecombe@intel.com>
Co-developed-by: Yan Zhao <yan.y.zhao@intel.com>
Signed-off-by: Yan Zhao <yan.y.zhao@intel.com>
Message-ID: <20241112073753.22228-1-yan.y.zhao@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
Set per-VM shadow_mmio_value to 0 for TDX.
With enable_mmio_caching on, KVM installs MMIO SPTEs for TDs. To correctly
configure MMIO SPTEs, TDX requires the per-VM shadow_mmio_value to be set
to 0. This is necessary to override the default value of the suppress VE
bit in the SPTE, which is 1, and to ensure value 0 in RWX bits.
For MMIO SPTE, the spte value changes as follows:
1. initial value (suppress VE bit is set)
2. Guest issues MMIO and triggers EPT violation
3. KVM updates SPTE value to MMIO value (suppress VE bit is cleared)
4. Guest MMIO resumes. It triggers VE exception in guest TD
5. Guest VE handler issues TDG.VP.VMCALL<MMIO>
6. KVM handles MMIO
7. Guest VE handler resumes its execution after MMIO instruction
Signed-off-by: Isaku Yamahata <isaku.yamahata@intel.com>
Co-developed-by: Rick Edgecombe <rick.p.edgecombe@intel.com>
Signed-off-by: Rick Edgecombe <rick.p.edgecombe@intel.com>
Co-developed-by: Yan Zhao <yan.y.zhao@intel.com>
Signed-off-by: Yan Zhao <yan.y.zhao@intel.com>
Reviewed-by: Paolo Bonzini <pbonzini@redhat.com>
Message-ID: <20241112073743.22214-1-yan.y.zhao@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
Future changes will want to set shadow_mmio_value from TDX code. Add a
helper to setter with a name that makes more sense from that context.
Signed-off-by: Isaku Yamahata <isaku.yamahata@intel.com>
[split into new patch]
Co-developed-by: Rick Edgecombe <rick.p.edgecombe@intel.com>
Signed-off-by: Rick Edgecombe <rick.p.edgecombe@intel.com>
Signed-off-by: Yan Zhao <yan.y.zhao@intel.com>
Reviewed-by: Paolo Bonzini <pbonzini@redhat.com>
Message-ID: <20241112073730.22200-1-yan.y.zhao@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
Disable TDX support when TDP MMU or mmio caching or EPT A/D bits aren't
supported.
As TDP MMU is becoming main stream than the legacy MMU, the legacy MMU
support for TDX isn't implemented.
TDX requires KVM mmio caching. Without mmio caching, KVM will go to MMIO
emulation without installing SPTEs for MMIOs. However, TDX guest is
protected and KVM would meet errors when trying to emulate MMIOs for TDX
guest during instruction decoding. So, TDX guest relies on SPTEs being
installed for MMIOs, which are with no RWX bits and with VE suppress bit
unset, to inject VE to TDX guest. The TDX guest would then issue TDVMCALL
in the VE handler to perform instruction decoding and have host do MMIO
emulation.
TDX also relies on EPT A/D bits as EPT A/D bits have been supported in all
CPUs since Haswell. Relying on it can avoid RWX bits being masked out in
the mirror page table for prefaulted entries.
Signed-off-by: Isaku Yamahata <isaku.yamahata@intel.com>
Co-developed-by: Rick Edgecombe <rick.p.edgecombe@intel.com>
Signed-off-by: Rick Edgecombe <rick.p.edgecombe@intel.com>
Co-developed-by: Yan Zhao <yan.y.zhao@intel.com>
Signed-off-by: Yan Zhao <yan.y.zhao@intel.com>
Reviewed-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Yan Zhao <yan.y.zhao@intel.com>
---
Requested by Sean at [1].
[1] https://lore.kernel.org/kvm/Zva4aORxE9ljlMNe@google.com/
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
Make the direct root handle memslot GFNs at an alias with the TDX shared
bit set.
For TDX shared memory, the memslot GFNs need to be mapped at an alias with
the shared bit set. These shared mappings will be mapped on the KVM MMU's
"direct" root. The direct root has it's mappings shifted by applying
"gfn_direct_bits" as a mask. The concept of "GPAW" (guest physical address
width) determines the location of the shared bit. So set gfn_direct_bits
based on this, to map shared memory at the proper GPA.
Signed-off-by: Isaku Yamahata <isaku.yamahata@intel.com>
Co-developed-by: Rick Edgecombe <rick.p.edgecombe@intel.com>
Signed-off-by: Rick Edgecombe <rick.p.edgecombe@intel.com>
Co-developed-by: Yan Zhao <yan.y.zhao@intel.com>
Signed-off-by: Yan Zhao <yan.y.zhao@intel.com>
Reviewed-by: Paolo Bonzini <pbonzini@redhat.com>
Message-ID: <20241112073613.22100-1-yan.y.zhao@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
TDX uses two EPT pointers, one for the private half of the GPA space and
one for the shared half. The private half uses the normal EPT_POINTER vmcs
field, which is managed in a special way by the TDX module. For TDX, KVM is
not allowed to operate on it directly. The shared half uses a new
SHARED_EPT_POINTER field and will be managed by the conventional MMU
management operations that operate directly on the EPT root. This means for
TDX the .load_mmu_pgd() operation will need to know to use the
SHARED_EPT_POINTER field instead of the normal one. Add a new wrapper in
x86 ops for load_mmu_pgd() that either directs the write to the existing
vmx implementation or a TDX one.
tdx_load_mmu_pgd() is so much simpler than vmx_load_mmu_pgd() since for the
TDX mode of operation, EPT will always be used and KVM does not need to be
involved in virtualization of CR3 behavior. So tdx_load_mmu_pgd() can
simply write to SHARED_EPT_POINTER.
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Co-developed-by: Isaku Yamahata <isaku.yamahata@intel.com>
Signed-off-by: Isaku Yamahata <isaku.yamahata@intel.com>
Co-developed-by: Rick Edgecombe <rick.p.edgecombe@intel.com>
Signed-off-by: Rick Edgecombe <rick.p.edgecombe@intel.com>
Co-developed-by: Yan Zhao <yan.y.zhao@intel.com>
Signed-off-by: Yan Zhao <yan.y.zhao@intel.com>
Reviewed-by: Paolo Bonzini <pbonzini@redhat.com>
Message-ID: <20241112073601.22084-1-yan.y.zhao@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
TDX defines SEAMCALL APIs to access TDX control structures corresponding to
the VMX VMCS. Introduce helper accessors to hide its SEAMCALL ABI details.
Signed-off-by: Isaku Yamahata <isaku.yamahata@intel.com>
Co-developed-by: Rick Edgecombe <rick.p.edgecombe@intel.com>
Signed-off-by: Rick Edgecombe <rick.p.edgecombe@intel.com>
Co-developed-by: Yan Zhao <yan.y.zhao@intel.com>
Signed-off-by: Yan Zhao <yan.y.zhao@intel.com>
Message-ID: <20241112073551.22070-1-yan.y.zhao@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
Teach EPT violation helper to check shared mask of a GPA to find out
whether the GPA is for private memory.
When EPT violation is triggered after TD accessing a private GPA, KVM will
exit to user space if the corresponding GFN's attribute is not private.
User space will then update GFN's attribute during its memory conversion
process. After that, TD will re-access the private GPA and trigger EPT
violation again. Only with GFN's attribute matches to private, KVM will
fault in private page, map it in mirrored TDP root, and propagate changes
to private EPT to resolve the EPT violation.
Relying on GFN's attribute tracking xarray to determine if a GFN is
private, as for KVM_X86_SW_PROTECTED_VM, may lead to endless EPT
violations.
Signed-off-by: Rick Edgecombe <rick.p.edgecombe@intel.com>
Co-developed-by: Yan Zhao <yan.y.zhao@intel.com>
Signed-off-by: Yan Zhao <yan.y.zhao@intel.com>
Message-ID: <20241112073539.22056-1-yan.y.zhao@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
The difference of TDX EPT violation is how to retrieve information, GPA,
and exit qualification. To share the code to handle EPT violation, split
out the guts of EPT violation handler so that VMX/TDX exit handler can call
it after retrieving GPA and exit qualification.
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Co-developed-by: Isaku Yamahata <isaku.yamahata@intel.com>
Signed-off-by: Isaku Yamahata <isaku.yamahata@intel.com>
Co-developed-by: Rick Edgecombe <rick.p.edgecombe@intel.com>
Signed-off-by: Rick Edgecombe <rick.p.edgecombe@intel.com>
Signed-off-by: Yan Zhao <yan.y.zhao@intel.com>
Reviewed-by: Paolo Bonzini <pbonzini@redhat.com>
Reviewed-by: Kai Huang <kai.huang@intel.com>
Reviewed-by: Binbin Wu <binbin.wu@linux.intel.com>
Message-ID: <20241112073528.22042-1-yan.y.zhao@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
Fail kvm_page_track_write_tracking_enabled() if VM type is TDX to make the
external page track user fail in kvm_page_track_register_notifier() since
TDX does not support write protection and hence page track.
No need to fail KVM internal users of page track (i.e. for shadow page),
because TDX is always with EPT enabled and currently TDX module does not
emulate and send VMLAUNCH/VMRESUME VMExits to VMM.
Suggested-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Yan Zhao <yan.y.zhao@intel.com>
Reviewed-by: Binbin Wu <binbin.wu@linux.intel.com>
Cc: Yuan Yao <yuan.yao@linux.intel.com>
Message-ID: <20241112073515.22028-1-yan.y.zhao@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
Export a function to walk down the TDP without modifying it and simply
check if a GPA is mapped.
Future changes will support pre-populating TDX private memory. In order to
implement this KVM will need to check if a given GFN is already
pre-populated in the mirrored EPT. [1]
There is already a TDP MMU walker, kvm_tdp_mmu_get_walk() for use within
the KVM MMU that almost does what is required. However, to make sense of
the results, MMU internal PTE helpers are needed. Refactor the code to
provide a helper that can be used outside of the KVM MMU code.
Refactoring the KVM page fault handler to support this lookup usage was
also considered, but it was an awkward fit.
kvm_tdp_mmu_gpa_is_mapped() is based on a diff by Paolo Bonzini.
Link: https://lore.kernel.org/kvm/ZfBkle1eZFfjPI8l@google.com/ [1]
Signed-off-by: Isaku Yamahata <isaku.yamahata@intel.com>
Co-developed-by: Rick Edgecombe <rick.p.edgecombe@intel.com>
Signed-off-by: Rick Edgecombe <rick.p.edgecombe@intel.com>
Signed-off-by: Yan Zhao <yan.y.zhao@intel.com>
Reviewed-by: Paolo Bonzini <pbonzini@redhat.com>
Message-ID: <20241112073457.22011-1-yan.y.zhao@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
Update attr_filter field to zap both private and shared mappings for TDX
when memslot is deleted.
Signed-off-by: Rick Edgecombe <rick.p.edgecombe@intel.com>
Co-developed-by: Yan Zhao <yan.y.zhao@intel.com>
Signed-off-by: Yan Zhao <yan.y.zhao@intel.com>
Message-ID: <20241112073426.21997-1-yan.y.zhao@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
The TDX module measures the TD during the build process and saves the
measurement in TDCS.MRTD to facilitate TD attestation of the initial
contents of the TD. Wrap the SEAMCALL TDH.MR.EXTEND with tdh_mr_extend()
and TDH.MR.FINALIZE with tdh_mr_finalize() to enable the host kernel to
assist the TDX module in performing the measurement.
The measurement in TDCS.MRTD is a SHA-384 digest of the build process.
SEAMCALLs TDH.MNG.INIT and TDH.MEM.PAGE.ADD initialize and contribute to
the MRTD digest calculation.
The caller of tdh_mr_extend() should break the TD private page into chunks
of size TDX_EXTENDMR_CHUNKSIZE and invoke tdh_mr_extend() to add the page
content into the digest calculation. Failures are possible with
TDH.MR.EXTEND (e.g., due to SEPT walking). The caller of tdh_mr_extend()
can check the function return value and retrieve extended error information
from the function output parameters.
Calling tdh_mr_finalize() completes the measurement. The TDX module then
turns the TD into the runnable state. Further TDH.MEM.PAGE.ADD and
TDH.MR.EXTEND calls will fail.
TDH.MR.FINALIZE may fail due to errors such as the TD having no vCPUs or
contentions. Check function return value when calling tdh_mr_finalize() to
determine the exact reason for failure. Take proper locks on the caller's
side to avoid contention failures, or handle the BUSY error in specific
ways (e.g., retry). Return the SEAMCALL error code directly to the caller.
Do not attempt to handle it in the core kernel.
[Kai: Switched from generic seamcall export]
[Yan: Re-wrote the changelog]
Co-developed-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Isaku Yamahata <isaku.yamahata@intel.com>
Signed-off-by: Kai Huang <kai.huang@intel.com>
Signed-off-by: Rick Edgecombe <rick.p.edgecombe@intel.com>
Signed-off-by: Yan Zhao <yan.y.zhao@intel.com>
Message-ID: <20241112073709.22171-1-yan.y.zhao@intel.com>
Acked-by: Dave Hansen <dave.hansen@linux.intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
TDX architecture introduces the concept of private GPA vs shared GPA,
depending on the GPA.SHARED bit. The TDX module maintains a single Secure
EPT (S-EPT or SEPT) tree per TD to translate TD's private memory accessed
using a private GPA. Wrap the SEAMCALL TDH.MEM.PAGE.REMOVE with
tdh_mem_page_remove() and TDH_PHYMEM_PAGE_WBINVD with
tdh_phymem_page_wbinvd_hkid() to unmap a TD private page from the SEPT,
remove the TD private page from the TDX module and flush cache lines to
memory after removal of the private page.
Callers should specify "GPA" and "level" when calling tdh_mem_page_remove()
to indicate to the TDX module which TD private page to unmap and remove.
TDH.MEM.PAGE.REMOVE may fail, and the caller of tdh_mem_page_remove() can
check the function return value and retrieve extended error information
from the function output parameters. Follow the TLB tracking protocol
before calling tdh_mem_page_remove() to remove a TD private page to avoid
SEAMCALL failure.
After removing a TD's private page, the TDX module does not write back and
invalidate cache lines associated with the page and the page's keyID (i.e.,
the TD's guest keyID). Therefore, provide tdh_phymem_page_wbinvd_hkid() to
allow the caller to pass in the TD's guest keyID and invoke
TDH_PHYMEM_PAGE_WBINVD to perform this action.
Before reusing the page, the host kernel needs to map the page with keyID 0
and invoke movdir64b() to convert the TD private page to a normal shared
page.
TDH.MEM.PAGE.REMOVE and TDH_PHYMEM_PAGE_WBINVD may meet contentions inside
the TDX module for TDX's internal resources. To avoid staying in SEAM mode
for too long, TDX module will return a BUSY error code to the kernel
instead of spinning on the locks. The caller may need to handle this error
in specific ways (e.g., retry). The wrappers return the SEAMCALL error code
directly to the caller. Don't attempt to handle it in the core kernel.
[Kai: Switched from generic seamcall export]
[Yan: Re-wrote the changelog]
Co-developed-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Isaku Yamahata <isaku.yamahata@intel.com>
Signed-off-by: Kai Huang <kai.huang@intel.com>
Signed-off-by: Rick Edgecombe <rick.p.edgecombe@intel.com>
Signed-off-by: Yan Zhao <yan.y.zhao@intel.com>
Message-ID: <20241112073658.22157-1-yan.y.zhao@intel.com>
Acked-by: Dave Hansen <dave.hansen@linux.intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
TDX module defines a TLB tracking protocol to make sure that no logical
processor holds any stale Secure EPT (S-EPT or SEPT) TLB translations for a
given TD private GPA range. After a successful TDH.MEM.RANGE.BLOCK,
TDH.MEM.TRACK, and kicking off all vCPUs, TDX module ensures that the
subsequent TDH.VP.ENTER on each vCPU will flush all stale TLB entries for
the specified GPA ranges in TDH.MEM.RANGE.BLOCK. Wrap the
TDH.MEM.RANGE.BLOCK with tdh_mem_range_block() and TDH.MEM.TRACK with
tdh_mem_track() to enable the kernel to assist the TDX module in TLB
tracking management.
The caller of tdh_mem_range_block() needs to specify "GPA" and "level" to
request the TDX module to block the subsequent creation of TLB translation
for a GPA range. This GPA range can correspond to a SEPT page or a TD
private page at any level.
Contentions and errors are possible with the SEAMCALL TDH.MEM.RANGE.BLOCK.
Therefore, the caller of tdh_mem_range_block() needs to check the function
return value and retrieve extended error info from the function output
params.
Upon TDH.MEM.RANGE.BLOCK success, no new TLB entries will be created for
the specified private GPA range, though the existing TLB translations may
still persist. TDH.MEM.TRACK will then advance the TD's epoch counter to
ensure TDX module will flush TLBs in all vCPUs once the vCPUs re-enter
the TD. TDH.MEM.TRACK will fail to advance TD's epoch counter if there
are vCPUs still running in non-root mode at the previous TD epoch counter.
So to ensure private GPA translations are flushed, callers must first call
tdh_mem_range_block(), then tdh_mem_track(), and lastly send IPIs to kick
all the vCPUs and force them to re-enter, thus triggering the TLB flush.
Don't export a single operation and instead export functions that just
expose the block and track operations; this is for a couple reasons:
1. The vCPU kick should use KVM's functionality for doing this, which can better
target sending IPIs to only the minimum required pCPUs.
2. tdh_mem_track() doesn't need to be executed if a vCPU has not entered a TD,
which is information only KVM knows.
3. Leaving the operations separate will allow for batching many
tdh_mem_range_block() calls before a tdh_mem_track(). While this batching will
not be done initially by KVM, it demonstrates that keeping mem block and track
as separate operations is a generally good design.
Contentions are also possible in TDH.MEM.TRACK. For example, TDH.MEM.TRACK
may contend with TDH.VP.ENTER when advancing the TD epoch counter.
tdh_mem_track() does not provide the retries for the caller. Callers can
choose to avoid contentions or retry on their own.
[Kai: Switched from generic seamcall export]
[Yan: Re-wrote the changelog]
Co-developed-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Isaku Yamahata <isaku.yamahata@intel.com>
Signed-off-by: Kai Huang <kai.huang@intel.com>
Signed-off-by: Rick Edgecombe <rick.p.edgecombe@intel.com>
Signed-off-by: Yan Zhao <yan.y.zhao@intel.com>
Message-ID: <20241112073648.22143-1-yan.y.zhao@intel.com>
Acked-by: Dave Hansen <dave.hansen@linux.intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
TDX architecture introduces the concept of private GPA vs shared GPA,
depending on the GPA.SHARED bit. The TDX module maintains a Secure EPT
(S-EPT or SEPT) tree per TD to translate TD's private memory accessed
using a private GPA. Wrap the SEAMCALL TDH.MEM.PAGE.ADD with
tdh_mem_page_add() and TDH.MEM.PAGE.AUG with tdh_mem_page_aug() to add TD
private pages and map them to the TD's private GPAs in the SEPT.
Callers of tdh_mem_page_add() and tdh_mem_page_aug() allocate and provide
normal pages to the wrappers, who further pass those pages to the TDX
module. Before passing the pages to the TDX module, tdh_mem_page_add() and
tdh_mem_page_aug() perform a CLFLUSH on the page mapped with keyID 0 to
ensure that any dirty cache lines don't write back later and clobber TD
memory or control structures. Don't worry about the other MK-TME keyIDs
because the kernel doesn't use them. The TDX docs specify that this flush
is not needed unless the TDX module exposes the CLFLUSH_BEFORE_ALLOC
feature bit. Do the CLFLUSH unconditionally for two reasons: make the
solution simpler by having a single path that can handle both
!CLFLUSH_BEFORE_ALLOC and CLFLUSH_BEFORE_ALLOC cases. Avoid wading into any
correctness uncertainty by going with a conservative solution to start.
Call tdh_mem_page_add() to add a private page to a TD during the TD's build
time (i.e., before TDH.MR.FINALIZE). Specify which GPA the 4K private page
will map to. No need to specify level info since TDH.MEM.PAGE.ADD only adds
pages at 4K level. To provide initial contents to TD, provide an additional
source page residing in memory managed by the host kernel itself (encrypted
with a shared keyID). The TDX module will copy the initial contents from
the source page in shared memory into the private page after mapping the
page in the SEPT to the specified private GPA. The TDX module allows the
source page to be the same page as the private page to be added. In that
case, the TDX module converts and encrypts the source page as a TD private
page.
Call tdh_mem_page_aug() to add a private page to a TD during the TD's
runtime (i.e., after TDH.MR.FINALIZE). TDH.MEM.PAGE.AUG supports adding
huge pages. Specify which GPA the private page will map to, along with
level info embedded in the lower bits of the GPA. The TDX module will
recognize the added page as the TD's private page after the TD's acceptance
with TDCALL TDG.MEM.PAGE.ACCEPT.
tdh_mem_page_add() and tdh_mem_page_aug() may fail. Callers can check
function return value and retrieve extended error info from the function
output parameters.
The TDX module has many internal locks. To avoid staying in SEAM mode for
too long, SEAMCALLs returns a BUSY error code to the kernel instead of
spinning on the locks. Depending on the specific SEAMCALL, the caller
may need to handle this error in specific ways (e.g., retry). Therefore,
return the SEAMCALL error code directly to the caller. Don't attempt to
handle it in the core kernel.
[Kai: Switched from generic seamcall export]
[Yan: Re-wrote the changelog]
Co-developed-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Isaku Yamahata <isaku.yamahata@intel.com>
Signed-off-by: Kai Huang <kai.huang@intel.com>
Signed-off-by: Rick Edgecombe <rick.p.edgecombe@intel.com>
Signed-off-by: Yan Zhao <yan.y.zhao@intel.com>
Message-ID: <20241112073636.22129-1-yan.y.zhao@intel.com>
Acked-by: Dave Hansen <dave.hansen@linux.intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
TDX architecture introduces the concept of private GPA vs shared GPA,
depending on the GPA.SHARED bit. The TDX module maintains a Secure EPT
(S-EPT or SEPT) tree per TD for private GPA to HPA translation. Wrap the
TDH.MEM.SEPT.ADD SEAMCALL with tdh_mem_sept_add() to provide pages to the
TDX module for building a TD's SEPT tree. (Refer to these pages as SEPT
pages).
Callers need to allocate and provide a normal page to tdh_mem_sept_add(),
which then passes the page to the TDX module via the SEAMCALL
TDH.MEM.SEPT.ADD. The TDX module then installs the page into SEPT tree and
encrypts this SEPT page with the TD's guest keyID. The kernel cannot use
the SEPT page until after reclaiming it via TDH.MEM.SEPT.REMOVE or
TDH.PHYMEM.PAGE.RECLAIM.
Before passing the page to the TDX module, tdh_mem_sept_add() performs a
CLFLUSH on the page mapped with keyID 0 to ensure that any dirty cache
lines don't write back later and clobber TD memory or control structures.
Don't worry about the other MK-TME keyIDs because the kernel doesn't use
them. The TDX docs specify that this flush is not needed unless the TDX
module exposes the CLFLUSH_BEFORE_ALLOC feature bit. Do the CLFLUSH
unconditionally for two reasons: make the solution simpler by having a
single path that can handle both !CLFLUSH_BEFORE_ALLOC and
CLFLUSH_BEFORE_ALLOC cases. Avoid wading into any correctness uncertainty
by going with a conservative solution to start.
Callers should specify "GPA" and "level" for the TDX module to install the
SEPT page at the specified position in the SEPT. Do not include the root
page level in "level" since TDH.MEM.SEPT.ADD can only add non-root pages to
the SEPT. Ensure "level" is between 1 and 3 for a 4-level SEPT or between 1
and 4 for a 5-level SEPT.
Call tdh_mem_sept_add() during the TD's build time or during the TD's
runtime. Check for errors from the function return value and retrieve
extended error info from the function output parameters.
The TDX module has many internal locks. To avoid staying in SEAM mode for
too long, SEAMCALLs returns a BUSY error code to the kernel instead of
spinning on the locks. Depending on the specific SEAMCALL, the caller
may need to handle this error in specific ways (e.g., retry). Therefore,
return the SEAMCALL error code directly to the caller. Don't attempt to
handle it in the core kernel.
TDH.MEM.SEPT.ADD effectively manages two internal resources of the TDX
module: it installs page table pages in the SEPT tree and also updates the
TDX module's page metadata (PAMT). Don't add a wrapper for the matching
SEAMCALL for removing a SEPT page (TDH.MEM.SEPT.REMOVE) because KVM, as the
only in-kernel user, will only tear down the SEPT tree when the TD is being
torn down. When this happens it can just do other operations that reclaim
the SEPT pages for the host kernels to use, update the PAMT and let the
SEPT get trashed.
[Kai: Switched from generic seamcall export]
[Yan: Re-wrote the changelog]
Co-developed-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Isaku Yamahata <isaku.yamahata@intel.com>
Signed-off-by: Kai Huang <kai.huang@intel.com>
Signed-off-by: Rick Edgecombe <rick.p.edgecombe@intel.com>
Signed-off-by: Yan Zhao <yan.y.zhao@intel.com>
Message-ID: <20241112073624.22114-1-yan.y.zhao@intel.com>
Acked-by: Dave Hansen <dave.hansen@linux.intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
TDX host key IDs (HKID) are limit resources in a machine, and the misc
cgroup lets the machine owner track their usage and limits the possibility
of abusing them outside the owner's control.
The cgroup v2 miscellaneous subsystem was introduced to control the
resource of AMD SEV & SEV-ES ASIDs. Likewise introduce HKIDs as a misc
resource.
Signed-off-by: Zhiming Hu <zhiming.hu@intel.com>
Signed-off-by: Isaku Yamahata <isaku.yamahata@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
For TDX, the maxpa (CPUID.0x80000008.EAX[7:0]) is fixed as native and
the max_gpa (CPUID.0x80000008.EAX[23:16]) is configurable and used
to configure the EPT level and GPAW.
Use max_gpa to determine the TDP level.
Signed-off-by: Xiaoyao Li <xiaoyao.li@intel.com>
Signed-off-by: Rick Edgecombe <rick.p.edgecombe@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
Implement an IOCTL to allow userspace to read the CPUID bit values for a
configured TD.
The TDX module doesn't provide the ability to set all CPUID bits. Instead
some are configured indirectly, or have fixed values. But it does allow
for the final resulting CPUID bits to be read. This information will be
useful for userspace to understand the configuration of the TD, and set
KVM's copy via KVM_SET_CPUID2.
Signed-off-by: Xiaoyao Li <xiaoyao.li@intel.com>
Co-developed-by: Tony Lindgren <tony.lindgren@linux.intel.com>
Signed-off-by: Tony Lindgren <tony.lindgren@linux.intel.com>
Signed-off-by: Rick Edgecombe <rick.p.edgecombe@intel.com>
---
- Fix subleaf mask check (Binbin)
- Search all possible sub-leafs (Francesco Lavra)
- Reduce off-by-one error sensitve code (Francesco, Xiaoyao)
- Handle buffers too small from userspace (Xiaoyao)
- Read max CPUID from TD instead of using fixed values (Xiaoyao)
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
TD guest vcpu needs TDX specific initialization before running. Repurpose
KVM_MEMORY_ENCRYPT_OP to vcpu-scope, add a new sub-command
KVM_TDX_INIT_VCPU, and implement the callback for it.
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Isaku Yamahata <isaku.yamahata@intel.com>
Co-developed-by: Tony Lindgren <tony.lindgren@linux.intel.com>
Signed-off-by: Tony Lindgren <tony.lindgren@linux.intel.com>
Co-developed-by: Adrian Hunter <adrian.hunter@intel.com>
Signed-off-by: Adrian Hunter <adrian.hunter@intel.com>
Signed-off-by: Rick Edgecombe <rick.p.edgecombe@intel.com>
---
- Fix comment: https://lore.kernel.org/kvm/Z36OYfRW9oPjW8be@google.com/
(Sean)
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
Implement vcpu related stubs for TDX for create, reset and free.
For now, create only the features that do not require the TDX SEAMCALL.
The TDX specific vcpu initialization will be handled by KVM_TDX_INIT_VCPU.
Signed-off-by: Isaku Yamahata <isaku.yamahata@intel.com>
Signed-off-by: Rick Edgecombe <rick.p.edgecombe@intel.com>
---
- Use lapic_in_kernel() (Nikolay Borisov)
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
Destroying TDX guest requires there's at least one cpu online for each
package, because reclaiming the TDX KeyID of the guest (as part of the
teardown process) requires to call some SEAMCALL (on any cpu) on all
packages.
Do not offline the last cpu of one package when there's any TDX guest
running, otherwise KVM may not be able to teardown TDX guest resulting
in leaking of TDX KeyID and other resources like TDX guest control
structure pages.
Implement the TDX version 'offline_cpu()' to prevent the cpu from going
offline if it is the last cpu on the package.
Co-developed-by: Kai Huang <kai.huang@intel.com>
Signed-off-by: Kai Huang <kai.huang@intel.com>
Suggested-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Isaku Yamahata <isaku.yamahata@intel.com>
Signed-off-by: Rick Edgecombe <rick.p.edgecombe@intel.com>
Reviewed-by: Binbin Wu <binbin.wu@linux.intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
TDX KVM doesn't support PMU yet, it's future work of TDX KVM support as
another patch series. For now, handle TDX by updating vcpu_to_lbr_desc()
and vcpu_to_lbr_records() to return NULL.
Signed-off-by: Isaku Yamahata <isaku.yamahata@intel.com>
Co-developed-by: Tony Lindgren <tony.lindgren@linux.intel.com>
Signed-off-by: Tony Lindgren <tony.lindgren@linux.intel.com>
Signed-off-by: Rick Edgecombe <rick.p.edgecombe@intel.com>
---
- Add pragma poison for to_vmx() (Paolo)
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
After the crypto-protection key has been configured, TDX requires a
VM-scope initialization as a step of creating the TDX guest. This
"per-VM" TDX initialization does the global configurations/features that
the TDX guest can support, such as guest's CPUIDs (emulated by the TDX
module), the maximum number of vcpus etc.
Because there is no room in KVM_CREATE_VM to pass all the required
parameters, introduce a new ioctl KVM_TDX_INIT_VM and mark the VM as
TD_STATE_UNINITIALIZED until it is invoked.
This "per-VM" TDX initialization must be done before any "vcpu-scope" TDX
initialization; KVM_TDX_INIT_VM IOCTL must be invoked before the creation
of vCPUs.
Co-developed-by: Xiaoyao Li <xiaoyao.li@intel.com>
Signed-off-by: Xiaoyao Li <xiaoyao.li@intel.com>
Signed-off-by: Isaku Yamahata <isaku.yamahata@intel.com>
Signed-off-by: Rick Edgecombe <rick.p.edgecombe@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
CPUID values are provided for TDX virtual machines as part of the
KVM_TDX_INIT_VM ioctl. Unlike KVM_SET_CPUID2, TDX will need to
examine the leaves, either to validate against the CPUIDs listed
in the TDX modules configuration or to fill other controls with
matching values.
Since there is an existing function to look up a leaf/index pair
into a given list of CPUID entries, export it as kvm_find_cpuid_entry2().
Reviewed-by: Kai Huang <kai.huang@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
Change to report the KVM_CAP_MAX_VCPUS extension from globally to per-VM
to allow userspace to be able to query maximum vCPUs for TDX guest via
checking the KVM_CAP_MAX_VCPU extension on per-VM basis.
Today KVM x86 reports KVM_MAX_VCPUS as guest's maximum vCPUs for all
guests globally, and userspace, i.e. Qemu, queries the KVM_MAX_VCPUS
extension globally but not on per-VM basis.
TDX has its own limit of maximum vCPUs it can support for all TDX guests
in addition to KVM_MAX_VCPUS. TDX module reports this limit via the
MAX_VCPU_PER_TD global metadata. Different modules may report different
values. In practice, the reported value reflects the maximum logical
CPUs that ALL the platforms that the module supports can possibly have.
Note some old modules may also not support this metadata, in which case
the limit is U16_MAX.
The current way to always report KVM_MAX_VCPUS in the KVM_CAP_MAX_VCPUS
extension is not enough for TDX. To accommodate TDX, change to report
the KVM_CAP_MAX_VCPUS extension on per-VM basis.
Specifically, override kvm->max_vcpus in tdx_vm_init() for TDX guest,
and report kvm->max_vcpus in the KVM_CAP_MAX_VCPUS extension check.
Change to report "the number of logical CPUs the platform has" as the
maximum vCPUs for TDX guest. Simply forwarding the MAX_VCPU_PER_TD
reported by the TDX module would result in an unpredictable ABI because
the reported value to userspace would be depending on whims of TDX
modules.
This works in practice because of the MAX_VCPU_PER_TD reported by the
TDX module will never be smaller than the one reported to userspace.
But to make sure KVM never reports an unsupported value, sanity check
the MAX_VCPU_PER_TD reported by TDX module is not smaller than the
number of logical CPUs the platform has, otherwise refuse to use TDX.
Note, when creating a TDX guest, TDX actually requires the "maximum
vCPUs for _this_ TDX guest" as an input to initialize the TDX guest.
But TDX guest's maximum vCPUs is not part of TDREPORT thus not part of
attestation, thus there's no need to allow userspace to explicitly
_configure_ the maximum vCPUs on per-VM basis. KVM will simply use
kvm->max_vcpus as input when initializing the TDX guest.
Signed-off-by: Isaku Yamahata <isaku.yamahata@intel.com>
Signed-off-by: Rick Edgecombe <rick.p.edgecombe@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
Implement managing the TDX private KeyID to implement, create, destroy
and free for a TDX guest.
When creating at TDX guest, assign a TDX private KeyID for the TDX guest
for memory encryption, and allocate pages for the guest. These are used
for the Trust Domain Root (TDR) and Trust Domain Control Structure (TDCS).
On destruction, free the allocated pages, and the KeyID.
Before tearing down the private page tables, TDX requires the guest TD to
be destroyed by reclaiming the KeyID. Do it in the vm_pre_destroy() kvm_x86_ops
hook. The TDR control structures can be freed in the vm_destroy() hook,
which runs last.
Co-developed-by: Tony Lindgren <tony.lindgren@linux.intel.com>
Signed-off-by: Tony Lindgren <tony.lindgren@linux.intel.com>
Signed-off-by: Isaku Yamahata <isaku.yamahata@intel.com>
Co-developed-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Co-developed-by: Kai Huang <kai.huang@intel.com>
Signed-off-by: Kai Huang <kai.huang@intel.com>
Co-developed-by: Yan Zhao <yan.y.zhao@intel.com>
Signed-off-by: Yan Zhao <yan.y.zhao@intel.com>
Co-developed-by: Rick Edgecombe <rick.p.edgecombe@intel.com>
Signed-off-by: Rick Edgecombe <rick.p.edgecombe@intel.com>
---
- Fix build issue in kvm-coco-queue
- Init ret earlier to fix __tdx_td_init() error handling. (Chao)
- Standardize -EAGAIN for __tdx_td_init() retry errors (Rick)
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
TDX KVM needs system-wide information about the TDX module. Generate the
data based on tdx_sysinfo td_conf CPUID data.
Signed-off-by: Isaku Yamahata <isaku.yamahata@intel.com>
Co-developed-by: Xiaoyao Li <xiaoyao.li@intel.com>
Signed-off-by: Xiaoyao Li <xiaoyao.li@intel.com>
Co-developed-by: Tony Lindgren <tony.lindgren@linux.intel.com>
Signed-off-by: Tony Lindgren <tony.lindgren@linux.intel.com>
Signed-off-by: Rick Edgecombe <rick.p.edgecombe@intel.com>
Reviewed-by: Binbin Wu <binbin.wu@linux.intel.com>
---
- Clarify comment about EAX[23:16] in td_init_cpuid_entry2() (Xiaoyao)
- Add comment for configurable CPUID bits (Xiaoyao)
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
KVM_MEMORY_ENCRYPT_OP was introduced for VM-scoped operations specific for
guest state-protected VM. It defined subcommands for technology-specific
operations under KVM_MEMORY_ENCRYPT_OP. Despite its name, the subcommands
are not limited to memory encryption, but various technology-specific
operations are defined. It's natural to repurpose KVM_MEMORY_ENCRYPT_OP
for TDX specific operations and define subcommands.
Add a place holder function for TDX specific VM-scoped ioctl as mem_enc_op.
TDX specific sub-commands will be added to retrieve/pass TDX specific
parameters. Make mem_enc_ioctl non-optional as it's always filled.
Signed-off-by: Isaku Yamahata <isaku.yamahata@intel.com>
Co-developed-by: Tony Lindgren <tony.lindgren@linux.intel.com>
Signed-off-by: Tony Lindgren <tony.lindgren@linux.intel.com>
Signed-off-by: Rick Edgecombe <rick.p.edgecombe@intel.com>
---
- Drop the misleading "defined for consistency" line. It's a copy-paste
error introduced in the earlier patches. Earlier there was padding at
the end to match struct kvm_sev_cmd size. (Tony)
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
Add helper functions to print out errors from the TDX module in a uniform
manner.
Signed-off-by: Isaku Yamahata <isaku.yamahata@intel.com>
Co-developed-by: Tony Lindgren <tony.lindgren@linux.intel.com>
Signed-off-by: Tony Lindgren <tony.lindgren@linux.intel.com>
Signed-off-by: Rick Edgecombe <rick.p.edgecombe@intel.com>
Reviewed-by: Binbin Wu <binbin.wu@linux.intel.com>
Reviewed-by: Yuan Yao <yuan.yao@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
Add error codes for the TDX SEAMCALLs both for TDX VMM side for TDH
SEAMCALL and TDX guest side for TDG.VP.VMCALL. KVM issues the TDX
SEAMCALLs and checks its error code. KVM handles hypercall from the TDX
guest and may return an error. So error code for the TDX guest is also
needed.
TDX SEAMCALL uses bits 31:0 to return more information, so these error
codes will only exactly match RAX[63:32]. Error codes for TDG.VP.VMCALL is
defined by TDX Guest-Host-Communication interface spec.
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Isaku Yamahata <isaku.yamahata@intel.com>
Signed-off-by: Rick Edgecombe <rick.p.edgecombe@intel.com>
Reviewed-by: Paolo Bonzini <pbonzini@redhat.com>
Reviewed-by: Yuan Yao <yuan.yao@intel.com>
Reviewed-by: Xiaoyao Li <xiaoyao.li@intel.com>
Message-ID: <20241030190039.77971-14-rick.p.edgecombe@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
Define architectural definitions for KVM to issue the TDX SEAMCALLs.
Structures and values that are architecturally defined in the TDX module
specifications the chapter of ABI Reference.
Co-developed-by: Tony Lindgren <tony.lindgren@linux.intel.com>
Signed-off-by: Tony Lindgren <tony.lindgren@linux.intel.com>
Co-developed-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Isaku Yamahata <isaku.yamahata@intel.com>
Signed-off-by: Rick Edgecombe <rick.p.edgecombe@intel.com>
Reviewed-by: Paolo Bonzini <pbonzini@redhat.com>
Reviewed-by: Xiaoyao Li <xiaoyao.li@intel.com>
---
- Drop old duplicate defines, the x86 core exports what's needed (Kai)
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
Add TDX's own VM and vCPU structures as placeholder to manage and run
TDX guests. Also add helper functions to check whether a VM/vCPU is
TDX or normal VMX one, and add helpers to convert between TDX VM/vCPU
and KVM VM/vCPU.
TDX protects guest VMs from malicious host. Unlike VMX guests, TDX
guests are crypto-protected. KVM cannot access TDX guests' memory and
vCPU states directly. Instead, TDX requires KVM to use a set of TDX
architecture-defined firmware APIs (a.k.a TDX module SEAMCALLs) to
manage and run TDX guests.
In fact, the way to manage and run TDX guests and normal VMX guests are
quite different. Because of that, the current structures
('struct kvm_vmx' and 'struct vcpu_vmx') to manage VMX guests are not
quite suitable for TDX guests. E.g., the majority of the members of
'struct vcpu_vmx' don't apply to TDX guests.
Introduce TDX's own VM and vCPU structures ('struct kvm_tdx' and 'struct
vcpu_tdx' respectively) for KVM to manage and run TDX guests. And
instead of building TDX's VM and vCPU structures based on VMX's, build
them directly based on 'struct kvm'.
As a result, TDX and VMX guests will have different VM size and vCPU
size/alignment.
Currently, kvm_arch_alloc_vm() uses 'kvm_x86_ops::vm_size' to allocate
enough space for the VM structure when creating guest. With TDX guests,
ideally, KVM should allocate the VM structure based on the VM type so
that the precise size can be allocated for VMX and TDX guests. But this
requires more extensive code change. For now, simply choose the maximum
size of 'struct kvm_tdx' and 'struct kvm_vmx' for VM structure
allocation for both VMX and TDX guests. This would result in small
memory waste for each VM which has smaller VM structure size but this is
acceptable.
For simplicity, use the same way for vCPU allocation too. Otherwise KVM
would need to maintain a separate 'kvm_vcpu_cache' for each VM type.
Note, updating the 'vt_x86_ops::vm_size' needs to be done before calling
kvm_ops_update(), which copies vt_x86_ops to kvm_x86_ops. However this
happens before TDX module initialization. Therefore theoretically it is
possible that 'kvm_x86_ops::vm_size' is set to size of 'struct kvm_tdx'
(when it's larger) but TDX actually fails to initialize at a later time.
Again the worst case of this is wasting couple of bytes memory for each
VM. KVM could choose to update 'kvm_x86_ops::vm_size' at a later time
depending on TDX's status but that would require base KVM module to
export either kvm_x86_ops or kvm_ops_update().
Signed-off-by: Isaku Yamahata <isaku.yamahata@intel.com>
Signed-off-by: Rick Edgecombe <rick.p.edgecombe@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
---
- Make to_kvm_tdx() and to_tdx() private to tdx.c (Francesco, Tony)
- Add pragma poison for to_vmx() (Paolo)
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
KVM will need to consult some essential TDX global information to create
and run TDX guests. Get the global information after initializing TDX.
Signed-off-by: Kai Huang <kai.huang@intel.com>
Signed-off-by: Rick Edgecombe <rick.p.edgecombe@intel.com>
Message-ID: <20241030190039.77971-3-rick.p.edgecombe@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
Before KVM can use TDX to create and run TDX guests, TDX needs to be
initialized from two perspectives: 1) TDX module must be initialized
properly to a working state; 2) A per-cpu TDX initialization, a.k.a the
TDH.SYS.LP.INIT SEAMCALL must be done on any logical cpu before it can
run any other TDX SEAMCALLs.
The TDX host core-kernel provides two functions to do the above two
respectively: tdx_enable() and tdx_cpu_enable().
There are two options in terms of when to initialize TDX: initialize TDX
at KVM module loading time, or when creating the first TDX guest.
Choose to initialize TDX during KVM module loading time:
Initializing TDX module is both memory and CPU time consuming: 1) the
kernel needs to allocate a non-trivial size(~1/256) of system memory
as metadata used by TDX module to track each TDX-usable memory page's
status; 2) the TDX module needs to initialize this metadata, one entry
for each TDX-usable memory page.
Also, the kernel uses alloc_contig_pages() to allocate those metadata
chunks, because they are large and need to be physically contiguous.
alloc_contig_pages() can fail. If initializing TDX when creating the
first TDX guest, then there's chance that KVM won't be able to run any
TDX guests albeit KVM _declares_ to be able to support TDX.
This isn't good for the user.
On the other hand, initializing TDX at KVM module loading time can make
sure KVM is providing a consistent view of whether KVM can support TDX
to the user.
Always only try to initialize TDX after VMX has been initialized. TDX
is based on VMX, and if VMX fails to initialize then TDX is likely to be
broken anyway. Also, in practice, supporting TDX will require part of
VMX and common x86 infrastructure in working order, so TDX cannot be
enabled alone w/o VMX support.
There are two cases that can result in failure to initialize TDX: 1) TDX
cannot be supported (e.g., because of TDX is not supported or enabled by
hardware, or module is not loaded, or missing some dependency in KVM's
configuration); 2) Any unexpected error during TDX bring-up. For the
first case only mark TDX is disabled but still allow KVM module to be
loaded. For the second case just fail to load the KVM module so that
the user can be aware.
Because TDX costs additional memory, don't enable TDX by default. Add a
new module parameter 'enable_tdx' to allow the user to opt-in.
Note, the name tdx_init() has already been taken by the early boot code.
Use tdx_bringup() for initializing TDX (and tdx_cleanup() since KVM
doesn't actually teardown TDX). They don't match vt_init()/vt_exit(),
vmx_init()/vmx_exit() etc but it's not end of the world.
Also, once initialized, the TDX module cannot be disabled and enabled
again w/o the TDX module runtime update, which isn't supported by the
kernel. After TDX is enabled, nothing needs to be done when KVM
disables hardware virtualization, e.g., when offlining CPU, or during
suspend/resume. TDX host core-kernel code internally tracks TDX status
and can handle "multiple enabling" scenario.
Similar to KVM_AMD_SEV, add a new KVM_INTEL_TDX Kconfig to guide KVM TDX
code. Make it depend on INTEL_TDX_HOST but not replace INTEL_TDX_HOST
because in the longer term there's a use case that requires making
SEAMCALLs w/o KVM as mentioned by Dan [1].
Link: https://lore.kernel.org/6723fc2070a96_60c3294dc@dwillia2-mobl3.amr.corp.intel.com.notmuch/ [1]
Signed-off-by: Kai Huang <kai.huang@intel.com>
Message-ID: <162f9dee05c729203b9ad6688db1ca2960b4b502.1731664295.git.kai.huang@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
Add vt_init() and vt_exit() as the new module init/exit functions and
refactor existing vmx_init()/vmx_exit() as helper to make room for TDX
specific initialization and teardown.
To support TDX, KVM will need to enable TDX during KVM module loading
time. Enabling TDX requires enabling hardware virtualization first so
that all online CPUs (and the new CPU going online) are in post-VMXON
state.
Currently, the vmx_init() flow is:
1) hv_init_evmcs(),
2) kvm_x86_vendor_init(),
3) Other VMX specific initialization,
4) kvm_init()
The kvm_x86_vendor_init() invokes kvm_x86_init_ops::hardware_setup() to
do VMX specific hardware setup and calls kvm_update_ops() to initialize
kvm_x86_ops to VMX's version.
TDX will have its own version for most of kvm_x86_ops callbacks. It
would be nice if kvm_x86_init_ops::hardware_setup() could also be used
for TDX, but in practice it cannot. The reason is, as mentioned above,
TDX initialization requires hardware virtualization having been enabled,
which must happen after kvm_update_ops(), but hardware_setup() is done
before that.
Also, TDX is based on VMX, and it makes sense to only initialize TDX
after VMX has been initialized. If VMX fails to initialize, TDX is
likely broken anyway.
So the new flow of KVM module init function will be:
1) Current VMX initialization code in vmx_init() before kvm_init(),
2) TDX initialization,
3) kvm_init()
Split vmx_init() into two parts based on above 1) and 3) so that TDX
initialization can fit in between. Make part 1) as the new helper
vmx_init(). Introduce vt_init() as the new module init function which
calls vmx_init() and kvm_init(). TDX initialization will be added
later.
Do the same thing for vmx_exit()/vt_exit().
Signed-off-by: Kai Huang <kai.huang@intel.com>
Message-ID: <3f23f24098bdcf42e213798893ffff7cdc7103be.1731664295.git.kai.huang@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
To support TDX, KVM will need to enable TDX during KVM module loading
time. Enabling TDX requires enabling hardware virtualization first so
that all online CPUs (and the new CPU going online) are in post-VMXON
state.
KVM by default enables hardware virtualization but that is done in
kvm_init(), which must be the last step after all initialization is done
thus is too late for enabling TDX.
Export functions to enable/disable hardware virtualization so that TDX
code can use them to handle hardware virtualization enabling before
kvm_init().
Signed-off-by: Kai Huang <kai.huang@intel.com>
Message-ID: <dfe17314c0d9978b7bc3b0833dff6f167fbd28f5.1731664295.git.kai.huang@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
Intel TDX protects guest VMs from malicious host and certain physical
attacks. Pre-TDX Intel hardware has support for a memory encryption
architecture called MK-TME, which repurposes several high bits of
physical address as "KeyID". The BIOS reserves a sub-range of MK-TME
KeyIDs as "TDX private KeyIDs".
Each TDX guest must be assigned with a unique TDX KeyID when it is
created. The kernel reserves the first TDX private KeyID for
crypto-protection of specific TDX module data which has a lifecycle that
exceeds the KeyID reserved for the TD's use. The rest of the KeyIDs are
left for TDX guests to use.
Create a small KeyID allocator. Export
tdx_guest_keyid_alloc()/tdx_guest_keyid_free() to allocate and free TDX
guest KeyID for KVM to use.
Don't provide the stub functions when CONFIG_INTEL_TDX_HOST=n since they
are not supposed to be called in this case.
Signed-off-by: Isaku Yamahata <isaku.yamahata@intel.com>
Signed-off-by: Rick Edgecombe <rick.p.edgecombe@intel.com>
Message-ID: <20241030190039.77971-5-rick.p.edgecombe@intel.com>
Acked-by: Dave Hansen <dave.hansen@linux.intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
KVM needs two classes of global metadata to create and run TDX guests:
- "TD Control Structures"
- "TD Configurability"
The first class contains the sizes of TDX guest per-VM and per-vCPU
control structures. KVM will need to use them to allocate enough space
for those control structures.
The second class contains info which reports things like which features
are configurable to TDX guest etc. KVM will need to use them to
properly configure TDX guests.
Read them for KVM TDX to use.
The code change is auto-generated by re-running the script in [1] after
uncommenting the "td_conf" and "td_ctrl" part to regenerate the
tdx_global_metadata.{hc} and update them to the existing ones in the
kernel.
#python tdx.py global_metadata.json tdx_global_metadata.h \
tdx_global_metadata.c
The 'global_metadata.json' can be fetched from [2].
Note that as of this writing, the JSON file only allows a maximum of 32
CPUID entries. While this is enough for current contents of the CPUID
leaves, there were plans to change the JSON per TDX module release which
would change the ABI and potentially prevent future versions of the TDX
module from working with older kernels.
While discussions are ongoing with the TDX module team on what exactly
constitutes an ABI breakage, in the meantime the TDX module team has
agreed to not increase the number of CPUID entries beyond 128 without
an opt in. Therefore the file was tweaked by hand to change the maximum
number of CPUID_CONFIGs.
Link: https://lore.kernel.org/kvm/0853b155ec9aac09c594caa60914ed6ea4dc0a71.camel@intel.com/ [1]
Link: https://cdrdv2.intel.com/v1/dl/getContent/795381 [2]
Signed-off-by: Kai Huang <kai.huang@intel.com>
Signed-off-by: Rick Edgecombe <rick.p.edgecombe@intel.com>
Message-ID: <20241030190039.77971-4-rick.p.edgecombe@intel.com>
Acked-by: Dave Hansen <dave.hansen@linux.intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
Adding all the information that KVM needs increases the size of struct
tdx_sys_info, to the point that you can get warnings about the stack
size of init_tdx_module(). Since KVM also needs to read the TDX metadata
after init_tdx_module() returns, make the variable a global.
Reviewed-by: Rick Edgecombe <rick.p.edgecombe@intel.com>
Reviewed-by: Kai Huang <kai.huang@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
Intel TDX protects guest VMs from malicious host and certain physical
attacks. The TDX module has the concept of flushing vCPUs. These flushes
include both a flush of the translation caches and also any other state
internal to the TDX module. Before freeing a KeyID, this flush operation
needs to be done. KVM will need to perform the flush on each pCPU
associated with the TD, and also perform a TD scoped operation that checks
if the flush has been done on all vCPU's associated with the TD.
Add a tdh_vp_flush() function to be used to call TDH.VP.FLUSH on each pCPU
associated with the TD during TD teardown. It will also be called when
disabling TDX and during vCPU migration between pCPUs.
Add tdh_mng_vpflushdone() to be used by KVM to call TDH.MNG.VPFLUSHDONE.
KVM will use this during TD teardown to verify that TDH.VP.FLUSH has been
called sufficiently, and advance the state machine that will allow for
reclaiming the TD's KeyID.
Co-developed-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Isaku Yamahata <isaku.yamahata@intel.com>
Signed-off-by: Kai Huang <kai.huang@intel.com>
Signed-off-by: Rick Edgecombe <rick.p.edgecombe@intel.com>
Reviewed-by: Binbin Wu <binbin.wu@linux.intel.com>
Reviewed-by: Yuan Yao <yuan.yao@intel.com>
Message-ID: <20241203010317.827803-7-rick.p.edgecombe@intel.com>
Acked-by: Dave Hansen <dave.hansen@linux.intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
Intel TDX protects guest VMs from malicious host and certain physical
attacks. The TDX module has TD scoped and vCPU scoped "metadata fields".
These fields are a bit like VMCS fields, and stored in data structures
maintained by the TDX module. Export 3 SEAMCALLs for use in reading and
writing these fields:
Make tdh_mng_rd() use MNG.VP.RD to read the TD scoped metadata.
Make tdh_vp_rd()/tdh_vp_wr() use TDH.VP.RD/WR to read/write the vCPU
scoped metadata.
KVM will use these by creating inline helpers that target various metadata
sizes. Export the raw SEAMCALL leaf, to avoid exporting the large number
of various sized helpers.
Co-developed-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Isaku Yamahata <isaku.yamahata@intel.com>
Signed-off-by: Kai Huang <kai.huang@intel.com>
Signed-off-by: Rick Edgecombe <rick.p.edgecombe@intel.com>
Reviewed-by: Binbin Wu <binbin.wu@linux.intel.com>
Reviewed-by: Yuan Yao <yuan.yao@intel.com>
Acked-by: Dave Hansen <dave.hansen@linux.intel.com>
Message-ID: <20241203010317.827803-6-rick.p.edgecombe@intel.com>
Acked-by: Dave Hansen <dave.hansen@linux.intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
Intel TDX protects guest VMs from malicious host and certain physical
attacks. The TDX module uses pages provided by the host for both control
structures and for TD guest pages. These pages are encrypted using the
MK-TME encryption engine, with its special requirements around cache
invalidation. For its own security, the TDX module ensures pages are
flushed properly and track which usage they are currently assigned. For
creating and tearing down TD VMs and vCPUs KVM will need to use the
TDH.PHYMEM.PAGE.RECLAIM, TDH.PHYMEM.CACHE.WB, and TDH.PHYMEM.PAGE.WBINVD
SEAMCALLs.
Add tdh_phymem_page_reclaim() to enable KVM to call
TDH.PHYMEM.PAGE.RECLAIM to reclaim the page for use by the host kernel.
This effectively resets its state in the TDX module's page tracking
(PAMT), if the page is available to be reclaimed. This will be used by KVM
to reclaim the various types of pages owned by the TDX module. It will
have a small wrapper in KVM that retries in the case of a relevant error
code. Don't implement this wrapper in arch/x86 because KVM's solution
around retrying SEAMCALLs will be better located in a single place.
Add tdh_phymem_cache_wb() to enable KVM to call TDH.PHYMEM.CACHE.WB to do
a cache write back in a way that the TDX module can verify, before it
allows a KeyID to be freed. The KVM code will use this to have a small
wrapper that handles retries. Since the TDH.PHYMEM.CACHE.WB operation is
interruptible, have tdh_phymem_cache_wb() take a resume argument to pass
this info to the TDX module for restarts. It is worth noting that this
SEAMCALL uses a SEAM specific MSR to do the write back in sections. In
this way it does export some new functionality that affects CPU state.
Add tdh_phymem_page_wbinvd_tdr() to enable KVM to call
TDH.PHYMEM.PAGE.WBINVD to do a cache write back and invalidate of a TDR,
using the global KeyID. The underlying TDH.PHYMEM.PAGE.WBINVD SEAMCALL
requires the related KeyID to be encoded into the SEAMCALL args. Since the
global KeyID is not exposed to KVM, a dedicated wrapper is needed for TDR
focused TDH.PHYMEM.PAGE.WBINVD operations.
Co-developed-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Isaku Yamahata <isaku.yamahata@intel.com>
Signed-off-by: Kai Huang <kai.huang@intel.com>
Signed-off-by: Rick Edgecombe <rick.p.edgecombe@intel.com>
Reviewed-by: Binbin Wu <binbin.wu@linux.intel.com>
Reviewed-by: Yuan Yao <yuan.yao@intel.com>
Message-ID: <20241203010317.827803-5-rick.p.edgecombe@intel.com>
Acked-by: Dave Hansen <dave.hansen@linux.intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
Intel TDX protects guest VMs from malicious host and certain physical
attacks. It defines various control structures that hold state for
virtualized components of the TD (i.e. VMs or vCPUs) These control
structures are stored in pages given to the TDX module and encrypted
with either the global KeyID or the guest KeyIDs.
To manipulate these control structures the TDX module defines a few
SEAMCALLs. KVM will use these during the process of creating a vCPU as
follows:
1) Call TDH.VP.CREATE to create a TD vCPU Root (TDVPR) page for each
vCPU.
2) Call TDH.VP.ADDCX to add per-vCPU control pages (TDCX) for each vCPU.
3) Call TDH.VP.INIT to initialize the TDCX for each vCPU.
To reclaim these pages for use by the kernel other SEAMCALLs are needed,
which will be added in future patches.
Export functions to allow KVM to make these SEAMCALLs. Export two
variants for TDH.VP.CREATE, in order to support the planned logic of KVM
to support TDX modules with and without the ENUM_TOPOLOGY feature. If
KVM can drop support for the !ENUM_TOPOLOGY case, this could go down a
single version. Leave that for later discussion.
The TDX module provides SEAMCALLs to hand pages to the TDX module for
storing TDX controlled state. SEAMCALLs that operate on this state are
directed to the appropriate TD vCPU using references to the pages
originally provided for managing the vCPU's state. So the host kernel
needs to track these pages, both as an ID for specifying which vCPU to
operate on, and to allow them to be eventually reclaimed. The vCPU
associated pages are called TDVPR (Trust Domain Virtual Processor Root)
and TDCX (Trust Domain Control Extension).
Introduce "struct tdx_vp" for holding references to pages provided to the
TDX module for the TD vCPU associated state. Don't plan for any vCPU
associated state that is controlled by KVM to live in this struct. Only
expect it to hold data for concepts specific to the TDX architecture, for
which there can't already be preexisting storage for in KVM.
Add both the TDVPR page and an array of TDCX pages, even though the
SEAMCALL wrappers will only need to know about the TDVPR pages for
directing the SEAMCALLs to the right vCPU. Adding the TDCX pages to this
struct will let all of the vCPU associated pages handed to the TDX module be
tracked in one location. For a type to specify physical pages, use KVM's
hpa_t type. Do this for KVM's benefit This is the common type used to hold
physical addresses in KVM, so will make interoperability easier.
Co-developed-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Isaku Yamahata <isaku.yamahata@intel.com>
Signed-off-by: Kai Huang <kai.huang@intel.com>
Signed-off-by: Rick Edgecombe <rick.p.edgecombe@intel.com>
Reviewed-by: Binbin Wu <binbin.wu@linux.intel.com>
Reviewed-by: Yuan Yao <yuan.yao@intel.com>
Message-ID: <20241203010317.827803-4-rick.p.edgecombe@intel.com>
Acked-by: Dave Hansen <dave.hansen@linux.intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
Intel TDX protects guest VMs from malicious hosts and certain physical
attacks. It defines various control structures that hold state for things
like TDs or vCPUs. These control structures are stored in pages given to
the TDX module and encrypted with either the global KeyID or the guest
KeyIDs.
To manipulate these control structures the TDX module defines a few
SEAMCALLs. KVM will use these during the process of creating a TD as
follows:
1) Allocate a unique TDX KeyID for a new guest.
1) Call TDH.MNG.CREATE to create a "TD Root" (TDR) page, together with
the new allocated KeyID. Unlike the rest of the TDX guest, the TDR
page is crypto-protected by the 'global KeyID'.
2) Call the previously added TDH.MNG.KEY.CONFIG on each package to
configure the KeyID for the guest. After this step, the KeyID to
protect the guest is ready and the rest of the guest will be protected
by this KeyID.
3) Call TDH.MNG.ADDCX to add TD Control Structure (TDCS) pages.
4) Call TDH.MNG.INIT to initialize the TDCS.
To reclaim these pages for use by the kernel other SEAMCALLs are needed,
which will be added in future patches.
Add tdh_mng_addcx(), tdh_mng_create() and tdh_mng_init() to export these
SEAMCALLs so that KVM can use them to create TDs.
For SEAMCALLs that give a page to the TDX module to be encrypted, CLFLUSH
the page mapped with KeyID 0, such that any dirty cache lines don't write
back later and clobber TD memory or control structures. Don't worry about
the other MK-TME KeyIDs because the kernel doesn't use them. The TDX docs
specify that this flush is not needed unless the TDX module exposes the
CLFLUSH_BEFORE_ALLOC feature bit. Be conservative and always flush. Add a
helper function to facilitate this.
Co-developed-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Isaku Yamahata <isaku.yamahata@intel.com>
Signed-off-by: Kai Huang <kai.huang@intel.com>
Signed-off-by: Rick Edgecombe <rick.p.edgecombe@intel.com>
Reviewed-by: Binbin Wu <binbin.wu@linux.intel.com>
Reviewed-by: Yuan Yao <yuan.yao@intel.com>
Message-ID: <20241203010317.827803-3-rick.p.edgecombe@intel.com>
Acked-by: Dave Hansen <dave.hansen@linux.intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
Intel TDX protects guest VMs from malicious host and certain physical
attacks. Pre-TDX Intel hardware has support for a memory encryption
architecture called MK-TME, which repurposes several high bits of
physical address as "KeyID". TDX ends up with reserving a sub-range of
MK-TME KeyIDs as "TDX private KeyIDs".
Like MK-TME, these KeyIDs can be associated with an ephemeral key. For TDX
this association is done by the TDX module. It also has its own tracking
for which KeyIDs are in use. To do this ephemeral key setup and manipulate
the TDX module's internal tracking, KVM will use the following SEAMCALLs:
TDH.MNG.KEY.CONFIG: Mark the KeyID as in use, and initialize its
ephemeral key.
TDH.MNG.KEY.FREEID: Mark the KeyID as not in use.
These SEAMCALLs both operate on TDR structures, which are setup using the
previously added TDH.MNG.CREATE SEAMCALL. KVM's use of these operations
will go like:
- tdx_guest_keyid_alloc()
- Initialize TD and TDR page with TDH.MNG.CREATE (not yet-added), passing
KeyID
- TDH.MNG.KEY.CONFIG to initialize the key
- TD runs, teardown is started
- TDH.MNG.KEY.FREEID
- tdx_guest_keyid_free()
Don't try to combine the tdx_guest_keyid_alloc() and TDH.MNG.KEY.CONFIG
operations because TDH.MNG.CREATE and some locking need to be done in the
middle. Don't combine TDH.MNG.KEY.FREEID and tdx_guest_keyid_free() so they
are symmetrical with the creation path.
So implement tdh_mng_key_config() and tdh_mng_key_freeid() as separate
functions than tdx_guest_keyid_alloc() and tdx_guest_keyid_free().
The TDX module provides SEAMCALLs to hand pages to the TDX module for
storing TDX controlled state. SEAMCALLs that operate on this state are
directed to the appropriate TD VM using references to the pages originally
provided for managing the TD's state. So the host kernel needs to track
these pages, both as an ID for specifying which TD to operate on, and to
allow them to be eventually reclaimed. The TD VM associated pages are
called TDR (Trust Domain Root) and TDCS (Trust Domain Control Structure).
Introduce "struct tdx_td" for holding references to pages provided to the
TDX module for this TD VM associated state. Don't plan for any TD
associated state that is controlled by KVM to live in this struct. Only
expect it to hold data for concepts specific to the TDX architecture, for
which there can't already be preexisting storage for in KVM.
Add both the TDR page and an array of TDCS pages, even though the SEAMCALL
wrappers will only need to know about the TDR pages for directing the
SEAMCALLs to the right TD. Adding the TDCS pages to this struct will let
all of the TD VM associated pages handed to the TDX module be tracked in
one location. For a type to specify physical pages, use KVM's hpa_t type.
Do this for KVM's benefit This is the common type used to hold physical
addresses in KVM, so will make interoperability easier.
Co-developed-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Isaku Yamahata <isaku.yamahata@intel.com>
Signed-off-by: Kai Huang <kai.huang@intel.com>
Signed-off-by: Rick Edgecombe <rick.p.edgecombe@intel.com>
Reviewed-by: Binbin Wu <binbin.wu@linux.intel.com>
Reviewed-by: Yuan Yao <yuan.yao@intel.com>
Message-ID: <20241203010317.827803-2-rick.p.edgecombe@intel.com>
Acked-by: Dave Hansen <dave.hansen@linux.intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
KVM_CAP_SYNC_REGS does not make sense for VMs with protected guest state,
since the register values cannot actually be written. Return 0
when using the VM-level KVM_CHECK_EXTENSION ioctl, and accordingly
return -EINVAL from KVM_RUN if the valid/dirty fields are nonzero.
However, on exit from KVM_RUN userspace could have placed a nonzero
value into kvm_run->kvm_valid_regs, so check guest_state_protected
again and skip store_regs() in that case.
Cc: stable@vger.kernel.org
Fixes: 517987e3fb19 ("KVM: x86: add fields to struct kvm_arch for CoCo features")
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Message-ID: <20250306202923.646075-1-pbonzini@redhat.com>
Reviewed-by: Pankaj Gupta <pankaj.gupta@amd.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
Add guest_tsc_protected member to struct kvm_arch_vcpu and prohibit
changing TSC offset/multiplier when guest_tsc_protected is true.
X86 confidential computing technology defines protected guest TSC so that
the VMM can't change the TSC offset/multiplier once vCPU is initialized.
SEV-SNP defines Secure TSC as optional, whereas TDX mandates it.
KVM has common logic on x86 that tries to guess or adjust TSC
offset/multiplier for better guest TSC and TSC interrupt latency
at KVM vCPU creation (kvm_arch_vcpu_postcreate()), vCPU migration
over pCPU (kvm_arch_vcpu_load()), vCPU TSC device attributes
(kvm_arch_tsc_set_attr()) and guest/host writing to TSC or TSC adjust MSR
(kvm_set_msr_common()).
The current x86 KVM implementation conflicts with protected TSC because the
VMM can't change the TSC offset/multiplier.
Because KVM emulates the TSC timer or the TSC deadline timer with the TSC
offset/multiplier, the TSC timer interrupts is injected to the guest at the
wrong time if the KVM TSC offset is different from what the TDX module
determined.
Originally this issue was found by cyclic test of rt-test [1] as the
latency in TDX case is worse than VMX value + TDX SEAMCALL overhead. It
turned out that the KVM TSC offset is different from what the TDX module
determines.
Disable or ignore the KVM logic to change/adjust the TSC offset/multiplier
somehow, thus keeping the KVM TSC offset/multiplier the same as the
value of the TDX module. Writes to MSR_IA32_TSC are also blocked as
they amount to a change in the TSC offset.
[1] https://git.kernel.org/pub/scm/utils/rt-tests/rt-tests.git
Reported-by: Marcelo Tosatti <mtosatti@redhat.com>
Signed-off-by: Isaku Yamahata <isaku.yamahata@intel.com>
Message-ID: <3a7444aec08042fe205666864b6858910e86aa98.1728719037.git.isaku.yamahata@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|