Age | Commit message (Collapse) | Author | Files | Lines |
|
Use timerqueue_iterate_next() to get to the next timer in
__hrtimer_next_event_base() without browsing the timerqueue
details diredctly.
No intentional changes in functionality.
Suggested-by: Frederic Weisbecker <frederic@kernel.org>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
|
|
Move the code setting ts->got_idle_tick into tick_sched_do_timer() to
avoid code duplication.
No intentional changes in functionality.
Suggested-by: Frederic Weisbecker <frederic@kernel.org>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Reviewed-by: Frederic Weisbecker <frederic@kernel.org>
|
|
Optimize the space and leave plenty of room for further flags.
Signed-off-by: Frederic Weisbecker <frederic@kernel.org>
[ rjw: Do not use __this_cpu_read() to access tick_stopped and add
got_idle_tick to avoid overloading inidle ]
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
|
|
If the scheduler tick has been stopped already and the governor
selects a shallow idle state, the CPU can spend a long time in that
state if the selection is based on an inaccurate prediction of idle
time. That effect turns out to be relevant, so it needs to be
mitigated.
To that end, modify the menu governor to discard the result of the
idle time prediction if the tick is stopped and the predicted idle
time is less than the tick period length, unless the tick timer is
going to expire soon.
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
|
|
If the tick isn't stopped, the target residency of the state selected
by the menu governor may be greater than the actual time to the next
tick and that means lost energy.
To avoid that, make tick_nohz_get_sleep_length() return the current
time to the next event (before stopping the tick) in addition to the
estimated one via an extra pointer argument and make menu_select()
use that value to refine the state selection when necessary.
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
|
|
In order to address the issue with short idle duration predictions
by the idle governor after the scheduler tick has been stopped,
reorder the code in cpuidle_idle_call() so that the governor idle
state selection runs before tick_nohz_idle_go_idle() and use the
"nohz" hint returned by cpuidle_select() to decide whether or not
to stop the tick.
This isn't straightforward, because menu_select() invokes
tick_nohz_get_sleep_length() to get the time to the next timer
event and the number returned by the latter comes from
__tick_nohz_idle_stop_tick(). Fortunately, however, it is possible
to compute that number without actually stopping the tick and with
the help of the existing code.
Namely, tick_nohz_get_sleep_length() can be made call
tick_nohz_next_event(), introduced earlier, to get the time to the
next non-highres timer event. If that happens, tick_nohz_next_event()
need not be called by __tick_nohz_idle_stop_tick() again.
If it turns out that the scheduler tick cannot be stopped going
forward or the next timer event is too close for the tick to be
stopped, tick_nohz_get_sleep_length() can simply return the time to
the next event currently programmed into the corresponding clock
event device.
In addition to knowing the return value of tick_nohz_next_event(),
however, tick_nohz_get_sleep_length() needs to know the time to the
next highres timer event, but with the scheduler tick timer excluded,
which can be computed with the help of hrtimer_get_next_event().
That minimum of that number and the tick_nohz_next_event() return
value is the total time to the next timer event with the assumption
that the tick will be stopped. It can be returned to the idle
governor which can use it for predicting idle duration (under the
assumption that the tick will be stopped) and deciding whether or
not it makes sense to stop the tick before putting the CPU into the
selected idle state.
With the above, the sleep_length field in struct tick_sched is not
necessary any more, so drop it.
Link: https://bugzilla.kernel.org/show_bug.cgi?id=199227
Reported-by: Doug Smythies <dsmythies@telus.net>
Reported-by: Thomas Ilsche <thomas.ilsche@tu-dresden.de>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Frederic Weisbecker <frederic@kernel.org>
|
|
The next set of changes will need to compute the time to the next
hrtimer event over all hrtimers except for the scheduler tick one.
To that end introduce a new helper function,
hrtimer_next_event_without(), for computing the time until the next
hrtimer event over all timers except for one and modify the underlying
code in __hrtimer_next_event_base() to prepare it for being called by
that new function.
No intentional changes in functionality.
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Frederic Weisbecker <frederic@kernel.org>
|
|
In order to address the issue with short idle duration predictions
by the idle governor after the scheduler tick has been stopped, split
tick_nohz_stop_sched_tick() into two separate routines, one computing
the time to the next timer event and the other simply stopping the
tick when the time to the next timer event is known.
Prepare these two routines to be called separately, as one of them
will be called by the idle governor in the cpuidle_select() code
path after subsequent changes.
Update the former callers of tick_nohz_stop_sched_tick() to use
the new routines, tick_nohz_next_event() and tick_nohz_stop_tick(),
instead of it and move the updates of the sleep_length field in
struct tick_sched into __tick_nohz_idle_stop_tick() as it doesn't
need to be updated anywhere else.
There should be no intentional visible changes in functionality
resulting from this change.
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Frederic Weisbecker <frederic@kernel.org>
|
|
Add a new pointer argument to cpuidle_select() and to the ->select
cpuidle governor callback to allow a boolean value indicating
whether or not the tick should be stopped before entering the
selected state to be returned from there.
Make the ladder governor ignore that pointer (to preserve its
current behavior) and make the menu governor return 'false" through
it if:
(1) the idle exit latency is constrained at 0, or
(2) the selected state is a polling one, or
(3) the expected idle period duration is within the tick period
range.
In addition to that, the correction factor computations in the menu
governor need to take the possibility that the tick may not be
stopped into account to avoid artificially small correction factor
values. To that end, add a mechanism to record tick wakeups, as
suggested by Peter Zijlstra, and use it to modify the menu_update()
behavior when tick wakeup occurs. Namely, if the CPU is woken up by
the tick and the return value of tick_nohz_get_sleep_length() is not
within the tick boundary, the predicted idle duration is likely too
short, so make menu_update() try to compensate for that by updating
the governor statistics as though the CPU was idle for a long time.
Since the value returned through the new argument pointer of
cpuidle_select() is not used by its caller yet, this change by
itself is not expected to alter the functionality of the code.
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
|
|
Since the subsequent changes will need a TICK_USEC definition
analogous to TICK_NSEC, rename the existing TICK_USEC as
USER_TICK_USEC, update its users and redefine TICK_USEC
accordingly.
Suggested-by: Peter Zijlstra <peterz@infradead.org>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Frederic Weisbecker <frederic@kernel.org>
|
|
Make cpuidle_idle_call() decide whether or not to stop the tick.
First, the cpuidle_enter_s2idle() path deals with the tick (and with
the entire timekeeping for that matter) by itself and it doesn't need
the tick to be stopped beforehand.
Second, to address the issue with short idle duration predictions
by the idle governor after the tick has been stopped, it will be
necessary to change the ordering of cpuidle_select() with respect
to tick_nohz_idle_stop_tick(). To prepare for that, put a
tick_nohz_idle_stop_tick() call in the same branch in which
cpuidle_select() is called.
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Reviewed-by: Frederic Weisbecker <frederic@kernel.org>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
|
|
Push the decision whether or not to stop the tick somewhat deeper
into the idle loop.
Stopping the tick upfront leads to unpleasant outcomes in case the
idle governor doesn't agree with the nohz code on the duration of the
upcoming idle period. Specifically, if the tick has been stopped and
the idle governor predicts short idle, the situation is bad regardless
of whether or not the prediction is accurate. If it is accurate, the
tick has been stopped unnecessarily which means excessive overhead.
If it is not accurate, the CPU is likely to spend too much time in
the (shallow, because short idle has been predicted) idle state
selected by the governor [1].
As the first step towards addressing this problem, change the code
to make the tick stopping decision inside of the loop in do_idle().
In particular, do not stop the tick in the cpu_idle_poll() code path.
Also don't do that in tick_nohz_irq_exit() which doesn't really have
enough information on whether or not to stop the tick.
Link: https://marc.info/?l=linux-pm&m=150116085925208&w=2 # [1]
Link: https://tu-dresden.de/zih/forschung/ressourcen/dateien/projekte/haec/powernightmares.pdf
Suggested-by: Frederic Weisbecker <frederic@kernel.org>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Reviewed-by: Frederic Weisbecker <frederic@kernel.org>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
|
|
Prepare the scheduler tick code for reworking the idle loop to
avoid stopping the tick in some cases.
The idea is to split the nohz idle entry call to decouple the idle
time stats accounting and preparatory work from the actual tick stop
code, in order to later be able to delay the tick stop once we reach
more power-knowledgeable callers.
Move away the tick_nohz_start_idle() invocation from
__tick_nohz_idle_enter(), rename the latter to
__tick_nohz_idle_stop_tick() and define tick_nohz_idle_stop_tick()
as a wrapper around it for calling it from the outside.
Make tick_nohz_idle_enter() only call tick_nohz_start_idle() instead
of calling the entire __tick_nohz_idle_enter(), add another wrapper
disabling and enabling interrupts around tick_nohz_idle_stop_tick()
and make the current callers of tick_nohz_idle_enter() call it too
to retain their current functionality.
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Reviewed-by: Frederic Weisbecker <frederic@kernel.org>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
|
|
Commit 2a98dc028f91 ("include/linux/bitmap.h: turn bitmap_set and
bitmap_clear into memset when possible") introduced an optimization to
bitmap_{set,clear}() which uses memset() when the start and length are
constants aligned to a byte.
This is wrong on big-endian systems; our bitmaps are arrays of unsigned
long, so bit n is not at byte n / 8 in memory. This was caught by the
Btrfs selftests, but the bitmap selftests also fail when run on a
big-endian machine.
We can still use memset if the start and length are aligned to an
unsigned long, so do that on big-endian. The same problem applies to
the memcmp in bitmap_equal(), so fix it there, too.
Fixes: 2a98dc028f91 ("include/linux/bitmap.h: turn bitmap_set and bitmap_clear into memset when possible")
Fixes: 2c6deb01525a ("bitmap: use memcmp optimisation in more situations")
Cc: stable@kernel.org
Reported-by: "Erhard F." <erhard_f@mailbox.org>
Cc: Matthew Wilcox <mawilcox@microsoft.com>
Cc: Rasmus Villemoes <linux@rasmusvillemoes.dk>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Arnd Bergmann <arnd@arndb.de>
Signed-off-by: Omar Sandoval <osandov@fb.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Error injection is a useful mechanism to fail arbitrary kernel
functions. However, it is often hard to guarantee an error propagates
appropriately to user space programs. By injecting into syscalls, we can
return arbitrary values to user space directly; this increases
flexibility and robustness in testing, allowing us to test user space
error paths effectively.
The following script, for example, fails calls to sys_open() from a
given pid:
from bcc import BPF
from sys import argv
pid = argv[1]
prog = r"""
int kprobe__SyS_open(struct pt_regs *ctx, const char *pathname, int flags)
{
u32 pid = bpf_get_current_pid_tgid();
if (pid == %s)
bpf_override_return(ctx, -ENOMEM);
return 0;
}
""" % pid
b = BPF(text=prog)
while 1:
b.perf_buffer_poll()
This patch whitelists all syscalls defined with SYSCALL_DEFINE and
COMPAT_SYSCALL_DEFINE for error injection. These changes are not
intended to be considered stable, and would normally be configured off.
Signed-off-by: Howard McLauchlan <hmclauchlan@fb.com>
Signed-off-by: Dominik Brodowski <linux@dominikbrodowski.net>
|
|
This keeps it in line with the SYSCALL_DEFINEx() / COMPAT_SYSCALL_DEFINEx()
calling convention.
Signed-off-by: Dominik Brodowski <linux@dominikbrodowski.net>
|
|
Shuffle the cond_syscall() entries in kernel/sys_ni.c around so that they
are kept in the same order as in include/uapi/asm-generic/unistd.h. For
better structuring, add the same comments as in that file, but keep a few
additional comments and extend the commentary where it seems useful.
Signed-off-by: Dominik Brodowski <linux@dominikbrodowski.net>
|
|
compat_sys_*() functions are no longer called from within the kernel on
x86 except from the system call table. Linking the system call does not
require compat_sys_*() function prototypes at least on x86. Therefore,
generate compat_sys_*() prototypes on-the-fly within the
COMPAT_SYSCALL_DEFINEx() macro, and remove x86-specific prototypes from
various header files.
Suggested-by: Andy Lutomirski <luto@kernel.org>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: David S. Miller <davem@davemloft.net>
Cc: netdev@vger.kernel.org
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Andi Kleen <ak@linux.intel.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: x86@kernel.org
Signed-off-by: Dominik Brodowski <linux@dominikbrodowski.net>
|
|
Shuffle the syscall prototypes in include/linux/compat.h around so
that they are kept in the same order as in
include/uapi/asm-generic/unistd.h. The individual entries are kept
the same, and neither modified to bring them in line with kernel coding
style nor wrapped in proper ifdefs -- as an exception to this, add the
prefix "asmlinkage" where it was missing.
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Dominik Brodowski <linux@dominikbrodowski.net>
|
|
As the syscall functions should only be called from the system call table
but not from elsewhere in the kernel, it is sufficient that they are
defined in linux/compat.h.
Cc: David S. Miller <davem@davemloft.net>
Cc: netdev@vger.kernel.org
Signed-off-by: Dominik Brodowski <linux@dominikbrodowski.net>
|
|
Shuffle the syscall prototypes in include/linux/syscalls.h around so
that they are kept in the same order as in
include/uapi/asm-generic/unistd.h. The individual entries are kept
the same, and neither modified to bring them in line with kernel coding
style nor wrapped in proper ifdefs.
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Dominik Brodowski <linux@dominikbrodowski.net>
|
|
As the syscall function should only be called from the system call table
but not from elsewhere in the kernel, move the prototype for
sys_kexec_load() to include/syscall.h.
Cc: Eric Biederman <ebiederm@xmission.com>
Cc: kexec@lists.infradead.org
Signed-off-by: Dominik Brodowski <linux@dominikbrodowski.net>
|
|
All definitions of syscalls in x86 except for those patched here have
already been using the appropriate SYSCALL_DEFINE*.
Signed-off-by: Michael Tautschnig <tautschn@amazon.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Jaswinder Singh <jaswinder@infradead.org>
Cc: Andi Kleen <ak@linux.intel.com>
Cc: x86@kernel.org
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Dominik Brodowski <linux@dominikbrodowski.net>
|
|
Same as with other system calls, sys_sigreturn() should return a value
of type long, not unsigned long. This also matches the behaviour for
IA32_EMULATION, see sys32_sigreturn() in arch/x86/ia32/ia32_signal.c .
Cc: Andi Kleen <ak@linux.intel.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Jiri Slaby <jslaby@suse.com>
Cc: x86@kernel.org
Cc: Michael Tautschnig <tautschn@amazon.co.uk>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Dominik Brodowski <linux@dominikbrodowski.net>
|
|
Using this helper allows us to avoid the in-kernel calls to the
sys_ioperm() syscall. The ksys_ prefix denotes that this function is meant
as a drop-in replacement for the syscall. In particular, it uses the same
calling convention as sys_ioperm().
This patch is part of a series which removes in-kernel calls to syscalls.
On this basis, the syscall entry path can be streamlined. For details, see
http://lkml.kernel.org/r/20180325162527.GA17492@light.dominikbrodowski.net
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Jiri Slaby <jslaby@suse.com>
Cc: x86@kernel.org
Acked-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Dominik Brodowski <linux@dominikbrodowski.net>
|
|
Using this helper allows us to avoid the in-kernel calls to the
sys_readahead() syscall. The ksys_ prefix denotes that this function is
meant as a drop-in replacement for the syscall. In particular, it uses the
same calling convention as sys_readahead().
This patch is part of a series which removes in-kernel calls to syscalls.
On this basis, the syscall entry path can be streamlined. For details, see
http://lkml.kernel.org/r/20180325162527.GA17492@light.dominikbrodowski.net
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: linux-mm@kvack.org
Signed-off-by: Dominik Brodowski <linux@dominikbrodowski.net>
|
|
Using this helper allows us to avoid the in-kernel calls to the
sys_mmap_pgoff() syscall. The ksys_ prefix denotes that this function is
meant as a drop-in replacement for the syscall. In particular, it uses the
same calling convention as sys_mmap_pgoff().
This patch is part of a series which removes in-kernel calls to syscalls.
On this basis, the syscall entry path can be streamlined. For details, see
http://lkml.kernel.org/r/20180325162527.GA17492@light.dominikbrodowski.net
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: linux-mm@kvack.org
Signed-off-by: Dominik Brodowski <linux@dominikbrodowski.net>
|
|
Using the ksys_fadvise64_64() helper allows us to avoid the in-kernel
calls to the sys_fadvise64_64() syscall. The ksys_ prefix denotes that
this function is meant as a drop-in replacement for the syscall. In
particular, it uses the same calling convention as ksys_fadvise64_64().
Some compat stubs called sys_fadvise64(), which then just passed through
the arguments to sys_fadvise64_64(). Get rid of this indirection, and call
ksys_fadvise64_64() directly.
This patch is part of a series which removes in-kernel calls to syscalls.
On this basis, the syscall entry path can be streamlined. For details, see
http://lkml.kernel.org/r/20180325162527.GA17492@light.dominikbrodowski.net
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: linux-mm@kvack.org
Signed-off-by: Dominik Brodowski <linux@dominikbrodowski.net>
|
|
Using the ksys_fallocate() wrapper allows us to get rid of in-kernel
calls to the sys_fallocate() syscall. The ksys_ prefix denotes that this
function is meant as a drop-in replacement for the syscall. In
particular, it uses the same calling convention as sys_fallocate().
This patch is part of a series which removes in-kernel calls to syscalls.
On this basis, the syscall entry path can be streamlined. For details, see
http://lkml.kernel.org/r/20180325162527.GA17492@light.dominikbrodowski.net
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Dominik Brodowski <linux@dominikbrodowski.net>
|
|
Using the ksys_p{read,write}64() wrappers allows us to get rid of
in-kernel calls to the sys_pread64() and sys_pwrite64() syscalls.
The ksys_ prefix denotes that this function is meant as a drop-in
replacement for the syscall. In particular, it uses the same calling
convention as sys_p{read,write}64().
This patch is part of a series which removes in-kernel calls to syscalls.
On this basis, the syscall entry path can be streamlined. For details, see
http://lkml.kernel.org/r/20180325162527.GA17492@light.dominikbrodowski.net
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Dominik Brodowski <linux@dominikbrodowski.net>
|
|
Using the ksys_truncate() wrapper allows us to get rid of in-kernel
calls to the sys_truncate() syscall. The ksys_ prefix denotes that this
function is meant as a drop-in replacement for the syscall. In
particular, it uses the same calling convention as sys_truncate().
This patch is part of a series which removes in-kernel calls to syscalls.
On this basis, the syscall entry path can be streamlined. For details, see
http://lkml.kernel.org/r/20180325162527.GA17492@light.dominikbrodowski.net
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Dominik Brodowski <linux@dominikbrodowski.net>
|
|
Using this helper allows us to avoid the in-kernel calls to the
sys_sync_file_range() syscall. The ksys_ prefix denotes that this function
is meant as a drop-in replacement for the syscall. In particular, it uses
the same calling convention as sys_sync_file_range().
This patch is part of a series which removes in-kernel calls to syscalls.
On this basis, the syscall entry path can be streamlined. For details, see
http://lkml.kernel.org/r/20180325162527.GA17492@light.dominikbrodowski.net
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Dominik Brodowski <linux@dominikbrodowski.net>
|
|
Using this helper allows us to avoid the in-kernel call to the
sys_setsid() syscall. The ksys_ prefix denotes that this function
is meant as a drop-in replacement for the syscall. In particular, it
uses the same calling convention as sys_setsid().
This patch is part of a series which removes in-kernel calls to syscalls.
On this basis, the syscall entry path can be streamlined. For details, see
http://lkml.kernel.org/r/20180325162527.GA17492@light.dominikbrodowski.net
Cc: Al Viro <viro@zeniv.linux.org.uk>
Signed-off-by: Dominik Brodowski <linux@dominikbrodowski.net>
|
|
Using this helper allows us to avoid the in-kernel calls to the
sys_unshare() syscall. The ksys_ prefix denotes that this function is meant
as a drop-in replacement for the syscall. In particular, it uses the same
calling convention as sys_unshare().
This patch is part of a series which removes in-kernel calls to syscalls.
On this basis, the syscall entry path can be streamlined. For details, see
http://lkml.kernel.org/r/20180325162527.GA17492@light.dominikbrodowski.net
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Ingo Molnar <mingo@kernel.org>
Signed-off-by: Dominik Brodowski <linux@dominikbrodowski.net>
|
|
Using this helper allows us to avoid the in-kernel calls to the
sys_sync() syscall. The ksys_ prefix denotes that this function
is meant as a drop-in replacement for the syscall. In particular, it
uses the same calling convention as sys_sync().
This patch is part of a series which removes in-kernel calls to syscalls.
On this basis, the syscall entry path can be streamlined. For details, see
http://lkml.kernel.org/r/20180325162527.GA17492@light.dominikbrodowski.net
Cc: Alexander Viro <viro@zeniv.linux.org.uk>
Signed-off-by: Dominik Brodowski <linux@dominikbrodowski.net>
|
|
Using this helper allows us to avoid the in-kernel calls to the
sys_read() syscall. The ksys_ prefix denotes that this function
is meant as a drop-in replacement for the syscall. In particular, it
uses the same calling convention as sys_read().
This patch is part of a series which removes in-kernel calls to syscalls.
On this basis, the syscall entry path can be streamlined. For details, see
http://lkml.kernel.org/r/20180325162527.GA17492@light.dominikbrodowski.net
Cc: Alexander Viro <viro@zeniv.linux.org.uk>
Signed-off-by: Dominik Brodowski <linux@dominikbrodowski.net>
|
|
Using this helper allows us to avoid the in-kernel calls to the
sys_lseek() syscall. The ksys_ prefix denotes that this function
is meant as a drop-in replacement for the syscall. In particular, it
uses the same calling convention as sys_lseek().
This patch is part of a series which removes in-kernel calls to syscalls.
On this basis, the syscall entry path can be streamlined. For details, see
http://lkml.kernel.org/r/20180325162527.GA17492@light.dominikbrodowski.net
Cc: Alexander Viro <viro@zeniv.linux.org.uk>
Signed-off-by: Dominik Brodowski <linux@dominikbrodowski.net>
|
|
Using this helper allows us to avoid the in-kernel calls to the
sys_ioctl() syscall. The ksys_ prefix denotes that this function
is meant as a drop-in replacement for the syscall. In particular, it
uses the same calling convention as sys_ioctl().
After careful review, at least some of these calls could be converted
to do_vfs_ioctl() in future.
This patch is part of a series which removes in-kernel calls to syscalls.
On this basis, the syscall entry path can be streamlined. For details, see
http://lkml.kernel.org/r/20180325162527.GA17492@light.dominikbrodowski.net
Cc: Alexander Viro <viro@zeniv.linux.org.uk>
Signed-off-by: Dominik Brodowski <linux@dominikbrodowski.net>
|
|
Using this helper allows us to avoid the in-kernel calls to the
sys_getdents64() syscall. The ksys_ prefix denotes that this function
is meant as a drop-in replacement for the syscall. In particular, it
uses the same calling convention as sys_getdents64().
This patch is part of a series which removes in-kernel calls to syscalls.
On this basis, the syscall entry path can be streamlined. For details, see
http://lkml.kernel.org/r/20180325162527.GA17492@light.dominikbrodowski.net
Cc: Alexander Viro <viro@zeniv.linux.org.uk>
Signed-off-by: Dominik Brodowski <linux@dominikbrodowski.net>
|
|
Using this wrapper allows us to avoid the in-kernel calls to the
sys_open() syscall. The ksys_ prefix denotes that this function is meant
as a drop-in replacement for the syscall. In particular, it uses the
same calling convention as sys_open().
This patch is part of a series which removes in-kernel calls to syscalls.
On this basis, the syscall entry path can be streamlined. For details, see
http://lkml.kernel.org/r/20180325162527.GA17492@light.dominikbrodowski.net
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Dominik Brodowski <linux@dominikbrodowski.net>
|
|
Using the ksys_close() wrapper allows us to get rid of in-kernel calls
to the sys_close() syscall. The ksys_ prefix denotes that this function
is meant as a drop-in replacement for the syscall. In particular, it
uses the same calling convention as sys_close(), with one subtle
difference:
The few places which checked the return value did not care about the return
value re-writing in sys_close(), so simply use a wrapper around
__close_fd().
This patch is part of a series which removes in-kernel calls to syscalls.
On this basis, the syscall entry path can be streamlined. For details, see
http://lkml.kernel.org/r/20180325162527.GA17492@light.dominikbrodowski.net
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Dominik Brodowski <linux@dominikbrodowski.net>
|
|
Using the ksys_ftruncate() wrapper allows us to get rid of in-kernel
calls to the sys_ftruncate() syscall. The ksys_ prefix denotes that this
function is meant as a drop-in replacement for the syscall. In
particular, it uses the same calling convention as sys_ftruncate().
This patch is part of a series which removes in-kernel calls to syscalls.
On this basis, the syscall entry path can be streamlined. For details, see
http://lkml.kernel.org/r/20180325162527.GA17492@light.dominikbrodowski.net
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Dominik Brodowski <linux@dominikbrodowski.net>
|
|
Using the fs-interal do_fchownat() wrapper allows us to get rid of
fs-internal calls to the sys_fchownat() syscall.
Introducing the ksys_fchown() helper and the ksys_{,}chown() wrappers
allows us to avoid the in-kernel calls to the sys_{,l,f}chown() syscalls.
The ksys_ prefix denotes that these functions are meant as a drop-in
replacement for the syscalls. In particular, they use the same calling
convention as sys_{,l,f}chown().
This patch is part of a series which removes in-kernel calls to syscalls.
On this basis, the syscall entry path can be streamlined. For details, see
http://lkml.kernel.org/r/20180325162527.GA17492@light.dominikbrodowski.net
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Dominik Brodowski <linux@dominikbrodowski.net>
|
|
Using the fs-internal do_faccessat() helper allows us to get rid of
fs-internal calls to the sys_faccessat() syscall.
Introducing the ksys_access() wrapper allows us to avoid the in-kernel
calls to the sys_access() syscall. The ksys_ prefix denotes that this
function is meant as a drop-in replacement for the syscall. In
particular, it uses the same calling convention as sys_access().
This patch is part of a series which removes in-kernel calls to syscalls.
On this basis, the syscall entry path can be streamlined. For details, see
http://lkml.kernel.org/r/20180325162527.GA17492@light.dominikbrodowski.net
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Dominik Brodowski <linux@dominikbrodowski.net>
|
|
Using the fs-internal do_fchmodat() helper allows us to get rid of
fs-internal calls to the sys_fchmodat() syscall.
Introducing the ksys_fchmod() helper and the ksys_chmod() wrapper allows
us to avoid the in-kernel calls to the sys_fchmod() and sys_chmod()
syscalls. The ksys_ prefix denotes that these functions are meant as a
drop-in replacement for the syscalls. In particular, they use the same
calling convention as sys_fchmod() and sys_chmod().
This patch is part of a series which removes in-kernel calls to syscalls.
On this basis, the syscall entry path can be streamlined. For details, see
http://lkml.kernel.org/r/20180325162527.GA17492@light.dominikbrodowski.net
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Dominik Brodowski <linux@dominikbrodowski.net>
|
|
Using the fs-internal do_linkat() helper allows us to get rid of
fs-internal calls to the sys_linkat() syscall.
Introducing the ksys_link() wrapper allows us to avoid the in-kernel
calls to sys_link() syscall. The ksys_ prefix denotes that this function
is meant as a drop-in replacement for the syscall. In particular, it uses
the same calling convention as sys_link().
In the near future, the only fs-external user of ksys_link() should be
converted to use vfs_link() instead.
This patch is part of a series which removes in-kernel calls to syscalls.
On this basis, the syscall entry path can be streamlined. For details, see
http://lkml.kernel.org/r/20180325162527.GA17492@light.dominikbrodowski.net
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Dominik Brodowski <linux@dominikbrodowski.net>
|
|
Using the fs-internal do_mknodat() helper allows us to get rid of
fs-internal calls to the sys_mknodat() syscall.
Introducing the ksys_mknod() wrapper allows us to avoid the in-kernel
calls to sys_mknod() syscall. The ksys_ prefix denotes that this function
is meant as a drop-in replacement for the syscall. In particular, it uses
the same calling convention as sys_mknod().
This patch is part of a series which removes in-kernel calls to syscalls.
On this basis, the syscall entry path can be streamlined. For details, see
http://lkml.kernel.org/r/20180325162527.GA17492@light.dominikbrodowski.net
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Dominik Brodowski <linux@dominikbrodowski.net>
|
|
Using the fs-internal do_symlinkat() helper allows us to get rid of
fs-internal calls to the sys_symlinkat() syscall.
Introducing the ksys_symlink() wrapper allows us to avoid the in-kernel
calls to the sys_symlink() syscall. The ksys_ prefix denotes that this
function is meant as a drop-in replacement for the syscall. In particular,
it uses the same calling convention as sys_symlink().
This patch is part of a series which removes in-kernel calls to syscalls.
On this basis, the syscall entry path can be streamlined. For details, see
http://lkml.kernel.org/r/20180325162527.GA17492@light.dominikbrodowski.net
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Dominik Brodowski <linux@dominikbrodowski.net>
|
|
Using the fs-internal do_mkdirat() helper allows us to get rid of
fs-internal calls to the sys_mkdirat() syscall.
Introducing the ksys_mkdir() wrapper allows us to avoid the in-kernel calls
to the sys_mkdir() syscall. The ksys_ prefix denotes that this function is
meant as a drop-in replacement for the syscall. In particular, it uses the
same calling convention as sys_mkdir().
This patch is part of a series which removes in-kernel calls to syscalls.
On this basis, the syscall entry path can be streamlined. For details, see
http://lkml.kernel.org/r/20180325162527.GA17492@light.dominikbrodowski.net
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Dominik Brodowski <linux@dominikbrodowski.net>
|
|
Using this wrapper allows us to avoid the in-kernel calls to the
sys_rmdir() syscall. The ksys_ prefix denotes that this function is meant
as a drop-in replacement for the syscall. In particular, it uses the same
calling convention as sys_rmdir().
This patch is part of a series which removes in-kernel calls to syscalls.
On this basis, the syscall entry path can be streamlined. For details, see
http://lkml.kernel.org/r/20180325162527.GA17492@light.dominikbrodowski.net
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Dominik Brodowski <linux@dominikbrodowski.net>
|