Age | Commit message (Collapse) | Author | Files | Lines |
|
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
|
|
by making sure we call iov_iter_advance() on original
iov_iter even if direct_IO (done on its copy) has returned 0.
It's a no-op for old iov_iter flavours and does the right thing
(== truncation of the stuff we'd allocated, but not filled) in
ITER_PIPE case. Failures (e.g. -EIO) get caught and dealt with
by cleanup in generic_file_read_iter().
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
|
|
After backporting commit ee44b4bc054a ("dlm: use sctp 1-to-1 API")
series to a kernel with an older workqueue which didn't use RCU yet, it
was noticed that we are freeing the workqueues in dlm_lowcomms_stop()
too early as free_conn() will try to access that memory for canceling
the queued works if any.
This issue was introduced by commit 0d737a8cfd83 as before it such
attempt to cancel the queued works wasn't performed, so the issue was
not present.
This patch fixes it by simply inverting the free order.
Cc: stable@vger.kernel.org
Fixes: 0d737a8cfd83 ("dlm: fix race while closing connections")
Signed-off-by: Marcelo Ricardo Leitner <marcelo.leitner@gmail.com>
Signed-off-by: David Teigland <teigland@redhat.com>
|
|
That will mean that any possible subsequent continuation will now be
broken up onto a line of its own (since reading the log has finalized
the beginning og the line), but if user space has activated system
logging (or if there's a kernel message dump going on) that is the right
thing to do.
And now that we actually get the continuation flags _right_ for this
all, the user space logger that is reading the kernel messages can
actually see the continuation marker. Not that anybody seems to really
bother with it (or care), but in theory user space can do its own
message stitching.
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Avoid some duplicate logic now that we can return early, and update the
comments for the new LOG_CONT world order.
This also stops the continuation flushing from just using random record
flags for the flushing action, instead taking the flags from the proper
original line and updating them as we add continuations to it.
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
The code that actually decides how to log the message (whether to put it
directly into the record log, whether to append it to an existing
buffered log, or whether to start a new buffered log) is fairly
non-obvious code in the middle of the vprintk_emit() function.
Splitting that code up into a helper function makes it easier to
understand, but perhaps more importantly also allows for the code to
just return early out of the helper function once it has made the
decision about where the new log content goes.
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Long long ago the kernel log buffer was a buffered stream of bytes, very
much like stdio in user space. It supported log levels by scanning the
stream and noticing the log level markers at the beginning of each line,
but if you wanted to print a partial line in multiple chunks, you just
did multiple printk() calls, and it just automatically worked.
Except when it didn't, and you had very confusing output when different
lines got all mixed up with each other. Then you got fragment lines
mixing with each other, or with non-fragment lines, because it was
traditionally impossible to tell whether a printk() call was a
continuation or not.
To at least help clarify the issue of continuation lines, we added a
KERN_CONT marker back in 2007 to mark continuation lines:
474925277671 ("printk: add KERN_CONT annotation").
That continuation marker was initially an empty string, and didn't
actuall make any semantic difference. But it at least made it possible
to annotate the source code, and have check-patch notice that a printk()
didn't need or want a log level marker, because it was a continuation of
a previous line.
To avoid the ambiguity between a continuation line that had that
KERN_CONT marker, and a printk with no level information at all, we then
in 2009 made KERN_CONT be a real log level marker which meant that we
could now reliably tell the difference between the two cases.
5fd29d6ccbc9 ("printk: clean up handling of log-levels and newlines")
and we could take advantage of that to make sure we didn't mix up
continuation lines with lines that just didn't have any loglevel at all.
Then, in 2012, the kernel log buffer was changed to be a "record" based
log, where each line was a record that has a loglevel and a timestamp.
You can see the beginning of that conversion in commits
e11fea92e13f ("kmsg: export printk records to the /dev/kmsg interface")
7ff9554bb578 ("printk: convert byte-buffer to variable-length record buffer")
with a number of follow-up commits to fix some painful fallout from that
conversion. Over all, it took a couple of months to sort out most of
it. But the upside was that you could have concurrent readers (and
writers) of the kernel log and not have lines with mixed output in them.
And one particular pain-point for the record-based kernel logging was
exactly the fragmentary lines that are generated in smaller chunks. In
order to still log them as one recrod, the continuation lines need to be
attached to the previous record properly.
However the explicit continuation record marker that is actually useful
for this exact case was actually removed in aroundm the same time by commit
61e99ab8e35a ("printk: remove the now unnecessary "C" annotation for KERN_CONT")
due to the incorrect belief that KERN_CONT wasn't meaningful. The
ambiguity between "is this a continuation line" or "is this a plain
printk with no log level information" was reintroduced, and in fact
became an even bigger pain point because there was now the whole
record-level merging of kernel messages going on.
This patch reinstates the KERN_CONT as a real non-empty string marker,
so that the ambiguity is fixed once again.
But it's not a plain revert of that original removal: in the four years
since we made KERN_CONT an empty string again, not only has the format
of the log level markers changed, we've also had some usage changes in
this area.
For example, some ACPI code seems to use KERN_CONT _together_ with a log
level, and now uses both the KERN_CONT marker and (for example) a
KERN_INFO marker to show that it's an informational continuation of a
line.
Which is actually not a bad idea - if the continuation line cannot be
attached to its predecessor, without the log level information we don't
know what log level to assign to it (and we traditionally just assigned
it the default loglevel). So having both a log level and the KERN_CONT
marker is not necessarily a bad idea, but it does mean that we need to
actually iterate over potentially multiple markers, rather than just a
single one.
Also, since KERN_CONT was still conceptually needed, and encouraged, but
didn't actually _do_ anything, we've also had the reverse problem:
rather than having too many annotations it has too few, and there is bit
rot with code that no longer marks the continuation lines with the
KERN_CONT marker.
So this patch not only re-instates the non-empty KERN_CONT marker, it
also fixes up the cases of bit-rot I noticed in my own logs.
There are probably other cases where KERN_CONT will be needed to be
added, either because it is new code that never dealt with the need for
KERN_CONT, or old code that has bitrotted without anybody noticing.
That said, we should strive to avoid the need for KERN_CONT. It does
result in real problems for logging, and should generally not be seen as
a good feature. If we some day can get rid of the feature entirely,
because nobody does any fragmented printk calls, that would be lovely.
But until that point, let's at mark the code that relies on the hacky
multi-fragment kernel printk's. Not only does it avoid the ambiguity,
it also annotates code as "maybe this would be good to fix some day".
(That said, particularly during single-threaded bootup, the downsides of
KERN_CONT are very limited. Things get much hairier when you have
multiple threads going on and user level reading and writing logs too).
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Our XSAVE features are divided into two categories: those that
generate FPU exceptions, and those that do not. MPX and pkeys do
not generate FPU exceptions and thus can not be used lazily. We
disable them when lazy mode is forced on.
We have a pair of masks to collect these two sets of features, but
XFEATURE_MASK_PKRU was added to the wrong mask: XFEATURE_MASK_LAZY.
Fix it by moving the feature to XFEATURE_MASK_EAGER.
Note: this only causes problem if you boot with lazy FPU mode
(eagerfpu=off) which is *not* the default. It also only affects
hardware which is not currently publicly available. It looks like
eager mode is going away, but we still need this patch applied
to any kernel that has protection keys and lazy mode, which is 4.6
through 4.8 at this point, and 4.9 if the lazy removal isn't sent
to Linus for 4.9.
Fixes: c8df40098451 ("x86/fpu, x86/mm/pkeys: Add PKRU xsave fields and data structures")
Signed-off-by: Dave Hansen <dave.hansen@intel.com>
Cc: Dave Hansen <dave@sr71.net>
Cc: stable@vger.kernel.org
Link: http://lkml.kernel.org/r/20161007162342.28A49813@viggo.jf.intel.com
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
|
|
Markus reported that he sees new warnings:
APIC: NR_CPUS/possible_cpus limit of 4 reached. Processor 4/0x84 ignored.
APIC: NR_CPUS/possible_cpus limit of 4 reached. Processor 5/0x85 ignored.
This comes from the recent persistant cpuid - nodeid changes. The code
which emits the warning has been called prior to these changes only for
enabled processors. Now it's called for disabled processors as well to get
the possible cpu accounting correct. So if the kernel is compiled for the
number of actual available/enabled CPUs and the BIOS reports disabled CPUs
as well then the above warnings are printed.
That's a pointless exercise as it only makes sense if there are more CPUs
enabled than the kernel supports.
Nake the warning conditional on enabled processors so we are back to the
state before these changes.
Fixes: 8f54969dc8d6 ("x86/acpi: Introduce persistent storage for cpuid <-> apicid mapping")
Reported-and-tested-by: Markus Trippelsdorf <markus@trippelsdorf.de>
Cc: One Thousand Gnomes <gnomes@lxorguk.ukuu.org.uk>
Cc: Dou Liyang <douly.fnst@cn.fujitsu.com>
Cc: linux-acpi@vger.kernel.org
Cc: Gu Zheng <guz.fnst@cn.fujitsu.com>
Link: http://lkml.kernel.org/r/alpine.DEB.2.20.1610071549330.19804@nanos
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
|
|
Yinghai reported that the recent changes to make the cpuid - nodeid
relationship permanent causes a cpuid ordering regression on a system which
has 2apic enabled..
The reason is that the ACPI local APIC parser has no sanity check for
apicid 0xff, which is an invalid id. So a CPU id for this invalid local
APIC id is allocated and therefor breaks the cpuid ordering.
Add a sanity check to acpi_parse_lapic() which ignores the invalid id.
Fixes: 8f54969dc8d6 ("x86/acpi: Introduce persistent storage for cpuid <-> apicid mapping")
Reported-by: Yinghai Lu <yinghai@kernel.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Gu Zheng <guz.fnst@cn.fujitsu.com>,
Cc: Tang Chen <tangchen@cn.fujitsu.com>
Cc: douly.fnst@cn.fujitsu.com,
Cc: zhugh.fnst@cn.fujitsu.com
Cc: Tony Luck <tony.luck@intel.com>
Cc: Rafael J. Wysocki <rjw@rjwysocki.net>
Cc: Len Brown <lenb@kernel.org>
Cc: Lv Zheng <lv.zheng@intel.com>,
Cc: robert.moore@intel.com
Cc: linux-acpi@vger.kernel.org
Link: https://lkml.kernel.org/r/CAE9FiQVQx6FRXT-RdR7Crz4dg5LeUWHcUSy1KacjR+JgU_vGJg@mail.gmail.com
|
|
If a device tree specifies a preferred device for kernel console output
via the stdout-path or linux,stdout-path chosen node properties or the
stdout alias then the kernel ought to honor it & output the kernel
console to that device. As it stands, this isn't the case. Whilst we
parse the stdout-path properties & set an of_stdout variable from
of_alias_scan(), and use that from of_console_check() to determine
whether to add a console device as a preferred console whilst
registering it, we also prefer the first registered console if no other
has been selected at the time of its registration.
This means that if a console other than the one the device tree selects
via stdout-path is registered first, we will switch to using it & when
the stdout-path console is later registered the call to
add_preferred_console() via of_console_check() is too late to do
anything useful. In practice this seems to mean that we switch to the
dummy console device fairly early & see no further console output:
Console: colour dummy device 80x25
console [tty0] enabled
bootconsole [ns16550a0] disabled
Fix this by not automatically preferring the first registered console if
one is specified by the device tree. This allows consoles to be
registered but not enabled, and once the driver for the console selected
by stdout-path calls of_console_check() the driver will be added to the
list of preferred consoles before any other console has been enabled.
When that console is then registered via register_console() it will be
enabled as expected.
Link: http://lkml.kernel.org/r/20160809151937.26118-1-paul.burton@imgtec.com
Signed-off-by: Paul Burton <paul.burton@imgtec.com>
Cc: Ralf Baechle <ralf@linux-mips.org>
Cc: Paul Burton <paul.burton@imgtec.com>
Cc: Tejun Heo <tj@kernel.org>
Cc: Sergey Senozhatsky <sergey.senozhatsky@gmail.com>
Cc: Jiri Slaby <jslaby@suse.cz>
Cc: Daniel Vetter <daniel.vetter@ffwll.ch>
Cc: Ivan Delalande <colona@arista.com>
Cc: Thierry Reding <treding@nvidia.com>
Cc: Borislav Petkov <bp@suse.de>
Cc: Jan Kara <jack@suse.com>
Cc: Petr Mladek <pmladek@suse.com>
Cc: Joe Perches <joe@perches.com>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Rob Herring <robh+dt@kernel.org>
Cc: Frank Rowand <frowand.list@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Current supplementary groups code can massively overallocate memory and
is implemented in a way so that access to individual gid is done via 2D
array.
If number of gids is <= 32, memory allocation is more or less tolerable
(140/148 bytes). But if it is not, code allocates full page (!)
regardless and, what's even more fun, doesn't reuse small 32-entry
array.
2D array means dependent shifts, loads and LEAs without possibility to
optimize them (gid is never known at compile time).
All of the above is unnecessary. Switch to the usual
trailing-zero-len-array scheme. Memory is allocated with
kmalloc/vmalloc() and only as much as needed. Accesses become simpler
(LEA 8(gi,idx,4) or even without displacement).
Maximum number of gids is 65536 which translates to 256KB+8 bytes. I
think kernel can handle such allocation.
On my usual desktop system with whole 9 (nine) aux groups, struct
group_info shrinks from 148 bytes to 44 bytes, yay!
Nice side effects:
- "gi->gid[i]" is shorter than "GROUP_AT(gi, i)", less typing,
- fix little mess in net/ipv4/ping.c
should have been using GROUP_AT macro but this point becomes moot,
- aux group allocation is persistent and should be accounted as such.
Link: http://lkml.kernel.org/r/20160817201927.GA2096@p183.telecom.by
Signed-off-by: Alexey Dobriyan <adobriyan@gmail.com>
Cc: Vasily Kulikov <segoon@openwall.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Link: http://lkml.kernel.org/r/20161003082312.GA20634@amd
Signed-off-by: Pavel Machek <pavel@ucw.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Add two entries to map to my primary address.
Link: http://lkml.kernel.org/r/1473850348-19177-1-git-send-email-johan@kernel.org
Signed-off-by: Johan Hovold <johan@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|