Age | Commit message (Collapse) | Author | Files | Lines |
|
TDX protects TDX guest APIC state from VMM. Implement access methods of
TDX guest vAPIC state to ignore them or return zero.
Signed-off-by: Isaku Yamahata <isaku.yamahata@intel.com>
Signed-off-by: Binbin Wu <binbin.wu@linux.intel.com>
Message-ID: <20250222014757.897978-13-binbin.wu@linux.intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
Force APICv active for TDX guests in KVM because APICv is always enabled
by TDX module.
From the view of KVM, whether APICv state is active or not is decided by:
1. APIC is hw enabled
2. VM and vCPU have no inhibit reasons set.
After TDX vCPU init, APIC is set to x2APIC mode. KVM_SET_{SREGS,SREGS2} are
rejected due to has_protected_state for TDs and guest_state_protected
for TDX vCPUs are set. Reject KVM_{GET,SET}_LAPIC from userspace since
migration is not supported yet, so that userspace cannot disable APIC.
For various APICv inhibit reasons:
- APICV_INHIBIT_REASON_DISABLED is impossible after checking enable_apicv
in tdx_bringup(). If !enable_apicv, TDX support will be disabled.
- APICV_INHIBIT_REASON_PHYSICAL_ID_ALIASED is impossible since x2APIC is
mandatory, KVM emulates APIC_ID as read-only for x2APIC mode. (Note:
APICV_INHIBIT_REASON_PHYSICAL_ID_ALIASED could be set if the memory
allocation fails for KVM apic_map.)
- APICV_INHIBIT_REASON_HYPERV is impossible since TDX doesn't support
HyperV guest yet.
- APICV_INHIBIT_REASON_ABSENT is impossible since in-kernel LAPIC is
checked in tdx_vcpu_create().
- APICV_INHIBIT_REASON_BLOCKIRQ is impossible since TDX doesn't support
KVM_SET_GUEST_DEBUG.
- APICV_INHIBIT_REASON_APIC_ID_MODIFIED is impossible since x2APIC is
mandatory.
- APICV_INHIBIT_REASON_APIC_BASE_MODIFIED is impossible since KVM rejects
userspace to set APIC base.
- The rest inhibit reasons are relevant only to AMD's AVIC, including
APICV_INHIBIT_REASON_NESTED, APICV_INHIBIT_REASON_IRQWIN,
APICV_INHIBIT_REASON_PIT_REINJ, APICV_INHIBIT_REASON_SEV, and
APICV_INHIBIT_REASON_LOGICAL_ID_ALIASED.
(For APICV_INHIBIT_REASON_PIT_REINJ, similar to AVIC, KVM can't intercept
EOI for TDX guests neither, but KVM enforces KVM_IRQCHIP_SPLIT for TDX
guests, which eliminates the in-kernel PIT.)
Implement vt_refresh_apicv_exec_ctrl() to call KVM_BUG_ON() if APICv is
disabled for TDX guests.
Suggested-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Isaku Yamahata <isaku.yamahata@intel.com>
Co-developed-by: Binbin Wu <binbin.wu@linux.intel.com>
Signed-off-by: Binbin Wu <binbin.wu@linux.intel.com>
Message-ID: <20250222014757.897978-12-binbin.wu@linux.intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
Enforce KVM_IRQCHIP_SPLIT for TDX guests to disallow in-kernel I/O APIC
while in-kernel local APIC is needed.
APICv is always enabled by TDX module and TDX Module doesn't allow the
hypervisor to modify the EOI-bitmap, i.e. all EOIs are accelerated and
never trigger exits. Level-triggered interrupts and other things depending
on EOI VM-Exit can't be faithfully emulated in KVM. Also, the lazy check
of pending APIC EOI for RTC edge-triggered interrupts, which was introduced
as a workaround when EOI cannot be intercepted, doesn't work for TDX either
because kvm_apic_pending_eoi() checks vIRR and vISR, but both values are
invisible in KVM.
If the guest induces generation of a level-triggered interrupt, the VMM is
left with the choice of dropping the interrupt, sending it as-is, or
converting it to an edge-triggered interrupt. Ditto for KVM. All of those
options will make the guest unhappy. There's no architectural behavior KVM
can provide that's better than sending the interrupt and hoping for the
best.
Signed-off-by: Binbin Wu <binbin.wu@linux.intel.com>
Message-ID: <20250222014757.897978-11-binbin.wu@linux.intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
Always block INIT and SIPI events for the TDX guest because the TDX module
doesn't provide API for VMM to inject INIT IPI or SIPI.
TDX defines its own vCPU creation and initialization sequence including
multiple seamcalls. Also, it's only allowed during TD build time.
Given that TDX guest is para-virtualized to boot BSP/APs, normally there
shouldn't be any INIT/SIPI event for TDX guest. If any, three options to
handle them:
1. Always block INIT/SIPI request.
2. (Silently) ignore INIT/SIPI request during delivery.
3. Return error to guest TDs somehow.
Choose option 1 for simplicity. Since INIT and SIPI are always blocked,
INIT handling and the OP vcpu_deliver_sipi_vector() won't be called, no
need to add new interface or helper function for INIT/SIPI delivery.
Signed-off-by: Isaku Yamahata <isaku.yamahata@intel.com>
Co-developed-by: Binbin Wu <binbin.wu@linux.intel.com>
Signed-off-by: Binbin Wu <binbin.wu@linux.intel.com>
Message-ID: <20250222014757.897978-10-binbin.wu@linux.intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
Handle SMI request as what KVM does for CONFIG_KVM_SMM=n, i.e. return
-ENOTTY, and add KVM_BUG_ON() to SMI related OPs for TD.
TDX doesn't support system-management mode (SMM) and system-management
interrupt (SMI) in guest TDs. Because guest state (vCPU state, memory
state) is protected, it must go through the TDX module APIs to change
guest state. However, the TDX module doesn't provide a way for VMM to
inject SMI into guest TD or a way for VMM to switch guest vCPU mode into
SMM.
MSR_IA32_SMBASE will not be emulated for TDX guest, -ENOTTY will be
returned when SMI is requested.
Signed-off-by: Isaku Yamahata <isaku.yamahata@intel.com>
Co-developed-by: Binbin Wu <binbin.wu@linux.intel.com>
Signed-off-by: Binbin Wu <binbin.wu@linux.intel.com>
Message-ID: <20250222014757.897978-9-binbin.wu@linux.intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
Inject NMI to TDX guest by setting the PEND_NMI TDVPS field to 1, i.e. make
the NMI pending in the TDX module. If there is a further pending NMI in
KVM, collapse it to the one pending in the TDX module.
VMM can request the TDX module to inject a NMI into a TDX vCPU by setting
the PEND_NMI TDVPS field to 1. Following that, VMM can call TDH.VP.ENTER
to run the vCPU and the TDX module will attempt to inject the NMI as soon
as possible.
KVM has the following 3 cases to inject two NMIs when handling simultaneous
NMIs and they need to be injected in a back-to-back way. Otherwise, OS
kernel may fire a warning about the unknown NMI [1]:
K1. One NMI is being handled in the guest and one NMI pending in KVM.
KVM requests NMI window exit to inject the pending NMI.
K2. Two NMIs are pending in KVM.
KVM injects the first NMI and requests NMI window exit to inject the
second NMI.
K3. A previous NMI needs to be rejected and one NMI pending in KVM.
KVM first requests force immediate exit followed by a VM entry to
complete the NMI rejection. Then, during the force immediate exit, KVM
requests NMI window exit to inject the pending NMI.
For TDX, PEND_NMI TDVPS field is a 1-bit field, i.e. KVM can only pend one
NMI in the TDX module. Also, the vCPU state is protected, KVM doesn't know
the NMI blocking states of TDX vCPU, KVM has to assume NMI is always
unmasked and allowed. When KVM sees PEND_NMI is 1 after a TD exit, it
means the previous NMI needs to be re-injected.
Based on KVM's NMI handling flow, there are following 6 cases:
In NMI handler TDX module KVM
T1. No PEND_NMI=0 1 pending NMI
T2. No PEND_NMI=0 2 pending NMIs
T3. No PEND_NMI=1 1 pending NMI
T4. Yes PEND_NMI=0 1 pending NMI
T5. Yes PEND_NMI=0 2 pending NMIs
T6. Yes PEND_NMI=1 1 pending NMI
K1 is mapped to T4.
K2 is mapped to T2 or T5.
K3 is mapped to T3 or T6.
Note: KVM doesn't know whether NMI is blocked by a NMI or not, case T5 and
T6 can happen.
When handling pending NMI in KVM for TDX guest, what KVM can do is to add a
pending NMI in TDX module when PEND_NMI is 0. T1 and T4 can be handled by
this way. However, TDX doesn't allow KVM to request NMI window exit
directly, if PEND_NMI is already set and there is still pending NMI in KVM,
the only way KVM could try is to request a force immediate exit. But for
case T5 and T6, force immediate exit will result in infinite loop because
force immediate exit makes it no progress in the NMI handler, so that the
pending NMI in the TDX module can never be injected.
Considering on X86 bare metal, multiple NMIs could collapse into one NMI,
e.g. when NMI is blocked by SMI. It's OS's responsibility to poll all NMI
sources in the NMI handler to avoid missing handling of some NMI events.
Based on that, for the above 3 cases (K1-K3), only case K1 must inject the
second NMI because the guest NMI handler may have already polled some of
the NMI sources, which could include the source of the pending NMI, the
pending NMI must be injected to avoid the lost of NMI. For case K2 and K3,
the guest OS will poll all NMI sources (including the sources caused by the
second NMI and further NMI collapsed) when the delivery of the first NMI,
KVM doesn't have the necessity to inject the second NMI.
To handle the NMI injection properly for TDX, there are two options:
- Option 1: Modify the KVM's NMI handling common code, to collapse the
second pending NMI for K2 and K3.
- Option 2: Do it in TDX specific way. When the previous NMI is still
pending in the TDX module, i.e. it has not been delivered to TDX guest
yet, collapse the pending NMI in KVM into the previous one.
This patch goes with option 2 because it is simple and doesn't impact other
VM types. Option 1 may need more discussions.
This is the first need to access vCPU scope metadata in the "management"
class. Make needed accessors available.
[1] https://lore.kernel.org/all/1317409584-23662-5-git-send-email-dzickus@redhat.com/
Signed-off-by: Isaku Yamahata <isaku.yamahata@intel.com>
Co-developed-by: Binbin Wu <binbin.wu@linux.intel.com>
Signed-off-by: Binbin Wu <binbin.wu@linux.intel.com>
Reviewed-by: Paolo Bonzini <pbonzini@redhat.com>
Message-ID: <20250222014757.897978-8-binbin.wu@linux.intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
Call kvm_wait_lapic_expire() when POSTED_INTR_ON is set and the vector
for LVTT is set in PIR before TD entry.
KVM always assumes a timer IRQ was injected if APIC state is protected.
For TDX guest, APIC state is protected and KVM injects timer IRQ via posted
interrupt. To avoid unnecessary wait calls, only call
kvm_wait_lapic_expire() when a timer IRQ was injected, i.e., POSTED_INTR_ON
is set and the vector for LVTT is set in PIR.
Add a helper to test PIR.
Signed-off-by: Isaku Yamahata <isaku.yamahata@intel.com>
Co-developed-by: Binbin Wu <binbin.wu@linux.intel.com>
Signed-off-by: Binbin Wu <binbin.wu@linux.intel.com>
Message-ID: <20250222014757.897978-7-binbin.wu@linux.intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
If APIC state is protected, i.e. the vCPU is a TDX guest, assume a timer
IRQ was injected when deciding whether or not to busy wait in the "timer
advanced" path. The "real" vIRR is not readable/writable, so trying to
query for a pending timer IRQ will return garbage.
Note, TDX can scour the PIR if it wants to be more precise and skip the
"wait" call entirely.
Signed-off-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Binbin Wu <binbin.wu@linux.intel.com>
Message-ID: <20250222014757.897978-6-binbin.wu@linux.intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
Implement non-NMI interrupt injection for TDX via posted interrupt.
As CPU state is protected and APICv is enabled for the TDX guest, TDX
supports non-NMI interrupt injection only by posted interrupt. Posted
interrupt descriptors (PIDs) are allocated in shared memory, KVM can
update them directly. If target vCPU is in non-root mode, send posted
interrupt notification to the vCPU and hardware will sync PIR to vIRR
atomically. Otherwise, kick it to pick up the interrupt from PID. To
post pending interrupts in the PID, KVM can generate a self-IPI with
notification vector prior to TD entry.
Since the guest status of TD vCPU is protected, assume interrupt is
always allowed. Ignore the code path for event injection mechanism or
LAPIC emulation for TDX.
Signed-off-by: Isaku Yamahata <isaku.yamahata@intel.com>
Co-developed-by: Binbin Wu <binbin.wu@linux.intel.com>
Signed-off-by: Binbin Wu <binbin.wu@linux.intel.com>
Reviewed-by: Paolo Bonzini <pbonzini@redhat.com>
Message-ID: <20250222014757.897978-5-binbin.wu@linux.intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
Move posted interrupt delivery code to common header so that TDX can
leverage it.
No functional change intended.
Signed-off-by: Isaku Yamahata <isaku.yamahata@intel.com>
[binbin: split into new patch]
Signed-off-by: Binbin Wu <binbin.wu@linux.intel.com>
Reviewed-by: Chao Gao <chao.gao@intel.com>
Message-ID: <20250222014757.897978-4-binbin.wu@linux.intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
Disable PI wakeup for IPI virtualization (IPIv) case for TDX.
When a vCPU is being scheduled out, notification vector is switched and
pi_wakeup_handler() is enabled when the vCPU has interrupt enabled and
posted interrupt is used to wake up the vCPU.
For VMX, a blocked vCPU can be the target of posted interrupts when using
IPIv or VT-d PI. TDX doesn't support IPIv, disable PI wakeup for IPIv.
Also, since the guest status of TD vCPU is protected, assume interrupt is
always enabled for TD. (PV HLT hypercall is not support yet, TDX guest
tells VMM whether HLT is called with interrupt disabled or not.)
Signed-off-by: Isaku Yamahata <isaku.yamahata@intel.com>
[binbin: split into new patch]
Signed-off-by: Binbin Wu <binbin.wu@linux.intel.com>
Message-ID: <20250222014757.897978-3-binbin.wu@linux.intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
Add flag and hook to KVM's local APIC management to support determining
whether or not a TDX guest has a pending IRQ. For TDX vCPUs, the virtual
APIC page is owned by the TDX module and cannot be accessed by KVM. As a
result, registers that are virtualized by the CPU, e.g. PPR, cannot be
read or written by KVM. To deliver interrupts for TDX guests, KVM must
send an IRQ to the CPU on the posted interrupt notification vector. And
to determine if TDX vCPU has a pending interrupt, KVM must check if there
is an outstanding notification.
Return "no interrupt" in kvm_apic_has_interrupt() if the guest APIC is
protected to short-circuit the various other flows that try to pull an
IRQ out of the vAPIC, the only valid operation is querying _if_ an IRQ is
pending, KVM can't do anything based on _which_ IRQ is pending.
Intentionally omit sanity checks from other flows, e.g. PPR update, so as
not to degrade non-TDX guests with unnecessary checks. A well-behaved KVM
and userspace will never reach those flows for TDX guests, but reaching
them is not fatal if something does go awry.
For the TD exits not due to HLT TDCALL, skip checking RVI pending in
tdx_protected_apic_has_interrupt(). Except for the guest being stupid
(e.g., non-HLT TDCALL in an interrupt shadow), it's not even possible to
have an interrupt in RVI that is fully unmasked. There is no any CPU flows
that modify RVI in the middle of instruction execution. I.e. if RVI is
non-zero, then either the interrupt has been pending since before the TD
exit, or the instruction caused the TD exit is in an STI/SS shadow. KVM
doesn't care about STI/SS shadows outside of the HALTED case. And if the
interrupt was pending before TD exit, then it _must_ be blocked, otherwise
the interrupt would have been serviced at the instruction boundary.
For the HLT TDCALL case, it will be handled in a future patch when HLT
TDCALL is supported.
Signed-off-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Isaku Yamahata <isaku.yamahata@intel.com>
Signed-off-by: Binbin Wu <binbin.wu@linux.intel.com>
Message-ID: <20250222014757.897978-2-binbin.wu@linux.intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
Handle TDX PV MMIO hypercall when TDX guest calls TDVMCALL with the
leaf #VE.RequestMMIO (same value as EXIT_REASON_EPT_VIOLATION) according
to TDX Guest Host Communication Interface (GHCI) spec.
For TDX guests, VMM is not allowed to access vCPU registers and the private
memory, and the code instructions must be fetched from the private memory.
So MMIO emulation implemented for non-TDX VMs is not possible for TDX
guests.
In TDX the MMIO regions are instead configured by VMM to trigger a #VE
exception in the guest. The #VE handling is supposed to emulate the MMIO
instruction inside the guest and convert it into a TDVMCALL with the
leaf #VE.RequestMMIO, which equals to EXIT_REASON_EPT_VIOLATION.
The requested MMIO address must be in shared GPA space. The shared bit
is stripped after check because the existing code for MMIO emulation is
not aware of the shared bit.
The MMIO GPA shouldn't have a valid memslot, also the attribute of the GPA
should be shared. KVM could do the checks before exiting to userspace,
however, even if KVM does the check, there still will be race conditions
between the check in KVM and the emulation of MMIO access in userspace due
to a memslot hotplug, or a memory attribute conversion. If userspace
doesn't check the attribute of the GPA and the attribute happens to be
private, it will not pose a security risk or cause an MCE, but it can lead
to another issue. E.g., in QEMU, treating a GPA with private attribute as
shared when it falls within RAM's range can result in extra memory
consumption during the emulation to the access to the HVA of the GPA.
There are two options: 1) Do the check both in KVM and userspace. 2) Do
the check only in QEMU. This patch chooses option 2, i.e. KVM omits the
memslot and attribute checks, and expects userspace to do the checks.
Similar to normal MMIO emulation, try to handle the MMIO in kernel first,
if kernel can't support it, forward the request to userspace. Export
needed symbols used for MMIO handling.
Fragments handling is not needed for TDX PV MMIO because GPA is provided,
if a MMIO access crosses page boundary, it should be continuous in GPA.
Also, the size is limited to 1, 2, 4, 8 bytes. No further split needed.
Allow cross page access because no extra handling needed after checking
both start and end GPA are shared GPAs.
Suggested-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Isaku Yamahata <isaku.yamahata@intel.com>
Co-developed-by: Binbin Wu <binbin.wu@linux.intel.com>
Signed-off-by: Binbin Wu <binbin.wu@linux.intel.com>
Reviewed-by: Paolo Bonzini <pbonzini@redhat.com>
Message-ID: <20250222014225.897298-10-binbin.wu@linux.intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
Emulate port I/O requested by TDX guest via TDVMCALL with leaf
Instruction.IO (same value as EXIT_REASON_IO_INSTRUCTION) according to
TDX Guest Host Communication Interface (GHCI).
All port I/O instructions inside the TDX guest trigger the #VE exception.
On #VE triggered by I/O instructions, TDX guest can call TDVMCALL with
leaf Instruction.IO to request VMM to emulate I/O instructions.
Similar to normal port I/O emulation, try to handle the port I/O in kernel
first, if kernel can't support it, forward the request to userspace.
Note string I/O operations are not supported in TDX. Guest should unroll
them before calling the TDVMCALL.
Suggested-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Isaku Yamahata <isaku.yamahata@intel.com>
Co-developed-by: Binbin Wu <binbin.wu@linux.intel.com>
Signed-off-by: Binbin Wu <binbin.wu@linux.intel.com>
Reviewed-by: Paolo Bonzini <pbonzini@redhat.com>
Message-ID: <20250222014225.897298-9-binbin.wu@linux.intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
Convert TDG.VP.VMCALL<ReportFatalError> to KVM_EXIT_SYSTEM_EVENT with
a new type KVM_SYSTEM_EVENT_TDX_FATAL and forward it to userspace for
handling.
TD guest can use TDG.VP.VMCALL<ReportFatalError> to report the fatal
error it has experienced. This hypercall is special because TD guest
is requesting a termination with the error information, KVM needs to
forward the hypercall to userspace anyway, KVM doesn't do parsing or
conversion, it just dumps the 16 general-purpose registers to userspace
and let userspace decide what to do.
Signed-off-by: Binbin Wu <binbin.wu@linux.intel.com>
Message-ID: <20250222014225.897298-8-binbin.wu@linux.intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
Convert TDG.VP.VMCALL<MapGPA> to KVM_EXIT_HYPERCALL with
KVM_HC_MAP_GPA_RANGE and forward it to userspace for handling.
MapGPA is used by TDX guest to request to map a GPA range as private
or shared memory. It needs to exit to userspace for handling. KVM has
already implemented a similar hypercall KVM_HC_MAP_GPA_RANGE, which will
exit to userspace with exit reason KVM_EXIT_HYPERCALL. Do sanity checks,
convert TDVMCALL_MAP_GPA to KVM_HC_MAP_GPA_RANGE and forward the request
to userspace.
To prevent a TDG.VP.VMCALL<MapGPA> call from taking too long, the MapGPA
range is split into 2MB chunks and check interrupt pending between chunks.
This allows for timely injection of interrupts and prevents issues with
guest lockup detection. TDX guest should retry the operation for the
GPA starting at the address specified in R11 when the TDVMCALL return
TDVMCALL_RETRY as status code.
Note userspace needs to enable KVM_CAP_EXIT_HYPERCALL with
KVM_HC_MAP_GPA_RANGE bit set for TD VM.
Suggested-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Binbin Wu <binbin.wu@linux.intel.com>
Message-ID: <20250222014225.897298-7-binbin.wu@linux.intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
Handle KVM hypercall for TDX according to TDX Guest-Host Communication
Interface (GHCI) specification.
The TDX GHCI specification defines the ABI for the guest TD to issue
hypercalls. When R10 is non-zero, it indicates the TDG.VP.VMCALL is
vendor-specific. KVM uses R10 as KVM hypercall number and R11-R14
as 4 arguments, while the error code is returned in R10.
Morph the TDG.VP.VMCALL with KVM hypercall to EXIT_REASON_VMCALL and
marshall r10~r14 from vp_enter_args to the appropriate x86 registers for
KVM hypercall handling.
Signed-off-by: Isaku Yamahata <isaku.yamahata@intel.com>
Co-developed-by: Binbin Wu <binbin.wu@linux.intel.com>
Signed-off-by: Binbin Wu <binbin.wu@linux.intel.com>
Message-ID: <20250222014225.897298-6-binbin.wu@linux.intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
Add a place holder and related helper functions for preparation of
TDG.VP.VMCALL handling.
The TDX module specification defines TDG.VP.VMCALL API (TDVMCALL for short)
for the guest TD to call hypercall to VMM. When the guest TD issues a
TDVMCALL, the guest TD exits to VMM with a new exit reason. The arguments
from the guest TD and returned values from the VMM are passed in the guest
registers. The guest RCX register indicates which registers are used.
Define helper functions to access those registers.
A new VMX exit reason TDCALL is added to indicate the exit is due to
TDVMCALL from the guest TD. Define the TDCALL exit reason and add a place
holder to handle such exit.
Some leafs of TDCALL will be morphed to another VMX exit reason instead of
EXIT_REASON_TDCALL, add a helper tdcall_to_vmx_exit_reason() as a place
holder to do the conversion.
Suggested-by: Sean Christopherson <seanjc@google.com>
Co-developed-by: Xiaoyao Li <xiaoyao.li@intel.com>
Signed-off-by: Xiaoyao Li <xiaoyao.li@intel.com>
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Isaku Yamahata <isaku.yamahata@intel.com>
Co-developed-by: Binbin Wu <binbin.wu@linux.intel.com>
Signed-off-by: Binbin Wu <binbin.wu@linux.intel.com>
Reviewed-by: Chao Gao <chao.gao@intel.com>
Message-ID: <20250222014225.897298-5-binbin.wu@linux.intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
Introduce the wiring for handling TDX VM exits by implementing the
callbacks .get_exit_info(), .get_entry_info(), and .handle_exit().
Additionally, add error handling during the TDX VM exit flow, and add a
place holder to handle various exit reasons.
Store VMX exit reason and exit qualification in struct vcpu_vt for TDX,
so that TDX/VMX can use the same helpers to get exit reason and exit
qualification. Store extended exit qualification and exit GPA info in
struct vcpu_tdx because they are used by TDX code only.
Contention Handling: The TDH.VP.ENTER operation may contend with TDH.MEM.*
operations due to secure EPT or TD EPOCH. If the contention occurs,
the return value will have TDX_OPERAND_BUSY set, prompting the vCPU to
attempt re-entry into the guest with EXIT_FASTPATH_EXIT_HANDLED,
not EXIT_FASTPATH_REENTER_GUEST, so that the interrupts pending during
IN_GUEST_MODE can be delivered for sure. Otherwise, the requester of
KVM_REQ_OUTSIDE_GUEST_MODE may be blocked endlessly.
Error Handling:
- TDX_SW_ERROR: This includes #UD caused by SEAMCALL instruction if the
CPU isn't in VMX operation, #GP caused by SEAMCALL instruction when TDX
isn't enabled by the BIOS, and TDX_SEAMCALL_VMFAILINVALID when SEAM
firmware is not loaded or disabled.
- TDX_ERROR: This indicates some check failed in the TDX module, preventing
the vCPU from running.
- Failed VM Entry: Exit to userspace with KVM_EXIT_FAIL_ENTRY. Handle it
separately before handling TDX_NON_RECOVERABLE because when off-TD debug
is not enabled, TDX_NON_RECOVERABLE is set.
- TDX_NON_RECOVERABLE: Set by the TDX module when the error is
non-recoverable, indicating that the TDX guest is dead or the vCPU is
disabled.
A special case is triple fault, which also sets TDX_NON_RECOVERABLE but
exits to userspace with KVM_EXIT_SHUTDOWN, aligning with the VMX case.
- Any unhandled VM exit reason will also return to userspace with
KVM_EXIT_INTERNAL_ERROR.
Suggested-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Isaku Yamahata <isaku.yamahata@intel.com>
Co-developed-by: Binbin Wu <binbin.wu@linux.intel.com>
Signed-off-by: Binbin Wu <binbin.wu@linux.intel.com>
Reviewed-by: Chao Gao <chao.gao@intel.com>
Message-ID: <20250222014225.897298-4-binbin.wu@linux.intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
Move pv_unhalted check out of kvm_vcpu_has_events(), check pv_unhalted
explicitly when handling PV unhalt and expose kvm_vcpu_has_events().
kvm_vcpu_has_events() returns true if pv_unhalted is set, and pv_unhalted
is only cleared on transitions to KVM_MP_STATE_RUNNABLE. If the guest
initiates a spurious wakeup, pv_unhalted could be left set in perpetuity.
Currently, this is not problematic because kvm_vcpu_has_events() is only
called when handling PV unhalt. However, if kvm_vcpu_has_events() is used
for other purposes in the future, it could return the unexpected results.
Export kvm_vcpu_has_events() for its usage in broader contexts.
Suggested-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Binbin Wu <binbin.wu@linux.intel.com>
Message-ID: <20250222014225.897298-3-binbin.wu@linux.intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
Have ____kvm_emulate_hypercall() read the GPRs instead of passing them
in via the macro.
When emulating KVM hypercalls via TDVMCALL, TDX will marshall registers of
TDVMCALL ABI into KVM's x86 registers to match the definition of KVM
hypercall ABI _before_ ____kvm_emulate_hypercall() gets called. Therefore,
____kvm_emulate_hypercall() can just read registers internally based on KVM
hypercall ABI, and those registers can be removed from the
__kvm_emulate_hypercall() macro.
Also, op_64_bit can be determined inside ____kvm_emulate_hypercall(),
remove it from the __kvm_emulate_hypercall() macro as well.
No functional change intended.
Suggested-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Binbin Wu <binbin.wu@linux.intel.com>
Reviewed-by: Kai Huang <kai.huang@intel.com>
Message-ID: <20250222014225.897298-2-binbin.wu@linux.intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
Add a flag KVM_DEBUGREG_AUTO_SWITCH to skip saving/restoring guest
DRs.
TDX-SEAM unconditionally saves/restores guest DRs on TD exit/enter,
and resets DRs to architectural INIT state on TD exit. Use the new
flag KVM_DEBUGREG_AUTO_SWITCH to indicate that KVM doesn't need to
save/restore guest DRs. KVM still needs to restore host DRs after TD
exit if there are active breakpoints in the host, which is covered by
the existing code.
MOV-DR exiting is always cleared for TDX guests, so the handler for DR
access is never called, and KVM_DEBUGREG_WONT_EXIT is never set. Add
a warning if both KVM_DEBUGREG_WONT_EXIT and KVM_DEBUGREG_AUTO_SWITCH
are set.
Opportunistically convert the KVM_DEBUGREG_* definitions to use BIT().
Reported-by: Xiaoyao Li <xiaoyao.li@intel.com>
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Co-developed-by: Chao Gao <chao.gao@intel.com>
Signed-off-by: Chao Gao <chao.gao@intel.com>
Signed-off-by: Isaku Yamahata <isaku.yamahata@intel.com>
[binbin: rework changelog]
Signed-off-by: Binbin Wu <binbin.wu@linux.intel.com>
Message-ID: <20241210004946.3718496-2-binbin.wu@linux.intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Message-ID: <20250129095902.16391-13-adrian.hunter@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
Save the IA32_DEBUGCTL MSR before entering a TDX VCPU and restore it
afterwards. The TDX Module preserves bits 1, 12, and 14, so if no
other bits are set, no restore is done.
Signed-off-by: Adrian Hunter <adrian.hunter@intel.com>
Message-ID: <20250129095902.16391-12-adrian.hunter@intel.com>
Reviewed-by: Xiayao Li <xiaoyao.li@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
Support for restoring IA32_TSX_CTRL MSR and IA32_UMWAIT_CONTROL MSR is not
yet implemented, so disable support for TSX and WAITPKG for now. Clear the
associated CPUID bits returned by KVM_TDX_CAPABILITIES, and return an error
if those bits are set in KVM_TDX_INIT_VM.
Signed-off-by: Adrian Hunter <adrian.hunter@intel.com>
Message-ID: <20250129095902.16391-11-adrian.hunter@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
Several MSRs are clobbered on TD exit that are not used by Linux while
in ring 0. Ensure the cached value of the MSR is updated on vcpu_put,
and the MSRs themselves before returning to ring 3.
Co-developed-by: Tony Lindgren <tony.lindgren@linux.intel.com>
Signed-off-by: Tony Lindgren <tony.lindgren@linux.intel.com>
Signed-off-by: Isaku Yamahata <isaku.yamahata@intel.com>
Signed-off-by: Adrian Hunter <adrian.hunter@intel.com>
Reviewed-by: Paolo Bonzini <pbonzini@redhat.com>
Message-ID: <20250129095902.16391-10-adrian.hunter@intel.com>
Reviewed-by: Xiayao Li <xiaoyao.li@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
Several MSRs are constant and only used in userspace(ring 3). But VMs may
have different values. KVM uses kvm_set_user_return_msr() to switch to
guest's values and leverages user return notifier to restore them when the
kernel is to return to userspace. To eliminate unnecessary wrmsr, KVM also
caches the value it wrote to an MSR last time.
TDX module unconditionally resets some of these MSRs to architectural INIT
state on TD exit. It makes the cached values in kvm_user_return_msrs are
inconsistent with values in hardware. This inconsistency needs to be
fixed. Otherwise, it may mislead kvm_on_user_return() to skip restoring
some MSRs to the host's values. kvm_set_user_return_msr() can help correct
this case, but it is not optimal as it always does a wrmsr. So, introduce
a variation of kvm_set_user_return_msr() to update cached values and skip
that wrmsr.
Signed-off-by: Chao Gao <chao.gao@intel.com>
Signed-off-by: Isaku Yamahata <isaku.yamahata@intel.com>
Signed-off-by: Adrian Hunter <adrian.hunter@intel.com>
Reviewed-by: Paolo Bonzini <pbonzini@redhat.com>
Message-ID: <20250129095902.16391-9-adrian.hunter@intel.com>
Reviewed-by: Xiayao Li <xiaoyao.li@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
On exiting from the guest TD, xsave state is clobbered; restore it.
Do not use kvm_load_host_xsave_state(), as it relies on vcpu->arch
to find out whether other KVM_RUN code has loaded guest state into
XCR0/PKRU/XSS or not. In the case of TDX, the exit values are known
independent of the guest CR0 and CR4, and in fact the latter are not
available.
Signed-off-by: Isaku Yamahata <isaku.yamahata@intel.com>
Signed-off-by: Adrian Hunter <adrian.hunter@intel.com>
Message-ID: <20250129095902.16391-8-adrian.hunter@intel.com>
[Rewrite to not use kvm_load_host_xsave_state. - Paolo]
Reviewed-by: Xiayao Li <xiaoyao.li@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
On entering/exiting TDX vcpu, preserved or clobbered CPU state is different
from the VMX case. Add TDX hooks to save/restore host/guest CPU state.
Save/restore kernel GS base MSR.
Signed-off-by: Isaku Yamahata <isaku.yamahata@intel.com>
Signed-off-by: Adrian Hunter <adrian.hunter@intel.com>
Reviewed-by: Paolo Bonzini <pbonzini@redhat.com>
Message-ID: <20250129095902.16391-7-adrian.hunter@intel.com>
Reviewed-by: Xiayao Li <xiaoyao.li@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
Implement callbacks to enter/exit a TDX VCPU by calling tdh_vp_enter().
Ensure the TDX VCPU is in a correct state to run.
Do not pass arguments from/to vcpu->arch.regs[] unconditionally. Instead,
marshall state to/from the appropriate x86 registers only when needed,
i.e., to handle some TDVMCALL sub-leaves following KVM's ABI to leverage
the existing code.
Signed-off-by: Isaku Yamahata <isaku.yamahata@intel.com>
Signed-off-by: Adrian Hunter <adrian.hunter@intel.com>
Message-ID: <20250129095902.16391-6-adrian.hunter@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
Move common fields of struct vcpu_vmx and struct vcpu_tdx to struct
vcpu_vt, to share the code between VMX/TDX as much as possible and to make
TDX exit handling more VMX like.
No functional change intended.
[Adrian: move code that depends on struct vcpu_vmx back to vmx.h]
Suggested-by: Sean Christopherson <seanjc@google.com>
Link: https://lore.kernel.org/r/Z1suNzg2Or743a7e@google.com
Signed-off-by: Binbin Wu <binbin.wu@linux.intel.com>
Signed-off-by: Adrian Hunter <adrian.hunter@intel.com>
Message-ID: <20250129095902.16391-5-adrian.hunter@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
Intel TDX protects guest VM's from malicious host and certain physical
attacks. TDX introduces a new operation mode, Secure Arbitration Mode
(SEAM) to isolate and protect guest VM's. A TDX guest VM runs in SEAM and,
unlike VMX, direct control and interaction with the guest by the host VMM
is not possible. Instead, Intel TDX Module, which also runs in SEAM,
provides a SEAMCALL API.
The SEAMCALL that provides the ability to enter a guest is TDH.VP.ENTER.
The TDX Module processes TDH.VP.ENTER, and enters the guest via VMX
VMLAUNCH/VMRESUME instructions. When a guest VM-exit requires host VMM
interaction, the TDH.VP.ENTER SEAMCALL returns to the host VMM (KVM).
Add tdh_vp_enter() to wrap the SEAMCALL invocation of TDH.VP.ENTER;
tdh_vp_enter() needs to be noinstr because VM entry in KVM is noinstr
as well, which is for two reasons:
* marking the area as CT_STATE_GUEST via guest_state_enter_irqoff() and
guest_state_exit_irqoff()
* IRET must be avoided between VM-exit and NMI handling, in order to
avoid prematurely releasing the NMI inhibit.
TDH.VP.ENTER is different from other SEAMCALLs in several ways: it
uses more arguments, and after it returns some host state may need to be
restored. Therefore tdh_vp_enter() uses __seamcall_saved_ret() instead of
__seamcall_ret(); since it is the only caller of __seamcall_saved_ret(),
it can be made noinstr also.
TDH.VP.ENTER arguments are passed through General Purpose Registers (GPRs).
For the special case of the TD guest invoking TDG.VP.VMCALL, nearly any GPR
can be used, as well as XMM0 to XMM15. Notably, RBP is not used, and Linux
mandates the TDX Module feature NO_RBP_MOD, which is enforced elsewhere.
Additionally, XMM registers are not required for the existing Guest
Hypervisor Communication Interface and are handled by existing KVM code
should they be modified by the guest.
There are 2 input formats and 5 output formats for TDH.VP.ENTER arguments.
Input #1 : Initial entry or following a previous async. TD Exit
Input #2 : Following a previous TDCALL(TDG.VP.VMCALL)
Output #1 : On Error (No TD Entry)
Output #2 : Async. Exits with a VMX Architectural Exit Reason
Output #3 : Async. Exits with a non-VMX TD Exit Status
Output #4 : Async. Exits with Cross-TD Exit Details
Output #5 : On TDCALL(TDG.VP.VMCALL)
Currently, to keep things simple, the wrapper function does not attempt
to support different formats, and just passes all the GPRs that could be
used. The GPR values are held by KVM in the area set aside for guest
GPRs. KVM code uses the guest GPR area (vcpu->arch.regs[]) to set up for
or process results of tdh_vp_enter().
Therefore changing tdh_vp_enter() to use more complex argument formats
would also alter the way KVM code interacts with tdh_vp_enter().
Signed-off-by: Kai Huang <kai.huang@intel.com>
Signed-off-by: Adrian Hunter <adrian.hunter@intel.com>
Message-ID: <20241121201448.36170-2-adrian.hunter@intel.com>
Acked-by: Dave Hansen <dave.hansen@linux.intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
Move the handling of SEPT zap errors caused by unsuccessful execution of
tdh_mem_page_add() in KVM_TDX_INIT_MEM_REGION from
tdx_sept_drop_private_spte() to tdx_sept_zap_private_spte(). Introduce a
new helper function tdx_is_sept_zap_err_due_to_premap() to detect this
specific error.
During the IOCTL KVM_TDX_INIT_MEM_REGION, KVM premaps leaf SPTEs in the
mirror page table before the corresponding entry in the private page table
is successfully installed by tdh_mem_page_add(). If an error occurs during
the invocation of tdh_mem_page_add(), a mismatch between the mirror and
private page tables results in SEAMCALLs for SEPT zap returning the error
code TDX_EPT_ENTRY_STATE_INCORRECT.
The error TDX_EPT_WALK_FAILED is not possible because, during
KVM_TDX_INIT_MEM_REGION, KVM only premaps leaf SPTEs after successfully
mapping non-leaf SPTEs. Unlike leaf SPTEs, there is no mismatch in non-leaf
PTEs between the mirror and private page tables. Therefore, during zap,
SEAMCALLs should find an empty leaf entry in the private EPT, leading to
the error TDX_EPT_ENTRY_STATE_INCORRECT instead of TDX_EPT_WALK_FAILED.
Since tdh_mem_range_block() is always invoked before tdh_mem_page_remove(),
move the handling of SEPT zap errors from tdx_sept_drop_private_spte() to
tdx_sept_zap_private_spte(). In tdx_sept_zap_private_spte(), return 0 for
errors due to premap to skip executing other SEAMCALLs for zap, which are
unnecessary. Return 1 to indicate no other errors, allowing the execution
of other zap SEAMCALLs to continue.
The failure of tdh_mem_page_add() is uncommon and has not been observed in
real workloads. Currently, this failure is only hypothetically triggered by
skipping the real SEAMCALL and faking the add error in the SEAMCALL
wrapper. Additionally, without this fix, there will be no host crashes or
other severe issues.
Signed-off-by: Yan Zhao <yan.y.zhao@intel.com>
Message-ID: <20250217085642.19696-1-yan.y.zhao@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
Wrap vmx_update_cpu_dirty_logging so as to ignore requests to update
CPU dirty logging for TDs, as basic TDX does not support the PML feature.
Invoking vmx_update_cpu_dirty_logging() for TDs would cause an incorrect
access to a kvm_vmx struct for a TDX VM, so block that before it happens.
Signed-off-by: Yan Zhao <yan.y.zhao@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
Make cpu_dirty_log_size (CPU's dirty log buffer size) a per-VM value and
set the per-VM cpu_dirty_log_size only for normal VMs when PML is enabled.
Do not set it for TDs.
Until now, cpu_dirty_log_size was a system-wide value that is used for
all VMs and is set to the PML buffer size when PML was enabled in VMX.
However, PML is not currently supported for TDs, though PML remains
available for normal VMs as long as the feature is supported by hardware
and enabled in VMX.
Making cpu_dirty_log_size a per-VM value allows it to be ther PML buffer
size for normal VMs and 0 for TDs. This allows functions like
kvm_arch_sync_dirty_log() and kvm_mmu_update_cpu_dirty_logging() to
determine if PML is supported, in order to kick off vCPUs or request them
to update CPU dirty logging status (turn on/off PML in VMCS).
This fixes an issue first reported in [1], where QEMU attaches an
emulated VGA device to a TD; note that KVM_MEM_LOG_DIRTY_PAGES
still works if the corresponding has no flag KVM_MEM_GUEST_MEMFD.
KVM then invokes kvm_mmu_update_cpu_dirty_logging() and from there
vmx_update_cpu_dirty_logging(), which incorrectly accesses a kvm_vmx
struct for a TDX VM.
Reported-by: ANAND NARSHINHA PATIL <Anand.N.Patil@ibm.com>
Reported-by: Pedro Principeza <pedro.principeza@canonical.com>
Reported-by: Farrah Chen <farrah.chen@intel.com>
Closes: https://github.com/canonical/tdx/issues/202
Link: https://github.com/canonical/tdx/issues/202 [1]
Suggested-by: Kai Huang <kai.huang@intel.com>
Signed-off-by: Yan Zhao <yan.y.zhao@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
Add a parameter "kvm" to kvm_mmu_page_ad_need_write_protect() and its
caller tdp_mmu_need_write_protect().
This is a preparation to make cpu_dirty_log_size a per-VM value rather than
a system-wide value.
No function changes expected.
Signed-off-by: Yan Zhao <yan.y.zhao@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
Add a parameter "kvm" to kvm_cpu_dirty_log_size() and down to its callers:
kvm_dirty_ring_get_rsvd_entries(), kvm_dirty_ring_alloc().
This is a preparation to make cpu_dirty_log_size a per-VM value rather than
a system-wide value.
No function changes expected.
Signed-off-by: Yan Zhao <yan.y.zhao@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
Handle vCPUs dissociations by invoking SEAMCALL TDH.VP.FLUSH which flushes
the address translation caches and cached TD VMCS of a TD vCPU in its
associated pCPU.
In TDX, a vCPUs can only be associated with one pCPU at a time, which is
done by invoking SEAMCALL TDH.VP.ENTER. For a successful association, the
vCPU must be dissociated from its previous associated pCPU.
To facilitate vCPU dissociation, introduce a per-pCPU list
associated_tdvcpus. Add a vCPU into this list when it's loaded into a new
pCPU (i.e. when a vCPU is loaded for the first time or migrated to a new
pCPU).
vCPU dissociations can happen under below conditions:
- On the op hardware_disable is called.
This op is called when virtualization is disabled on a given pCPU, e.g.
when hot-unplug a pCPU or machine shutdown/suspend.
In this case, dissociate all vCPUs from the pCPU by iterating its
per-pCPU list associated_tdvcpus.
- On vCPU migration to a new pCPU.
Before adding a vCPU into associated_tdvcpus list of the new pCPU,
dissociation from its old pCPU is required, which is performed by issuing
an IPI and executing SEAMCALL TDH.VP.FLUSH on the old pCPU.
On a successful dissociation, the vCPU will be removed from the
associated_tdvcpus list of its previously associated pCPU.
- On tdx_mmu_release_hkid() is called.
TDX mandates that all vCPUs must be disassociated prior to the release of
an hkid. Therefore, dissociation of all vCPUs is a must before executing
the SEAMCALL TDH.MNG.VPFLUSHDONE and subsequently freeing the hkid.
Signed-off-by: Isaku Yamahata <isaku.yamahata@intel.com>
Co-developed-by: Rick Edgecombe <rick.p.edgecombe@intel.com>
Signed-off-by: Rick Edgecombe <rick.p.edgecombe@intel.com>
Co-developed-by: Yan Zhao <yan.y.zhao@intel.com>
Signed-off-by: Yan Zhao <yan.y.zhao@intel.com>
Message-ID: <20241112073858.22312-1-yan.y.zhao@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
Add a new VM-scoped KVM_MEMORY_ENCRYPT_OP IOCTL subcommand,
KVM_TDX_FINALIZE_VM, to perform TD Measurement Finalization.
Documentation for the API is added in another patch:
"Documentation/virt/kvm: Document on Trust Domain Extensions(TDX)"
For the purpose of attestation, a measurement must be made of the TDX VM
initial state. This is referred to as TD Measurement Finalization, and
uses SEAMCALL TDH.MR.FINALIZE, after which:
1. The VMM adding TD private pages with arbitrary content is no longer
allowed
2. The TDX VM is runnable
Co-developed-by: Adrian Hunter <adrian.hunter@intel.com>
Signed-off-by: Adrian Hunter <adrian.hunter@intel.com>
Signed-off-by: Isaku Yamahata <isaku.yamahata@intel.com>
Signed-off-by: Rick Edgecombe <rick.p.edgecombe@intel.com>
Message-ID: <20240904030751.117579-21-rick.p.edgecombe@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
Add a new ioctl for the user space VMM to initialize guest memory with the
specified memory contents.
Because TDX protects the guest's memory, the creation of the initial guest
memory requires a dedicated TDX module API, TDH.MEM.PAGE.ADD(), instead of
directly copying the memory contents into the guest's memory in the case of
the default VM type.
Define a new subcommand, KVM_TDX_INIT_MEM_REGION, of vCPU-scoped
KVM_MEMORY_ENCRYPT_OP. Check if the GFN is already pre-allocated, assign
the guest page in Secure-EPT, copy the initial memory contents into the
guest memory, and encrypt the guest memory. Optionally, extend the memory
measurement of the TDX guest.
The ioctl uses the vCPU file descriptor because of the TDX module's
requirement that the memory is added to the S-EPT (via TDH.MEM.SEPT.ADD)
prior to initialization (TDH.MEM.PAGE.ADD). Accessing the MMU in turn
requires a vCPU file descriptor, just like for KVM_PRE_FAULT_MEMORY. In
fact, the post-populate callback is able to reuse the same logic used by
KVM_PRE_FAULT_MEMORY, so that userspace can do everything with a single
ioctl.
Note that this is the only way to invoke TDH.MEM.SEPT.ADD before the TD
in finalized, as userspace cannot use KVM_PRE_FAULT_MEMORY at that
point. This ensures that there cannot be pages in the S-EPT awaiting
TDH.MEM.PAGE.ADD, which would be treated incorrectly as spurious by
tdp_mmu_map_handle_target_level() (KVM would see the SPTE as PRESENT,
but the corresponding S-EPT entry will be !PRESENT).
Suggested-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Isaku Yamahata <isaku.yamahata@intel.com>
Co-developed-by: Rick Edgecombe <rick.p.edgecombe@intel.com>
Signed-off-by: Rick Edgecombe <rick.p.edgecombe@intel.com>
Co-developed-by: Yan Zhao <yan.y.zhao@intel.com>
Signed-off-by: Yan Zhao <yan.y.zhao@intel.com>
---
- KVM_BUG_ON() for kvm_tdx->nr_premapped (Paolo)
- Use tdx_operand_busy()
- Merge first patch in SEPT SEAMCALL retry series in to this base
(Paolo)
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
In future changes coco specific code will need to call kvm_tdp_map_page()
from within their respective gmem_post_populate() callbacks. Export it
so this can be done from vendor specific code. Since kvm_mmu_reload()
will be needed for this operation, export its callee kvm_mmu_load() as
well.
Signed-off-by: Rick Edgecombe <rick.p.edgecombe@intel.com>
Signed-off-by: Yan Zhao <yan.y.zhao@intel.com>
Message-ID: <20241112073827.22270-1-yan.y.zhao@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
Bail out of the loop in kvm_tdp_map_page() when a VM is dead. Otherwise,
kvm_tdp_map_page() may get stuck in the kernel loop when there's only one
vCPU in the VM (or if the other vCPUs are not executing ioctls), even if
fatal errors have occurred.
kvm_tdp_map_page() is called by the ioctl KVM_PRE_FAULT_MEMORY or the TDX
ioctl KVM_TDX_INIT_MEM_REGION. It loops in the kernel whenever RET_PF_RETRY
is returned. In the TDP MMU, kvm_tdp_mmu_map() always returns RET_PF_RETRY,
regardless of the specific error code from tdp_mmu_set_spte_atomic(),
tdp_mmu_link_sp(), or tdp_mmu_split_huge_page(). While this is acceptable
in general cases where the only possible error code from these functions is
-EBUSY, TDX introduces an additional error code, -EIO, due to SEAMCALL
errors.
Since this -EIO error is also a fatal error, check for VM dead in the
kvm_tdp_map_page() to avoid unnecessary retries until a signal is pending.
The error -EIO is uncommon and has not been observed in real workloads.
Currently, it is only hypothetically triggered by bypassing the real
SEAMCALL and faking an error in the SEAMCALL wrapper.
Signed-off-by: Yan Zhao <yan.y.zhao@intel.com>
Message-ID: <20250220102728.24546-1-yan.y.zhao@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
Implement hook private_max_mapping_level for TDX to let TDP MMU core get
max mapping level of private pages.
The value is hard coded to 4K for no huge page support for now.
Signed-off-by: Isaku Yamahata <isaku.yamahata@intel.com>
Co-developed-by: Rick Edgecombe <rick.p.edgecombe@intel.com>
Signed-off-by: Rick Edgecombe <rick.p.edgecombe@intel.com>
Co-developed-by: Yan Zhao <yan.y.zhao@intel.com>
Signed-off-by: Yan Zhao <yan.y.zhao@intel.com>
Reviewed-by: Paolo Bonzini <pbonzini@redhat.com>
Message-ID: <20241112073816.22256-1-yan.y.zhao@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
Implement hooks in TDX to propagate changes of mirror page table to private
EPT, including changes for page table page adding/removing, guest page
adding/removing.
TDX invokes corresponding SEAMCALLs in the hooks.
- Hook link_external_spt
propagates adding page table page into private EPT.
- Hook set_external_spte
tdx_sept_set_private_spte() in this patch only handles adding of guest
private page when TD is finalized.
Later patches will handle the case of adding guest private pages before
TD finalization.
- Hook free_external_spt
It is invoked when page table page is removed in mirror page table, which
currently must occur at TD tear down phase, after hkid is freed.
- Hook remove_external_spte
It is invoked when guest private page is removed in mirror page table,
which can occur when TD is active, e.g. during shared <-> private
conversion and slot move/deletion.
This hook is ensured to be triggered before hkid is freed, because
gmem fd is released along with all private leaf mappings zapped before
freeing hkid at VM destroy.
TDX invokes below SEAMCALLs sequentially:
1) TDH.MEM.RANGE.BLOCK (remove RWX bits from a private EPT entry),
2) TDH.MEM.TRACK (increases TD epoch)
3) TDH.MEM.PAGE.REMOVE (remove the private EPT entry and untrack the
guest page).
TDH.MEM.PAGE.REMOVE can't succeed without TDH.MEM.RANGE.BLOCK and
TDH.MEM.TRACK being called successfully.
SEAMCALL TDH.MEM.TRACK is called in function tdx_track() to enforce that
TLB tracking will be performed by TDX module for private EPT.
Signed-off-by: Isaku Yamahata <isaku.yamahata@intel.com>
Co-developed-by: Rick Edgecombe <rick.p.edgecombe@intel.com>
Signed-off-by: Rick Edgecombe <rick.p.edgecombe@intel.com>
Co-developed-by: Yan Zhao <yan.y.zhao@intel.com>
Signed-off-by: Yan Zhao <yan.y.zhao@intel.com>
---
- Remove TDX_ERROR_SEPT_BUSY and Add tdx_operand_busy() helper (Binbin)
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
Handle TLB tracking for TDX by introducing function tdx_track() for private
memory TLB tracking and implementing flush_tlb* hooks to flush TLBs for
shared memory.
Introduce function tdx_track() to do TLB tracking on private memory, which
basically does two things: calling TDH.MEM.TRACK to increase TD epoch and
kicking off all vCPUs. The private EPT will then be flushed when each vCPU
re-enters the TD. This function is unused temporarily in this patch and
will be called on a page-by-page basis on removal of private guest page in
a later patch.
In earlier revisions, tdx_track() relied on an atomic counter to coordinate
the synchronization between the actions of kicking off vCPUs, incrementing
the TD epoch, and the vCPUs waiting for the incremented TD epoch after
being kicked off.
However, the core MMU only actually needs to call tdx_track() while
aleady under a write mmu_lock. So this sychnonization can be made to be
unneeded. vCPUs are kicked off only after the successful execution of
TDH.MEM.TRACK, eliminating the need for vCPUs to wait for TDH.MEM.TRACK
completion after being kicked off. tdx_track() is therefore able to send
requests KVM_REQ_OUTSIDE_GUEST_MODE rather than KVM_REQ_TLB_FLUSH.
Hooks for flush_remote_tlb and flush_remote_tlbs_range are not necessary
for TDX, as tdx_track() will handle TLB tracking of private memory on
page-by-page basis when private guest pages are removed. There is no need
to invoke tdx_track() again in kvm_flush_remote_tlbs() even after changes
to the mirrored page table.
For hooks flush_tlb_current and flush_tlb_all, which are invoked during
kvm_mmu_load() and vcpu load for normal VMs, let VMM to flush all EPTs in
the two hooks for simplicity, since TDX does not depend on the two
hooks to notify TDX module to flush private EPT in those cases.
Signed-off-by: Isaku Yamahata <isaku.yamahata@intel.com>
Co-developed-by: Rick Edgecombe <rick.p.edgecombe@intel.com>
Signed-off-by: Rick Edgecombe <rick.p.edgecombe@intel.com>
Co-developed-by: Yan Zhao <yan.y.zhao@intel.com>
Signed-off-by: Yan Zhao <yan.y.zhao@intel.com>
Message-ID: <20241112073753.22228-1-yan.y.zhao@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
Set per-VM shadow_mmio_value to 0 for TDX.
With enable_mmio_caching on, KVM installs MMIO SPTEs for TDs. To correctly
configure MMIO SPTEs, TDX requires the per-VM shadow_mmio_value to be set
to 0. This is necessary to override the default value of the suppress VE
bit in the SPTE, which is 1, and to ensure value 0 in RWX bits.
For MMIO SPTE, the spte value changes as follows:
1. initial value (suppress VE bit is set)
2. Guest issues MMIO and triggers EPT violation
3. KVM updates SPTE value to MMIO value (suppress VE bit is cleared)
4. Guest MMIO resumes. It triggers VE exception in guest TD
5. Guest VE handler issues TDG.VP.VMCALL<MMIO>
6. KVM handles MMIO
7. Guest VE handler resumes its execution after MMIO instruction
Signed-off-by: Isaku Yamahata <isaku.yamahata@intel.com>
Co-developed-by: Rick Edgecombe <rick.p.edgecombe@intel.com>
Signed-off-by: Rick Edgecombe <rick.p.edgecombe@intel.com>
Co-developed-by: Yan Zhao <yan.y.zhao@intel.com>
Signed-off-by: Yan Zhao <yan.y.zhao@intel.com>
Reviewed-by: Paolo Bonzini <pbonzini@redhat.com>
Message-ID: <20241112073743.22214-1-yan.y.zhao@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
Future changes will want to set shadow_mmio_value from TDX code. Add a
helper to setter with a name that makes more sense from that context.
Signed-off-by: Isaku Yamahata <isaku.yamahata@intel.com>
[split into new patch]
Co-developed-by: Rick Edgecombe <rick.p.edgecombe@intel.com>
Signed-off-by: Rick Edgecombe <rick.p.edgecombe@intel.com>
Signed-off-by: Yan Zhao <yan.y.zhao@intel.com>
Reviewed-by: Paolo Bonzini <pbonzini@redhat.com>
Message-ID: <20241112073730.22200-1-yan.y.zhao@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
Disable TDX support when TDP MMU or mmio caching or EPT A/D bits aren't
supported.
As TDP MMU is becoming main stream than the legacy MMU, the legacy MMU
support for TDX isn't implemented.
TDX requires KVM mmio caching. Without mmio caching, KVM will go to MMIO
emulation without installing SPTEs for MMIOs. However, TDX guest is
protected and KVM would meet errors when trying to emulate MMIOs for TDX
guest during instruction decoding. So, TDX guest relies on SPTEs being
installed for MMIOs, which are with no RWX bits and with VE suppress bit
unset, to inject VE to TDX guest. The TDX guest would then issue TDVMCALL
in the VE handler to perform instruction decoding and have host do MMIO
emulation.
TDX also relies on EPT A/D bits as EPT A/D bits have been supported in all
CPUs since Haswell. Relying on it can avoid RWX bits being masked out in
the mirror page table for prefaulted entries.
Signed-off-by: Isaku Yamahata <isaku.yamahata@intel.com>
Co-developed-by: Rick Edgecombe <rick.p.edgecombe@intel.com>
Signed-off-by: Rick Edgecombe <rick.p.edgecombe@intel.com>
Co-developed-by: Yan Zhao <yan.y.zhao@intel.com>
Signed-off-by: Yan Zhao <yan.y.zhao@intel.com>
Reviewed-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Yan Zhao <yan.y.zhao@intel.com>
---
Requested by Sean at [1].
[1] https://lore.kernel.org/kvm/Zva4aORxE9ljlMNe@google.com/
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
Make the direct root handle memslot GFNs at an alias with the TDX shared
bit set.
For TDX shared memory, the memslot GFNs need to be mapped at an alias with
the shared bit set. These shared mappings will be mapped on the KVM MMU's
"direct" root. The direct root has it's mappings shifted by applying
"gfn_direct_bits" as a mask. The concept of "GPAW" (guest physical address
width) determines the location of the shared bit. So set gfn_direct_bits
based on this, to map shared memory at the proper GPA.
Signed-off-by: Isaku Yamahata <isaku.yamahata@intel.com>
Co-developed-by: Rick Edgecombe <rick.p.edgecombe@intel.com>
Signed-off-by: Rick Edgecombe <rick.p.edgecombe@intel.com>
Co-developed-by: Yan Zhao <yan.y.zhao@intel.com>
Signed-off-by: Yan Zhao <yan.y.zhao@intel.com>
Reviewed-by: Paolo Bonzini <pbonzini@redhat.com>
Message-ID: <20241112073613.22100-1-yan.y.zhao@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
TDX uses two EPT pointers, one for the private half of the GPA space and
one for the shared half. The private half uses the normal EPT_POINTER vmcs
field, which is managed in a special way by the TDX module. For TDX, KVM is
not allowed to operate on it directly. The shared half uses a new
SHARED_EPT_POINTER field and will be managed by the conventional MMU
management operations that operate directly on the EPT root. This means for
TDX the .load_mmu_pgd() operation will need to know to use the
SHARED_EPT_POINTER field instead of the normal one. Add a new wrapper in
x86 ops for load_mmu_pgd() that either directs the write to the existing
vmx implementation or a TDX one.
tdx_load_mmu_pgd() is so much simpler than vmx_load_mmu_pgd() since for the
TDX mode of operation, EPT will always be used and KVM does not need to be
involved in virtualization of CR3 behavior. So tdx_load_mmu_pgd() can
simply write to SHARED_EPT_POINTER.
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Co-developed-by: Isaku Yamahata <isaku.yamahata@intel.com>
Signed-off-by: Isaku Yamahata <isaku.yamahata@intel.com>
Co-developed-by: Rick Edgecombe <rick.p.edgecombe@intel.com>
Signed-off-by: Rick Edgecombe <rick.p.edgecombe@intel.com>
Co-developed-by: Yan Zhao <yan.y.zhao@intel.com>
Signed-off-by: Yan Zhao <yan.y.zhao@intel.com>
Reviewed-by: Paolo Bonzini <pbonzini@redhat.com>
Message-ID: <20241112073601.22084-1-yan.y.zhao@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
TDX defines SEAMCALL APIs to access TDX control structures corresponding to
the VMX VMCS. Introduce helper accessors to hide its SEAMCALL ABI details.
Signed-off-by: Isaku Yamahata <isaku.yamahata@intel.com>
Co-developed-by: Rick Edgecombe <rick.p.edgecombe@intel.com>
Signed-off-by: Rick Edgecombe <rick.p.edgecombe@intel.com>
Co-developed-by: Yan Zhao <yan.y.zhao@intel.com>
Signed-off-by: Yan Zhao <yan.y.zhao@intel.com>
Message-ID: <20241112073551.22070-1-yan.y.zhao@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|