Age | Commit message (Collapse) | Author | Files | Lines |
|
Add imx@lists.linux.dev and NXP maintainer information for lpspi driver
(drivers/spi/spi-fsl-lpspi.c).
Signed-off-by: Frank Li <Frank.Li@nxp.com>
Reviewed-by: Stefan Wahren <wahrenst@gmx.net>
Link: https://patch.msgid.link/20240905154124.1901311-1-Frank.Li@nxp.com
Signed-off-by: Mark Brown <broonie@kernel.org>
|
|
The timerlat interface will get and put the task that is part of the
"kthread" field of the osn_var to keep it around until all references are
released. But here's a race in the "stop_kthread()" code that will call
put_task_struct() on the kthread if it is not a kernel thread. This can
race with the releasing of the references to that task struct and the
put_task_struct() can be called twice when it should have been called just
once.
Take the interface_lock() in stop_kthread() to synchronize this change.
But to do so, the function stop_per_cpu_kthreads() needs to change the
loop from for_each_online_cpu() to for_each_possible_cpu() and remove the
cpu_read_lock(), as the interface_lock can not be taken while the cpu
locks are held. The only side effect of this change is that it may do some
extra work, as the per_cpu variables of the offline CPUs would not be set
anyway, and would simply be skipped in the loop.
Remove unneeded "return;" in stop_kthread().
Cc: stable@vger.kernel.org
Cc: Masami Hiramatsu <mhiramat@kernel.org>
Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Cc: Tomas Glozar <tglozar@redhat.com>
Cc: John Kacur <jkacur@redhat.com>
Cc: "Luis Claudio R. Goncalves" <lgoncalv@redhat.com>
Link: https://lore.kernel.org/20240905113359.2b934242@gandalf.local.home
Fixes: e88ed227f639e ("tracing/timerlat: Add user-space interface")
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
|
|
The timerlat tracer can use user space threads to check for osnoise and
timer latency. If the program using this is killed via a SIGTERM, the
threads are shutdown one at a time and another tracing instance can start
up resetting the threads before they are fully closed. That causes the
hrtimer assigned to the kthread to be shutdown and freed twice when the
dying thread finally closes the file descriptors, causing a use-after-free
bug.
Only cancel the hrtimer if the associated thread is still around. Also add
the interface_lock around the resetting of the tlat_var->kthread.
Note, this is just a quick fix that can be backported to stable. A real
fix is to have a better synchronization between the shutdown of old
threads and the starting of new ones.
Link: https://lore.kernel.org/all/20240820130001.124768-1-tglozar@redhat.com/
Cc: stable@vger.kernel.org
Cc: Masami Hiramatsu <mhiramat@kernel.org>
Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Cc: "Luis Claudio R. Goncalves" <lgoncalv@redhat.com>
Link: https://lore.kernel.org/20240905085330.45985730@gandalf.local.home
Fixes: e88ed227f639e ("tracing/timerlat: Add user-space interface")
Reported-by: Tomas Glozar <tglozar@redhat.com>
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
|
|
The start_kthread() and stop_thread() code was not always called with the
interface_lock held. This means that the kthread variable could be
unexpectedly changed causing the kthread_stop() to be called on it when it
should not have been, leading to:
while true; do
rtla timerlat top -u -q & PID=$!;
sleep 5;
kill -INT $PID;
sleep 0.001;
kill -TERM $PID;
wait $PID;
done
Causing the following OOPS:
Oops: general protection fault, probably for non-canonical address 0xdffffc0000000002: 0000 [#1] PREEMPT SMP KASAN PTI
KASAN: null-ptr-deref in range [0x0000000000000010-0x0000000000000017]
CPU: 5 UID: 0 PID: 885 Comm: timerlatu/5 Not tainted 6.11.0-rc4-test-00002-gbc754cc76d1b-dirty #125 a533010b71dab205ad2f507188ce8c82203b0254
Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 1.16.3-debian-1.16.3-2 04/01/2014
RIP: 0010:hrtimer_active+0x58/0x300
Code: 48 c1 ee 03 41 54 48 01 d1 48 01 d6 55 53 48 83 ec 20 80 39 00 0f 85 30 02 00 00 49 8b 6f 30 4c 8d 75 10 4c 89 f0 48 c1 e8 03 <0f> b6 3c 10 4c 89 f0 83 e0 07 83 c0 03 40 38 f8 7c 09 40 84 ff 0f
RSP: 0018:ffff88811d97f940 EFLAGS: 00010202
RAX: 0000000000000002 RBX: ffff88823c6b5b28 RCX: ffffed10478d6b6b
RDX: dffffc0000000000 RSI: ffffed10478d6b6c RDI: ffff88823c6b5b28
RBP: 0000000000000000 R08: ffff88823c6b5b58 R09: ffff88823c6b5b60
R10: ffff88811d97f957 R11: 0000000000000010 R12: 00000000000a801d
R13: ffff88810d8b35d8 R14: 0000000000000010 R15: ffff88823c6b5b28
FS: 0000000000000000(0000) GS:ffff88823c680000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 0000561858ad7258 CR3: 000000007729e001 CR4: 0000000000170ef0
Call Trace:
<TASK>
? die_addr+0x40/0xa0
? exc_general_protection+0x154/0x230
? asm_exc_general_protection+0x26/0x30
? hrtimer_active+0x58/0x300
? __pfx_mutex_lock+0x10/0x10
? __pfx_locks_remove_file+0x10/0x10
hrtimer_cancel+0x15/0x40
timerlat_fd_release+0x8e/0x1f0
? security_file_release+0x43/0x80
__fput+0x372/0xb10
task_work_run+0x11e/0x1f0
? _raw_spin_lock+0x85/0xe0
? __pfx_task_work_run+0x10/0x10
? poison_slab_object+0x109/0x170
? do_exit+0x7a0/0x24b0
do_exit+0x7bd/0x24b0
? __pfx_migrate_enable+0x10/0x10
? __pfx_do_exit+0x10/0x10
? __pfx_read_tsc+0x10/0x10
? ktime_get+0x64/0x140
? _raw_spin_lock_irq+0x86/0xe0
do_group_exit+0xb0/0x220
get_signal+0x17ba/0x1b50
? vfs_read+0x179/0xa40
? timerlat_fd_read+0x30b/0x9d0
? __pfx_get_signal+0x10/0x10
? __pfx_timerlat_fd_read+0x10/0x10
arch_do_signal_or_restart+0x8c/0x570
? __pfx_arch_do_signal_or_restart+0x10/0x10
? vfs_read+0x179/0xa40
? ksys_read+0xfe/0x1d0
? __pfx_ksys_read+0x10/0x10
syscall_exit_to_user_mode+0xbc/0x130
do_syscall_64+0x74/0x110
? __pfx___rseq_handle_notify_resume+0x10/0x10
? __pfx_ksys_read+0x10/0x10
? fpregs_restore_userregs+0xdb/0x1e0
? fpregs_restore_userregs+0xdb/0x1e0
? syscall_exit_to_user_mode+0x116/0x130
? do_syscall_64+0x74/0x110
? do_syscall_64+0x74/0x110
? do_syscall_64+0x74/0x110
entry_SYSCALL_64_after_hwframe+0x71/0x79
RIP: 0033:0x7ff0070eca9c
Code: Unable to access opcode bytes at 0x7ff0070eca72.
RSP: 002b:00007ff006dff8c0 EFLAGS: 00000246 ORIG_RAX: 0000000000000000
RAX: 0000000000000000 RBX: 0000000000000005 RCX: 00007ff0070eca9c
RDX: 0000000000000400 RSI: 00007ff006dff9a0 RDI: 0000000000000003
RBP: 00007ff006dffde0 R08: 0000000000000000 R09: 00007ff000000ba0
R10: 00007ff007004b08 R11: 0000000000000246 R12: 0000000000000003
R13: 00007ff006dff9a0 R14: 0000000000000007 R15: 0000000000000008
</TASK>
Modules linked in: snd_hda_intel snd_intel_dspcfg snd_intel_sdw_acpi snd_hda_codec snd_hwdep snd_hda_core
---[ end trace 0000000000000000 ]---
This is because it would mistakenly call kthread_stop() on a user space
thread making it "exit" before it actually exits.
Since kthreads are created based on global behavior, use a cpumask to know
when kthreads are running and that they need to be shutdown before
proceeding to do new work.
Link: https://lore.kernel.org/all/20240820130001.124768-1-tglozar@redhat.com/
This was debugged by using the persistent ring buffer:
Link: https://lore.kernel.org/all/20240823013902.135036960@goodmis.org/
Note, locking was originally used to fix this, but that proved to cause too
many deadlocks to work around:
https://lore.kernel.org/linux-trace-kernel/20240823102816.5e55753b@gandalf.local.home/
Cc: stable@vger.kernel.org
Cc: Masami Hiramatsu <mhiramat@kernel.org>
Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Cc: "Luis Claudio R. Goncalves" <lgoncalv@redhat.com>
Link: https://lore.kernel.org/20240904103428.08efdf4c@gandalf.local.home
Fixes: e88ed227f639e ("tracing/timerlat: Add user-space interface")
Reported-by: Tomas Glozar <tglozar@redhat.com>
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
|
|
Chi Zhiling reported:
We found a null pointer accessing in tracefs[1], the reason is that the
variable 'ei_child' is set to LIST_POISON1, that means the list was
removed in eventfs_remove_rec. so when access the ei_child->is_freed, the
panic triggered.
by the way, the following script can reproduce this panic
loop1 (){
while true
do
echo "p:kp submit_bio" > /sys/kernel/debug/tracing/kprobe_events
echo "" > /sys/kernel/debug/tracing/kprobe_events
done
}
loop2 (){
while true
do
tree /sys/kernel/debug/tracing/events/kprobes/
done
}
loop1 &
loop2
[1]:
[ 1147.959632][T17331] Unable to handle kernel paging request at virtual address dead000000000150
[ 1147.968239][T17331] Mem abort info:
[ 1147.971739][T17331] ESR = 0x0000000096000004
[ 1147.976172][T17331] EC = 0x25: DABT (current EL), IL = 32 bits
[ 1147.982171][T17331] SET = 0, FnV = 0
[ 1147.985906][T17331] EA = 0, S1PTW = 0
[ 1147.989734][T17331] FSC = 0x04: level 0 translation fault
[ 1147.995292][T17331] Data abort info:
[ 1147.998858][T17331] ISV = 0, ISS = 0x00000004, ISS2 = 0x00000000
[ 1148.005023][T17331] CM = 0, WnR = 0, TnD = 0, TagAccess = 0
[ 1148.010759][T17331] GCS = 0, Overlay = 0, DirtyBit = 0, Xs = 0
[ 1148.016752][T17331] [dead000000000150] address between user and kernel address ranges
[ 1148.024571][T17331] Internal error: Oops: 0000000096000004 [#1] SMP
[ 1148.030825][T17331] Modules linked in: team_mode_loadbalance team nlmon act_gact cls_flower sch_ingress bonding tls macvlan dummy ib_core bridge stp llc veth amdgpu amdxcp mfd_core gpu_sched drm_exec drm_buddy radeon crct10dif_ce video drm_suballoc_helper ghash_ce drm_ttm_helper sha2_ce ttm sha256_arm64 i2c_algo_bit sha1_ce sbsa_gwdt cp210x drm_display_helper cec sr_mod cdrom drm_kms_helper binfmt_misc sg loop fuse drm dm_mod nfnetlink ip_tables autofs4 [last unloaded: tls]
[ 1148.072808][T17331] CPU: 3 PID: 17331 Comm: ls Tainted: G W ------- ---- 6.6.43 #2
[ 1148.081751][T17331] Source Version: 21b3b386e948bedd29369af66f3e98ab01b1c650
[ 1148.088783][T17331] Hardware name: Greatwall GW-001M1A-FTF/GW-001M1A-FTF, BIOS KunLun BIOS V4.0 07/16/2020
[ 1148.098419][T17331] pstate: 20000005 (nzCv daif -PAN -UAO -TCO -DIT -SSBS BTYPE=--)
[ 1148.106060][T17331] pc : eventfs_iterate+0x2c0/0x398
[ 1148.111017][T17331] lr : eventfs_iterate+0x2fc/0x398
[ 1148.115969][T17331] sp : ffff80008d56bbd0
[ 1148.119964][T17331] x29: ffff80008d56bbf0 x28: ffff001ff5be2600 x27: 0000000000000000
[ 1148.127781][T17331] x26: ffff001ff52ca4e0 x25: 0000000000009977 x24: dead000000000100
[ 1148.135598][T17331] x23: 0000000000000000 x22: 000000000000000b x21: ffff800082645f10
[ 1148.143415][T17331] x20: ffff001fddf87c70 x19: ffff80008d56bc90 x18: 0000000000000000
[ 1148.151231][T17331] x17: 0000000000000000 x16: 0000000000000000 x15: ffff001ff52ca4e0
[ 1148.159048][T17331] x14: 0000000000000000 x13: 0000000000000000 x12: 0000000000000000
[ 1148.166864][T17331] x11: 0000000000000000 x10: 0000000000000000 x9 : ffff8000804391d0
[ 1148.174680][T17331] x8 : 0000000180000000 x7 : 0000000000000018 x6 : 0000aaab04b92862
[ 1148.182498][T17331] x5 : 0000aaab04b92862 x4 : 0000000080000000 x3 : 0000000000000068
[ 1148.190314][T17331] x2 : 000000000000000f x1 : 0000000000007ea8 x0 : 0000000000000001
[ 1148.198131][T17331] Call trace:
[ 1148.201259][T17331] eventfs_iterate+0x2c0/0x398
[ 1148.205864][T17331] iterate_dir+0x98/0x188
[ 1148.210036][T17331] __arm64_sys_getdents64+0x78/0x160
[ 1148.215161][T17331] invoke_syscall+0x78/0x108
[ 1148.219593][T17331] el0_svc_common.constprop.0+0x48/0xf0
[ 1148.224977][T17331] do_el0_svc+0x24/0x38
[ 1148.228974][T17331] el0_svc+0x40/0x168
[ 1148.232798][T17331] el0t_64_sync_handler+0x120/0x130
[ 1148.237836][T17331] el0t_64_sync+0x1a4/0x1a8
[ 1148.242182][T17331] Code: 54ffff6c f9400676 910006d6 f9000676 (b9405300)
[ 1148.248955][T17331] ---[ end trace 0000000000000000 ]---
The issue is that list_del() is used on an SRCU protected list variable
before the synchronization occurs. This can poison the list pointers while
there is a reader iterating the list.
This is simply fixed by using list_del_rcu() that is specifically made for
this purpose.
Link: https://lore.kernel.org/linux-trace-kernel/20240829085025.3600021-1-chizhiling@163.com/
Cc: stable@vger.kernel.org
Cc: Masami Hiramatsu <mhiramat@kernel.org>
Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Link: https://lore.kernel.org/20240904131605.640d42b1@gandalf.local.home
Fixes: 43aa6f97c2d03 ("eventfs: Get rid of dentry pointers without refcounts")
Reported-by: Chi Zhiling <chizhiling@kylinos.cn>
Tested-by: Chi Zhiling <chizhiling@kylinos.cn>
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
|
|
In __tracing_open(), when max latency tracers took place on the cpu,
the time start of its buffer would be updated, then event entries with
timestamps being earlier than start of the buffer would be skipped
(see tracing_iter_reset()).
Softlockup will occur if the kernel is non-preemptible and too many
entries were skipped in the loop that reset every cpu buffer, so add
cond_resched() to avoid it.
Cc: stable@vger.kernel.org
Fixes: 2f26ebd549b9a ("tracing: use timestamp to determine start of latency traces")
Link: https://lore.kernel.org/20240827124654.3817443-1-zhengyejian@huaweicloud.com
Suggested-by: Steven Rostedt <rostedt@goodmis.org>
Signed-off-by: Zheng Yejian <zhengyejian@huaweicloud.com>
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
|
|
The commit 783bf5d09f86 ("spi: spi-fsl-lpspi: limit PRESCALE bit in
TCR register") doesn't implement the prescaler maximum as intended.
The maximum allowed value for i.MX93 should be 1 and for i.MX7ULP
it should be 7. So this needs also a adjustment of the comparison
in the scldiv calculation.
Fixes: 783bf5d09f86 ("spi: spi-fsl-lpspi: limit PRESCALE bit in TCR register")
Signed-off-by: Stefan Wahren <wahrenst@gmx.net>
Link: https://patch.msgid.link/20240905111537.90389-1-wahrenst@gmx.net
Signed-off-by: Mark Brown <broonie@kernel.org>
|
|
There is a build issue with LD segmentation fault, while
CONFIG_LD_DEAD_CODE_DATA_ELIMINATION is not enabled, as bellow.
scripts/link-vmlinux.sh: line 49: 3796 Segmentation fault
(core dumped) ${ld} ${ldflags} -o ${output} ${wl}--whole-archive
${objs} ${wl}--no-whole-archive ${wl}--start-group
${libs} ${wl}--end-group ${kallsymso} ${btf_vmlinux_bin_o} ${ldlibs}
The error occurs in older versions of the GNU ld with version earlier
than 2.36. It makes most sense to have a minimum LD version as
a dependency for HAVE_LD_DEAD_CODE_DATA_ELIMINATION and eliminate
the impact of ".reloc .text, R_ARM_NONE, ." when
CONFIG_LD_DEAD_CODE_DATA_ELIMINATION is not enabled.
Fixes: ed0f94102251 ("ARM: 9404/1: arm32: enable HAVE_LD_DEAD_CODE_DATA_ELIMINATION")
Reported-by: Harith George <mail2hgg@gmail.com>
Tested-by: Harith George <mail2hgg@gmail.com>
Suggested-by: Arnd Bergmann <arnd@arndb.de>
Acked-by: Arnd Bergmann <arnd@arndb.de>
Signed-off-by: Yuntao Liu <liuyuntao12@huawei.com>
Link: https://lore.kernel.org/all/14e9aefb-88d1-4eee-8288-ef15d4a9b059@gmail.com/
Signed-off-by: Russell King (Oracle) <rmk+kernel@armlinux.org.uk>
|
|
Create a sentinal value for "invalid device".
This is needed for removing devices that have stripes on them (force
removing, without evacuating); we need a sentinal value for the stripe
pointers to the device being removed.
Signed-off-by: Kent Overstreet <kent.overstreet@linux.dev>
|
|
Move away from corporate infrastructure for upstream work. Also update
mailmap.
Signed-off-by: Andreas Hindborg <a.hindborg@kernel.org>
Link: https://lore.kernel.org/r/20240903200956.68231-1-a.hindborg@kernel.org
[ Reworded title slightly. - Miguel ]
Signed-off-by: Miguel Ojeda <ojeda@kernel.org>
|
|
If we have 2 threads that are using the same file descriptor and one of
them is doing direct IO writes while the other is doing fsync, we have a
race where we can end up either:
1) Attempt a fsync without holding the inode's lock, triggering an
assertion failures when assertions are enabled;
2) Do an invalid memory access from the fsync task because the file private
points to memory allocated on stack by the direct IO task and it may be
used by the fsync task after the stack was destroyed.
The race happens like this:
1) A user space program opens a file descriptor with O_DIRECT;
2) The program spawns 2 threads using libpthread for example;
3) One of the threads uses the file descriptor to do direct IO writes,
while the other calls fsync using the same file descriptor.
4) Call task A the thread doing direct IO writes and task B the thread
doing fsyncs;
5) Task A does a direct IO write, and at btrfs_direct_write() sets the
file's private to an on stack allocated private with the member
'fsync_skip_inode_lock' set to true;
6) Task B enters btrfs_sync_file() and sees that there's a private
structure associated to the file which has 'fsync_skip_inode_lock' set
to true, so it skips locking the inode's VFS lock;
7) Task A completes the direct IO write, and resets the file's private to
NULL since it had no prior private and our private was stack allocated.
Then it unlocks the inode's VFS lock;
8) Task B enters btrfs_get_ordered_extents_for_logging(), then the
assertion that checks the inode's VFS lock is held fails, since task B
never locked it and task A has already unlocked it.
The stack trace produced is the following:
assertion failed: inode_is_locked(&inode->vfs_inode), in fs/btrfs/ordered-data.c:983
------------[ cut here ]------------
kernel BUG at fs/btrfs/ordered-data.c:983!
Oops: invalid opcode: 0000 [#1] PREEMPT SMP PTI
CPU: 9 PID: 5072 Comm: worker Tainted: G U OE 6.10.5-1-default #1 openSUSE Tumbleweed 69f48d427608e1c09e60ea24c6c55e2ca1b049e8
Hardware name: Acer Predator PH315-52/Covini_CFS, BIOS V1.12 07/28/2020
RIP: 0010:btrfs_get_ordered_extents_for_logging.cold+0x1f/0x42 [btrfs]
Code: 50 d6 86 c0 e8 (...)
RSP: 0018:ffff9e4a03dcfc78 EFLAGS: 00010246
RAX: 0000000000000054 RBX: ffff9078a9868e98 RCX: 0000000000000000
RDX: 0000000000000000 RSI: ffff907dce4a7800 RDI: ffff907dce4a7800
RBP: ffff907805518800 R08: 0000000000000000 R09: ffff9e4a03dcfb38
R10: ffff9e4a03dcfb30 R11: 0000000000000003 R12: ffff907684ae7800
R13: 0000000000000001 R14: ffff90774646b600 R15: 0000000000000000
FS: 00007f04b96006c0(0000) GS:ffff907dce480000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 00007f32acbfc000 CR3: 00000001fd4fa005 CR4: 00000000003726f0
Call Trace:
<TASK>
? __die_body.cold+0x14/0x24
? die+0x2e/0x50
? do_trap+0xca/0x110
? do_error_trap+0x6a/0x90
? btrfs_get_ordered_extents_for_logging.cold+0x1f/0x42 [btrfs bb26272d49b4cdc847cf3f7faadd459b62caee9a]
? exc_invalid_op+0x50/0x70
? btrfs_get_ordered_extents_for_logging.cold+0x1f/0x42 [btrfs bb26272d49b4cdc847cf3f7faadd459b62caee9a]
? asm_exc_invalid_op+0x1a/0x20
? btrfs_get_ordered_extents_for_logging.cold+0x1f/0x42 [btrfs bb26272d49b4cdc847cf3f7faadd459b62caee9a]
? btrfs_get_ordered_extents_for_logging.cold+0x1f/0x42 [btrfs bb26272d49b4cdc847cf3f7faadd459b62caee9a]
btrfs_sync_file+0x21a/0x4d0 [btrfs bb26272d49b4cdc847cf3f7faadd459b62caee9a]
? __seccomp_filter+0x31d/0x4f0
__x64_sys_fdatasync+0x4f/0x90
do_syscall_64+0x82/0x160
? do_futex+0xcb/0x190
? __x64_sys_futex+0x10e/0x1d0
? switch_fpu_return+0x4f/0xd0
? syscall_exit_to_user_mode+0x72/0x220
? do_syscall_64+0x8e/0x160
? syscall_exit_to_user_mode+0x72/0x220
? do_syscall_64+0x8e/0x160
? syscall_exit_to_user_mode+0x72/0x220
? do_syscall_64+0x8e/0x160
? syscall_exit_to_user_mode+0x72/0x220
? do_syscall_64+0x8e/0x160
entry_SYSCALL_64_after_hwframe+0x76/0x7e
Another problem here is if task B grabs the private pointer and then uses
it after task A has finished, since the private was allocated in the stack
of task A, it results in some invalid memory access with a hard to predict
result.
This issue, triggering the assertion, was observed with QEMU workloads by
two users in the Link tags below.
Fix this by not relying on a file's private to pass information to fsync
that it should skip locking the inode and instead pass this information
through a special value stored in current->journal_info. This is safe
because in the relevant section of the direct IO write path we are not
holding a transaction handle, so current->journal_info is NULL.
The following C program triggers the issue:
$ cat repro.c
/* Get the O_DIRECT definition. */
#ifndef _GNU_SOURCE
#define _GNU_SOURCE
#endif
#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <stdint.h>
#include <fcntl.h>
#include <errno.h>
#include <string.h>
#include <pthread.h>
static int fd;
static ssize_t do_write(int fd, const void *buf, size_t count, off_t offset)
{
while (count > 0) {
ssize_t ret;
ret = pwrite(fd, buf, count, offset);
if (ret < 0) {
if (errno == EINTR)
continue;
return ret;
}
count -= ret;
buf += ret;
}
return 0;
}
static void *fsync_loop(void *arg)
{
while (1) {
int ret;
ret = fsync(fd);
if (ret != 0) {
perror("Fsync failed");
exit(6);
}
}
}
int main(int argc, char *argv[])
{
long pagesize;
void *write_buf;
pthread_t fsyncer;
int ret;
if (argc != 2) {
fprintf(stderr, "Use: %s <file path>\n", argv[0]);
return 1;
}
fd = open(argv[1], O_WRONLY | O_CREAT | O_TRUNC | O_DIRECT, 0666);
if (fd == -1) {
perror("Failed to open/create file");
return 1;
}
pagesize = sysconf(_SC_PAGE_SIZE);
if (pagesize == -1) {
perror("Failed to get page size");
return 2;
}
ret = posix_memalign(&write_buf, pagesize, pagesize);
if (ret) {
perror("Failed to allocate buffer");
return 3;
}
ret = pthread_create(&fsyncer, NULL, fsync_loop, NULL);
if (ret != 0) {
fprintf(stderr, "Failed to create writer thread: %d\n", ret);
return 4;
}
while (1) {
ret = do_write(fd, write_buf, pagesize, 0);
if (ret != 0) {
perror("Write failed");
exit(5);
}
}
return 0;
}
$ mkfs.btrfs -f /dev/sdi
$ mount /dev/sdi /mnt/sdi
$ timeout 10 ./repro /mnt/sdi/foo
Usually the race is triggered within less than 1 second. A test case for
fstests will follow soon.
Reported-by: Paulo Dias <paulo.miguel.dias@gmail.com>
Link: https://bugzilla.kernel.org/show_bug.cgi?id=219187
Reported-by: Andreas Jahn <jahn-andi@web.de>
Link: https://bugzilla.kernel.org/show_bug.cgi?id=219199
Reported-by: syzbot+4704b3cc972bd76024f1@syzkaller.appspotmail.com
Link: https://lore.kernel.org/linux-btrfs/00000000000044ff540620d7dee2@google.com/
Fixes: 939b656bc8ab ("btrfs: fix corruption after buffer fault in during direct IO append write")
CC: stable@vger.kernel.org # 5.15+
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
The original quirk should match to GA403U so that the full
range of GA403U models can benefit.
Signed-off-by: Luke D. Jones <luke@ljones.dev>
Link: https://lore.kernel.org/r/20240831003905.1060977-1-luke@ljones.dev
Reviewed-by: Ilpo Järvinen <ilpo.jarvinen@linux.intel.com>
Signed-off-by: Ilpo Järvinen <ilpo.jarvinen@linux.intel.com>
|
|
When the of_device_id entry for "elgin,jg10309-01" was added, the
corresponding spi_device_id was forgotten, causing a warning message
during boot-up:
SPI driver spidev has no spi_device_id for elgin,jg10309-01
Fix module autoloading and shut up the warning by adding the missing
entry.
Fixes: 5f3eee1eef5d0edd ("spi: spidev: Add an entry for elgin,jg10309-01")
Signed-off-by: Geert Uytterhoeven <geert+renesas@glider.be>
Link: https://patch.msgid.link/54bbb9d8a8db7e52d13e266f2d4a9bcd8b42a98a.1725366625.git.geert+renesas@glider.be
Signed-off-by: Mark Brown <broonie@kernel.org>
|
|
Do not write-protect the kernel read-only and __ro_after_init sections
earlier than before mark_rodata_ro() is called. This fixes a boot issue on
parisc which is triggered by commit 91a1d97ef482 ("jump_label,module: Don't
alloc static_key_mod for __ro_after_init keys"). That commit may modify
static key contents in the __ro_after_init section at bootup, so this
section needs to be writable at least until mark_rodata_ro() is called.
Signed-off-by: Helge Deller <deller@gmx.de>
Reported-by: matoro <matoro_mailinglist_kernel@matoro.tk>
Reported-by: Christoph Biedl <linux-kernel.bfrz@manchmal.in-ulm.de>
Tested-by: Christoph Biedl <linux-kernel.bfrz@manchmal.in-ulm.de>
Link: https://lore.kernel.org/linux-parisc/096cad5aada514255cd7b0b9dbafc768@matoro.tk/#r
Fixes: 91a1d97ef482 ("jump_label,module: Don't alloc static_key_mod for __ro_after_init keys")
Cc: stable@vger.kernel.org # v6.10+
|
|
Btrfs rejects to mount a FS if it finds a block group with a broken write
pointer (e.g, unequal write pointers on two zones of RAID1 block group).
Since such case can happen easily with a power-loss or crash of a system,
we need to handle the case more gently.
Handle such block group by making it unallocatable, so that there will be
no writes into it. That can be done by setting the allocation pointer at
the end of allocating region (= block_group->zone_capacity). Then, existing
code handle zone_unusable properly.
Having proper zone_capacity is necessary for the change. So, set it as fast
as possible.
We cannot handle RAID0 and RAID10 case like this. But, they are anyway
unable to read because of a missing stripe.
Fixes: 265f7237dd25 ("btrfs: zoned: allow DUP on meta-data block groups")
Fixes: 568220fa9657 ("btrfs: zoned: support RAID0/1/10 on top of raid stripe tree")
CC: stable@vger.kernel.org # 6.1+
Reported-by: HAN Yuwei <hrx@bupt.moe>
Cc: Xuefer <xuefer@gmail.com>
Signed-off-by: Naohiro Aota <naohiro.aota@wdc.com>
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
FYI: I'm carrying this on perf-tools-next.
The previous attempt fixed the build on debian:experimental-x-mipsel,
but when building on a larger set of containers I noticed it broke the
build on some other 32-bit architectures such as:
42 7.87 ubuntu:18.04-x-arm : FAIL gcc version 7.5.0 (Ubuntu/Linaro 7.5.0-3ubuntu1~18.04)
builtin-daemon.c: In function 'cmd_session_list':
builtin-daemon.c:692:16: error: format '%llu' expects argument of type 'long long unsigned int', but argument 4 has type 'long int' [-Werror=format=]
fprintf(out, "%c%" PRIu64,
^~~~~
builtin-daemon.c:694:13:
csv_sep, (curr - daemon->start) / 60);
~~~~~~~~~~~~~~~~~~~~~~~~~~~
In file included from builtin-daemon.c:3:0:
/usr/arm-linux-gnueabihf/include/inttypes.h:105:34: note: format string is defined here
# define PRIu64 __PRI64_PREFIX "u"
So lets cast that time_t (32-bit/64-bit) to uint64_t to make sure it
builds everywhere.
Fixes: 4bbe6002931954bb ("perf daemon: Fix the build on 32-bit architectures")
Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
Link: https://lore.kernel.org/r/ZsPmldtJ0D9Cua9_@x1
Signed-off-by: Namhyung Kim <namhyung@kernel.org>
|
|
The 32-bit arm build system will complain:
tools/perf/util/python.c:75:28: error: field ‘sample’ has incomplete type
75 | struct perf_sample sample;
However, arm64 build system doesn't complain this.
The root cause is arm64 define "HAVE_KVM_STAT_SUPPORT := 1" in
tools/perf/arch/arm64/Makefile, but arm arch doesn't define this.
This will lead to kvm-stat.h include other header files on arm64 build
system, especially "util/sample.h" for util/python.c.
This will try to directly include "util/sample.h" for "util/python.c" to
avoid such build issue on arm platform.
Signed-off-by: Xu Yang <xu.yang_2@nxp.com>
Cc: imx@lists.linux.dev
Link: https://lore.kernel.org/r/20240819023403.201324-1-xu.yang_2@nxp.com
Signed-off-by: Namhyung Kim <namhyung@kernel.org>
|
|
The spinlock and rwlock use a single-element per-cpu array to track
current locks due to performance reason. But this means the key is
always available and it cannot simply account lock stats in the array
because some of them are invalid.
In fact, the contention_end() program in the BPF invalidates the entry
by setting the 'lock' value to 0 instead of deleting the entry for the
hashmap. So it should skip entries with the lock value of 0 in the
account_end_timestamp().
Otherwise, it'd have spurious high contention on an idle machine:
$ sudo perf lock con -ab -Y spinlock sleep 3
contended total wait max wait avg wait type caller
8 4.72 s 1.84 s 590.46 ms spinlock rcu_core+0xc7
8 1.87 s 1.87 s 233.48 ms spinlock process_one_work+0x1b5
2 1.87 s 1.87 s 933.92 ms spinlock worker_thread+0x1a2
3 1.81 s 1.81 s 603.93 ms spinlock tmigr_update_events+0x13c
2 1.72 s 1.72 s 861.98 ms spinlock tick_do_update_jiffies64+0x25
6 42.48 us 13.02 us 7.08 us spinlock futex_q_lock+0x2a
1 13.03 us 13.03 us 13.03 us spinlock futex_wake+0xce
1 11.61 us 11.61 us 11.61 us spinlock rcu_core+0xc7
I don't believe it has contention on a spinlock longer than 1 second.
After this change, it only reports some small contentions.
$ sudo perf lock con -ab -Y spinlock sleep 3
contended total wait max wait avg wait type caller
4 133.51 us 43.29 us 33.38 us spinlock tick_do_update_jiffies64+0x25
4 69.06 us 31.82 us 17.27 us spinlock process_one_work+0x1b5
2 50.66 us 25.77 us 25.33 us spinlock rcu_core+0xc7
1 28.45 us 28.45 us 28.45 us spinlock rcu_core+0xc7
1 24.77 us 24.77 us 24.77 us spinlock tmigr_update_events+0x13c
1 23.34 us 23.34 us 23.34 us spinlock raw_spin_rq_lock_nested+0x15
Fixes: b5711042a1c8 ("perf lock contention: Use per-cpu array map for spinlocks")
Reported-by: Xi Wang <xii@google.com>
Cc: Song Liu <song@kernel.org>
Cc: bpf@vger.kernel.org
Link: https://lore.kernel.org/r/20240828052953.1445862-1-namhyung@kernel.org
Signed-off-by: Namhyung Kim <namhyung@kernel.org>
|
|
Commit 3e0bf9fde2984469 ("perf pmu: Restore full PMU name wildcard
support") adds a test case "PMU cmdline match" that covers PMU name
wildcard support provided by function perf_pmu__match(). The test works
with a wide range of supported combinations of PMU name matching but
omits the case that if the perf_pmu__match() cannot match the PMU name
to the wildcard, it tries to match its alias. However, this variable is
not set up, causing the test case to fail when run with subprocesses or
to segfault if run as a single process.
./perf test -vv 9
9: Sysfs PMU tests :
9.1: Parsing with PMU format directory : Ok
9.2: Parsing with PMU event : Ok
9.3: PMU event names : Ok
9.4: PMU name combining : Ok
9.5: PMU name comparison : Ok
9.6: PMU cmdline match : FAILED!
./perf test -F 9
9.1: Parsing with PMU format directory : Ok
9.2: Parsing with PMU event : Ok
9.3: PMU event names : Ok
9.4: PMU name combining : Ok
9.5: PMU name comparison : Ok
Segmentation fault (core dumped)
Initialize the PMU alias to null for all tests of perf_pmu__match()
as this functionality is not being tested and the alias matching works
exactly the same as the matching of the PMU name.
./perf test -F 9
9.1: Parsing with PMU format directory : Ok
9.2: Parsing with PMU event : Ok
9.3: PMU event names : Ok
9.4: PMU name combining : Ok
9.5: PMU name comparison : Ok
9.6: PMU cmdline match : Ok
Fixes: 3e0bf9fde2984469 ("perf pmu: Restore full PMU name wildcard support")
Signed-off-by: Veronika Molnarova <vmolnaro@redhat.com>
Cc: james.clark@arm.com
Cc: mpetlan@redhat.com
Cc: rstoyano@redhat.com
Link: https://lore.kernel.org/r/20240808103749.9356-1-vmolnaro@redhat.com
Signed-off-by: Namhyung Kim <namhyung@kernel.org>
|
|
The local extent changeset is passed to clear_record_extent_bits() where
it may have some additional memory dynamically allocated for ulist. When
qgroup is disabled, the memory is leaked because in this case the
changeset is not released upon __btrfs_qgroup_release_data() return.
Since the recorded contents of the changeset are not used thereafter, just
don't pass it.
Found by Linux Verification Center (linuxtesting.org) with Syzkaller.
Reported-by: syzbot+81670362c283f3dd889c@syzkaller.appspotmail.com
Closes: https://lore.kernel.org/lkml/000000000000aa8c0c060ade165e@google.com
Fixes: af0e2aab3b70 ("btrfs: qgroup: flush reservations during quota disable")
CC: stable@vger.kernel.org # 6.10+
Reviewed-by: Boris Burkov <boris@bur.io>
Reviewed-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: Fedor Pchelkin <pchelkin@ispras.ru>
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
The BIOS can choose to return no event data in response to a
WMI event, so the ACPI object passed to the WMI notify handler
can be NULL.
Check for such a situation and ignore the event in such a case.
Fixes: 23902f98f8d4 ("hwmon: add HP WMI Sensors driver")
Signed-off-by: Armin Wolf <W_Armin@gmx.de>
Reviewed-by: Ilpo Järvinen <ilpo.jarvinen@linux.intel.com>
Message-ID: <20240901031055.3030-2-W_Armin@gmx.de>
Signed-off-by: Guenter Roeck <linux@roeck-us.net>
|
|
Add MODULE_DEVICE_TABLE(), so modules could be properly autoloaded based
on the alias from of_device_id table.
Signed-off-by: Liao Chen <liaochen4@huawei.com>
Link: https://patch.msgid.link/20240831094231.795024-1-liaochen4@huawei.com
Signed-off-by: Mark Brown <broonie@kernel.org>
|
|
I am retiring from the project, so removing myself from MAINTAINERS as I won't
have time to dedicate to it.
Signed-off-by: Wedson Almeida Filho <wedsonaf@gmail.com>
Link: https://lore.kernel.org/r/20240828211117.9422-2-wedsonaf@gmail.com
Signed-off-by: Miguel Ojeda <ojeda@kernel.org>
|
|
Currently while defining `THIS_MODULE` symbol in `module!()`, the
pointer used to construct `ThisModule` is derived from an immutable
reference of `__this_module`, which means the pointer doesn't have
the provenance for writing, and that means any write to that pointer
is UB regardless of data races or not. However, the usage of
`THIS_MODULE` includes passing this pointer to functions that may write
to it (probably in unsafe code), and this will create soundness issues.
One way to fix this is using `addr_of_mut!()` but that requires the
unstable feature "const_mut_refs". So instead of `addr_of_mut()!`,
an extern static `Opaque` is used here: since `Opaque<T>` is transparent
to `T`, an extern static `Opaque` will just wrap the C symbol (defined
in a C compile unit) in an `Opaque`, which provides a pointer with
writable provenance via `Opaque::get()`. This fix the potential UBs
because of pointer provenance unmatched.
Reported-by: Alice Ryhl <aliceryhl@google.com>
Signed-off-by: Boqun Feng <boqun.feng@gmail.com>
Reviewed-by: Alice Ryhl <aliceryhl@google.com>
Reviewed-by: Trevor Gross <tmgross@umich.edu>
Reviewed-by: Benno Lossin <benno.lossin@proton.me>
Reviewed-by: Gary Guo <gary@garyguo.net>
Closes: https://rust-for-linux.zulipchat.com/#narrow/stream/x/topic/x/near/465412664
Fixes: 1fbde52bde73 ("rust: add `macros` crate")
Cc: stable@vger.kernel.org # 6.6.x: be2ca1e03965: ("rust: types: Make Opaque::get const")
Link: https://lore.kernel.org/r/20240828180129.4046355-1-boqun.feng@gmail.com
[ Fixed two typos, reworded title. - Miguel ]
Signed-off-by: Miguel Ojeda <ojeda@kernel.org>
|
|
codetag_module_init() is used to initialize sections containing allocation
tags. This function is used to initialize module sections as well as core
kernel sections, in which case the module parameter is set to NULL. This
function has to be called even when CONFIG_MODULES=n to initialize core
kernel allocation tag sections. When CONFIG_MODULES=n, this function is a
NOP, which is wrong. This leads to /proc/allocinfo reported as empty.
Fix this by making it independent of CONFIG_MODULES.
Link: https://lkml.kernel.org/r/20240828231536.1770519-1-surenb@google.com
Fixes: 916cc5167cc6 ("lib: code tagging framework")
Signed-off-by: Suren Baghdasaryan <surenb@google.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: Kees Cook <keescook@chromium.org>
Cc: Kent Overstreet <kent.overstreet@linux.dev>
Cc: Pasha Tatashin <pasha.tatashin@soleen.com>
Cc: Sourav Panda <souravpanda@google.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: <stable@vger.kernel.org> [6.10+]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
When running the vmalloc stress on a 448-core system, observe the average
latency of purge_vmap_node() is about 2 seconds by using the eBPF/bcc
'funclatency.py' tool [1].
# /your-git-repo/bcc/tools/funclatency.py -u purge_vmap_node & pid1=$! && sleep 8 && modprobe test_vmalloc nr_threads=$(nproc) run_test_mask=0x7; kill -SIGINT $pid1
usecs : count distribution
0 -> 1 : 0 | |
2 -> 3 : 29 | |
4 -> 7 : 19 | |
8 -> 15 : 56 | |
16 -> 31 : 483 |**** |
32 -> 63 : 1548 |************ |
64 -> 127 : 2634 |********************* |
128 -> 255 : 2535 |********************* |
256 -> 511 : 1776 |************** |
512 -> 1023 : 1015 |******** |
1024 -> 2047 : 573 |**** |
2048 -> 4095 : 488 |**** |
4096 -> 8191 : 1091 |********* |
8192 -> 16383 : 3078 |************************* |
16384 -> 32767 : 4821 |****************************************|
32768 -> 65535 : 3318 |*************************** |
65536 -> 131071 : 1718 |************** |
131072 -> 262143 : 2220 |****************** |
262144 -> 524287 : 1147 |********* |
524288 -> 1048575 : 1179 |********* |
1048576 -> 2097151 : 822 |****** |
2097152 -> 4194303 : 906 |******* |
4194304 -> 8388607 : 2148 |***************** |
8388608 -> 16777215 : 4497 |************************************* |
16777216 -> 33554431 : 289 |** |
avg = 2041714 usecs, total: 78381401772 usecs, count: 38390
The worst case is over 16-33 seconds, so soft lockup is triggered [2].
[Root Cause]
1) Each purge_list has the long list. The following shows the number of
vmap_area is purged.
crash> p vmap_nodes
vmap_nodes = $27 = (struct vmap_node *) 0xff2de5a900100000
crash> vmap_node 0xff2de5a900100000 128 | grep nr_purged
nr_purged = 663070
...
nr_purged = 821670
nr_purged = 692214
nr_purged = 726808
...
2) atomic_long_sub() employs the 'lock' prefix to ensure the atomic
operation when purging each vmap_area. However, the iteration is over
600000 vmap_area (See 'nr_purged' above).
Here is objdump output:
$ objdump -D vmlinux
ffffffff813e8c80 <purge_vmap_node>:
...
ffffffff813e8d70: f0 48 29 2d 68 0c bb lock sub %rbp,0x2bb0c68(%rip)
...
Quote from "Instruction tables" pdf file [3]:
Instructions with a LOCK prefix have a long latency that depends on
cache organization and possibly RAM speed. If there are multiple
processors or cores or direct memory access (DMA) devices, then all
locked instructions will lock a cache line for exclusive access,
which may involve RAM access. A LOCK prefix typically costs more
than a hundred clock cycles, even on single-processor systems.
That's why the latency of purge_vmap_node() dramatically increases
on a many-core system: One core is busy on purging each vmap_area of
the *long* purge_list and executing atomic_long_sub() for each
vmap_area, while other cores free vmalloc allocations and execute
atomic_long_add_return() in free_vmap_area_noflush().
[Solution]
Employ a local variable to record the total purged pages, and execute
atomic_long_sub() after the traversal of the purge_list is done. The
experiment result shows the latency improvement is 99%.
[Experiment Result]
1) System Configuration: Three servers (with HT-enabled) are tested.
* 72-core server: 3rd Gen Intel Xeon Scalable Processor*1
* 192-core server: 5th Gen Intel Xeon Scalable Processor*2
* 448-core server: AMD Zen 4 Processor*2
2) Kernel Config
* CONFIG_KASAN is disabled
3) The data in column "w/o patch" and "w/ patch"
* Unit: micro seconds (us)
* Each data is the average of 3-time measurements
System w/o patch (us) w/ patch (us) Improvement (%)
--------------- -------------- ------------- -------------
72-core server 2194 14 99.36%
192-core server 143799 1139 99.21%
448-core server 1992122 6883 99.65%
[1] https://github.com/iovisor/bcc/blob/master/tools/funclatency.py
[2] https://gist.github.com/AdrianHuang/37c15f67b45407b83c2d32f918656c12
[3] https://www.agner.org/optimize/instruction_tables.pdf
Link: https://lkml.kernel.org/r/20240829130633.2184-1-ahuang12@lenovo.com
Signed-off-by: Adrian Huang <ahuang12@lenovo.com>
Reviewed-by: Uladzislau Rezki (Sony) <urezki@gmail.com>
Cc: Christoph Hellwig <hch@infradead.org>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
Soon I won't be able to use my current email address.
Link: https://lkml.kernel.org/r/20240830095658.1203198-1-jankul@alatek.krakow.pl
Signed-off-by: Jan Kuliga <jankul@alatek.krakow.pl>
Cc: David S. Miller <davem@davemloft.net>
Cc: Matthieu Baerts (NGI0) <matttbe@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
When PG_hwpoison pages are freed they are treated differently in
free_pages_prepare() and instead of being released they are isolated.
Page allocation tag counters are decremented at this point since the page
is considered not in use. Later on when such pages are released by
unpoison_memory(), the allocation tag counters will be decremented again
and the following warning gets reported:
[ 113.930443][ T3282] ------------[ cut here ]------------
[ 113.931105][ T3282] alloc_tag was not set
[ 113.931576][ T3282] WARNING: CPU: 2 PID: 3282 at ./include/linux/alloc_tag.h:130 pgalloc_tag_sub.part.66+0x154/0x164
[ 113.932866][ T3282] Modules linked in: hwpoison_inject fuse ip6t_rpfilter ip6t_REJECT nf_reject_ipv6 ipt_REJECT nf_reject_ipv4 xt_conntrack ebtable_nat ebtable_broute ip6table_nat ip6table_man4
[ 113.941638][ T3282] CPU: 2 UID: 0 PID: 3282 Comm: madvise11 Kdump: loaded Tainted: G W 6.11.0-rc4-dirty #18
[ 113.943003][ T3282] Tainted: [W]=WARN
[ 113.943453][ T3282] Hardware name: QEMU KVM Virtual Machine, BIOS unknown 2/2/2022
[ 113.944378][ T3282] pstate: 40400005 (nZcv daif +PAN -UAO -TCO -DIT -SSBS BTYPE=--)
[ 113.945319][ T3282] pc : pgalloc_tag_sub.part.66+0x154/0x164
[ 113.946016][ T3282] lr : pgalloc_tag_sub.part.66+0x154/0x164
[ 113.946706][ T3282] sp : ffff800087093a10
[ 113.947197][ T3282] x29: ffff800087093a10 x28: ffff0000d7a9d400 x27: ffff80008249f0a0
[ 113.948165][ T3282] x26: 0000000000000000 x25: ffff80008249f2b0 x24: 0000000000000000
[ 113.949134][ T3282] x23: 0000000000000001 x22: 0000000000000001 x21: 0000000000000000
[ 113.950597][ T3282] x20: ffff0000c08fcad8 x19: ffff80008251e000 x18: ffffffffffffffff
[ 113.952207][ T3282] x17: 0000000000000000 x16: 0000000000000000 x15: ffff800081746210
[ 113.953161][ T3282] x14: 0000000000000000 x13: 205d323832335420 x12: 5b5d353031313339
[ 113.954120][ T3282] x11: ffff800087093500 x10: 000000000000005d x9 : 00000000ffffffd0
[ 113.955078][ T3282] x8 : 7f7f7f7f7f7f7f7f x7 : ffff80008236ba90 x6 : c0000000ffff7fff
[ 113.956036][ T3282] x5 : ffff000b34bf4dc8 x4 : ffff8000820aba90 x3 : 0000000000000001
[ 113.956994][ T3282] x2 : ffff800ab320f000 x1 : 841d1e35ac932e00 x0 : 0000000000000000
[ 113.957962][ T3282] Call trace:
[ 113.958350][ T3282] pgalloc_tag_sub.part.66+0x154/0x164
[ 113.959000][ T3282] pgalloc_tag_sub+0x14/0x1c
[ 113.959539][ T3282] free_unref_page+0xf4/0x4b8
[ 113.960096][ T3282] __folio_put+0xd4/0x120
[ 113.960614][ T3282] folio_put+0x24/0x50
[ 113.961103][ T3282] unpoison_memory+0x4f0/0x5b0
[ 113.961678][ T3282] hwpoison_unpoison+0x30/0x48 [hwpoison_inject]
[ 113.962436][ T3282] simple_attr_write_xsigned.isra.34+0xec/0x1cc
[ 113.963183][ T3282] simple_attr_write+0x38/0x48
[ 113.963750][ T3282] debugfs_attr_write+0x54/0x80
[ 113.964330][ T3282] full_proxy_write+0x68/0x98
[ 113.964880][ T3282] vfs_write+0xdc/0x4d0
[ 113.965372][ T3282] ksys_write+0x78/0x100
[ 113.965875][ T3282] __arm64_sys_write+0x24/0x30
[ 113.966440][ T3282] invoke_syscall+0x7c/0x104
[ 113.966984][ T3282] el0_svc_common.constprop.1+0x88/0x104
[ 113.967652][ T3282] do_el0_svc+0x2c/0x38
[ 113.968893][ T3282] el0_svc+0x3c/0x1b8
[ 113.969379][ T3282] el0t_64_sync_handler+0x98/0xbc
[ 113.969980][ T3282] el0t_64_sync+0x19c/0x1a0
[ 113.970511][ T3282] ---[ end trace 0000000000000000 ]---
To fix this, clear the page tag reference after the page got isolated
and accounted for.
Link: https://lkml.kernel.org/r/20240825163649.33294-1-hao.ge@linux.dev
Fixes: d224eb0287fb ("codetag: debug: mark codetags for reserved pages as empty")
Signed-off-by: Hao Ge <gehao@kylinos.cn>
Reviewed-by: Miaohe Lin <linmiaohe@huawei.com>
Acked-by: Suren Baghdasaryan <surenb@google.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: Hao Ge <gehao@kylinos.cn>
Cc: Kent Overstreet <kent.overstreet@linux.dev>
Cc: Naoya Horiguchi <nao.horiguchi@gmail.com>
Cc: Pasha Tatashin <pasha.tatashin@soleen.com>
Cc: <stable@vger.kernel.org> [6.10+]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
Currently, the behavior of zswap.writeback wrt. the cgroup hierarchy
seems a bit odd. Unlike zswap.max, it doesn't honor the value from parent
cgroups. This surfaced when people tried to globally disable zswap
writeback, i.e. reserve physical swap space only for hibernation [1] -
disabling zswap.writeback only for the root cgroup results in subcgroups
with zswap.writeback=1 still performing writeback.
The inconsistency became more noticeable after I introduced the
MemoryZSwapWriteback= systemd unit setting [2] for controlling the knob.
The patch assumed that the kernel would enforce the value of parent
cgroups. It could probably be workarounded from systemd's side, by going
up the slice unit tree and inheriting the value. Yet I think it's more
sensible to make it behave consistently with zswap.max and friends.
[1] https://wiki.archlinux.org/title/Power_management/Suspend_and_hibernate#Disable_zswap_writeback_to_use_the_swap_space_only_for_hibernation
[2] https://github.com/systemd/systemd/pull/31734
Link: https://lkml.kernel.org/r/20240823162506.12117-1-me@yhndnzj.com
Fixes: 501a06fe8e4c ("zswap: memcontrol: implement zswap writeback disabling")
Signed-off-by: Mike Yuan <me@yhndnzj.com>
Reviewed-by: Nhat Pham <nphamcs@gmail.com>
Acked-by: Yosry Ahmed <yosryahmed@google.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Michal Koutný <mkoutny@suse.com>
Cc: Muchun Song <muchun.song@linux.dev>
Cc: Roman Gushchin <roman.gushchin@linux.dev>
Cc: Shakeel Butt <shakeel.butt@linux.dev>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
Richard reports that since 772dd0342727c ("mm: enumerate all gfp flags"),
gfp-translate is broken, as the bit numbers are implicit, leaving the
shell script unable to extract them. Even more, some bits are now at a
variable location, making it double extra hard to parse using a simple
shell script.
Use a brute-force approach to the problem by generating a small C stub
that will use the enum to dump the interesting bits.
As an added bonus, we are now able to identify invalid bits for a given
configuration. As an added drawback, we cannot parse include files that
predate this change anymore. Tough luck.
Link: https://lkml.kernel.org/r/20240823163850.3791201-1-maz@kernel.org
Fixes: 772dd0342727 ("mm: enumerate all gfp flags")
Signed-off-by: Marc Zyngier <maz@kernel.org>
Reported-by: Richard Weinberger <richard@nod.at>
Cc: Petr Tesařík <petr@tesarici.cz>
Cc: Suren Baghdasaryan <surenb@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
This reverts commit 5da226dbfce3 ("mm: skip CMA pages when they are not
available") and b7108d66318a ("Multi-gen LRU: skip CMA pages when they are
not eligible").
lruvec->lru_lock is highly contended and is held when calling
isolate_lru_folios. If the lru has a large number of CMA folios
consecutively, while the allocation type requested is not MIGRATE_MOVABLE,
isolate_lru_folios can hold the lock for a very long time while it skips
those. For FIO workload, ~150million order=0 folios were skipped to
isolate a few ZONE_DMA folios [1]. This can cause lockups [1] and high
memory pressure for extended periods of time [2].
Remove skipping CMA for MGLRU as well, as it was introduced in sort_folio
for the same resaon as 5da226dbfce3a2f44978c2c7cf88166e69a6788b.
[1] https://lore.kernel.org/all/CAOUHufbkhMZYz20aM_3rHZ3OcK4m2puji2FGpUpn_-DevGk3Kg@mail.gmail.com/
[2] https://lore.kernel.org/all/ZrssOrcJIDy8hacI@gmail.com/
[usamaarif642@gmail.com: also revert b7108d66318a, per Johannes]
Link: https://lkml.kernel.org/r/9060a32d-b2d7-48c0-8626-1db535653c54@gmail.com
Link: https://lkml.kernel.org/r/357ac325-4c61-497a-92a3-bdbd230d5ec9@gmail.com
Link: https://lkml.kernel.org/r/9060a32d-b2d7-48c0-8626-1db535653c54@gmail.com
Fixes: 5da226dbfce3 ("mm: skip CMA pages when they are not available")
Signed-off-by: Usama Arif <usamaarif642@gmail.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Bharata B Rao <bharata@amd.com>
Cc: Breno Leitao <leitao@debian.org>
Cc: David Hildenbrand <david@redhat.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Rik van Riel <riel@surriel.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Yu Zhao <yuzhao@google.com>
Cc: Zhaoyang Huang <huangzhaoyang@gmail.com>
Cc: Zhaoyang Huang <zhaoyang.huang@unisoc.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
The write lock should be held when validating the tree to avoid updates
racing with checks. Holding the rcu read lock during a large tree
validation may also cause a prolonged rcu read window and "rcu_preempt
detected stalls" warnings.
Link: https://lore.kernel.org/all/0000000000001d12d4062005aea1@google.com/
Link: https://lkml.kernel.org/r/20240820175417.2782532-1-Liam.Howlett@oracle.com
Fixes: 54a611b60590 ("Maple Tree: add new data structure")
Signed-off-by: Liam R. Howlett <Liam.Howlett@Oracle.com>
Reported-by: syzbot+036af2f0c7338a33b0cd@syzkaller.appspotmail.com
Cc: Hillf Danton <hdanton@sina.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: "Paul E. McKenney" <paulmck@kernel.org>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
Fix the condition to exclude the elfcorehdr segment from the SHA digest
calculation.
The j iterator is an index into the output sha_regions[] array, not into
the input image->segment[] array. Once it reaches
image->elfcorehdr_index, all subsequent segments are excluded. Besides,
if the purgatory segment precedes the elfcorehdr segment, the elfcorehdr
may be wrongly included in the calculation.
Link: https://lkml.kernel.org/r/20240805150750.170739-1-petr.tesarik@suse.com
Fixes: f7cc804a9fd4 ("kexec: exclude elfcorehdr from the segment digest")
Signed-off-by: Petr Tesarik <ptesarik@suse.com>
Acked-by: Baoquan He <bhe@redhat.com>
Cc: Eric Biederman <ebiederm@xmission.com>
Cc: Hari Bathini <hbathini@linux.ibm.com>
Cc: Sourabh Jain <sourabhjain@linux.ibm.com>
Cc: Eric DeVolder <eric_devolder@yahoo.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
When enable CONFIG_MEMCG & CONFIG_KFENCE & CONFIG_KMEMLEAK, the following
warning always occurs,This is because the following call stack occurred:
mem_pool_alloc
kmem_cache_alloc_noprof
slab_alloc_node
kfence_alloc
Once the kfence allocation is successful,slab->obj_exts will not be empty,
because it has already been assigned a value in kfence_init_pool.
Since in the prepare_slab_obj_exts_hook function,we perform a check for
s->flags & (SLAB_NO_OBJ_EXT | SLAB_NOLEAKTRACE),the alloc_tag_add function
will not be called as a result.Therefore,ref->ct remains NULL.
However,when we call mem_pool_free,since obj_ext is not empty, it
eventually leads to the alloc_tag_sub scenario being invoked. This is
where the warning occurs.
So we should add corresponding checks in the alloc_tagging_slab_free_hook.
For __GFP_NO_OBJ_EXT case,I didn't see the specific case where it's using
kfence,so I won't add the corresponding check in
alloc_tagging_slab_free_hook for now.
[ 3.734349] ------------[ cut here ]------------
[ 3.734807] alloc_tag was not set
[ 3.735129] WARNING: CPU: 4 PID: 40 at ./include/linux/alloc_tag.h:130 kmem_cache_free+0x444/0x574
[ 3.735866] Modules linked in: autofs4
[ 3.736211] CPU: 4 UID: 0 PID: 40 Comm: ksoftirqd/4 Tainted: G W 6.11.0-rc3-dirty #1
[ 3.736969] Tainted: [W]=WARN
[ 3.737258] Hardware name: QEMU KVM Virtual Machine, BIOS unknown 2/2/2022
[ 3.737875] pstate: 60400005 (nZCv daif +PAN -UAO -TCO -DIT -SSBS BTYPE=--)
[ 3.738501] pc : kmem_cache_free+0x444/0x574
[ 3.738951] lr : kmem_cache_free+0x444/0x574
[ 3.739361] sp : ffff80008357bb60
[ 3.739693] x29: ffff80008357bb70 x28: 0000000000000000 x27: 0000000000000000
[ 3.740338] x26: ffff80008207f000 x25: ffff000b2eb2fd60 x24: ffff0000c0005700
[ 3.740982] x23: ffff8000804229e4 x22: ffff800082080000 x21: ffff800081756000
[ 3.741630] x20: fffffd7ff8253360 x19: 00000000000000a8 x18: ffffffffffffffff
[ 3.742274] x17: ffff800ab327f000 x16: ffff800083398000 x15: ffff800081756df0
[ 3.742919] x14: 0000000000000000 x13: 205d344320202020 x12: 5b5d373038343337
[ 3.743560] x11: ffff80008357b650 x10: 000000000000005d x9 : 00000000ffffffd0
[ 3.744231] x8 : 7f7f7f7f7f7f7f7f x7 : ffff80008237bad0 x6 : c0000000ffff7fff
[ 3.744907] x5 : ffff80008237ba78 x4 : ffff8000820bbad0 x3 : 0000000000000001
[ 3.745580] x2 : 68d66547c09f7800 x1 : 68d66547c09f7800 x0 : 0000000000000000
[ 3.746255] Call trace:
[ 3.746530] kmem_cache_free+0x444/0x574
[ 3.746931] mem_pool_free+0x44/0xf4
[ 3.747306] free_object_rcu+0xc8/0xdc
[ 3.747693] rcu_do_batch+0x234/0x8a4
[ 3.748075] rcu_core+0x230/0x3e4
[ 3.748424] rcu_core_si+0x14/0x1c
[ 3.748780] handle_softirqs+0x134/0x378
[ 3.749189] run_ksoftirqd+0x70/0x9c
[ 3.749560] smpboot_thread_fn+0x148/0x22c
[ 3.749978] kthread+0x10c/0x118
[ 3.750323] ret_from_fork+0x10/0x20
[ 3.750696] ---[ end trace 0000000000000000 ]---
Link: https://lkml.kernel.org/r/20240816013336.17505-1-hao.ge@linux.dev
Fixes: 4b8736964640 ("mm/slab: add allocation accounting into slab allocation and free paths")
Signed-off-by: Hao Ge <gehao@kylinos.cn>
Cc: Christoph Lameter <cl@linux.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Hyeonggon Yoo <42.hyeyoo@gmail.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Kees Cook <kees@kernel.org>
Cc: Kent Overstreet <kent.overstreet@linux.dev>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: Roman Gushchin <roman.gushchin@linux.dev>
Cc: Suren Baghdasaryan <surenb@google.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
After commit a694291a6211 ("nilfs2: separate wait function from
nilfs_segctor_write") was applied, the log writing function
nilfs_segctor_do_construct() was able to issue I/O requests continuously
even if user data blocks were split into multiple logs across segments,
but two potential flaws were introduced in its error handling.
First, if nilfs_segctor_begin_construction() fails while creating the
second or subsequent logs, the log writing function returns without
calling nilfs_segctor_abort_construction(), so the writeback flag set on
pages/folios will remain uncleared. This causes page cache operations to
hang waiting for the writeback flag. For example,
truncate_inode_pages_final(), which is called via nilfs_evict_inode() when
an inode is evicted from memory, will hang.
Second, the NILFS_I_COLLECTED flag set on normal inodes remain uncleared.
As a result, if the next log write involves checkpoint creation, that's
fine, but if a partial log write is performed that does not, inodes with
NILFS_I_COLLECTED set are erroneously removed from the "sc_dirty_files"
list, and their data and b-tree blocks may not be written to the device,
corrupting the block mapping.
Fix these issues by uniformly calling nilfs_segctor_abort_construction()
on failure of each step in the loop in nilfs_segctor_do_construct(),
having it clean up logs and segment usages according to progress, and
correcting the conditions for calling nilfs_redirty_inodes() to ensure
that the NILFS_I_COLLECTED flag is cleared.
Link: https://lkml.kernel.org/r/20240814101119.4070-1-konishi.ryusuke@gmail.com
Fixes: a694291a6211 ("nilfs2: separate wait function from nilfs_segctor_write")
Signed-off-by: Ryusuke Konishi <konishi.ryusuke@gmail.com>
Tested-by: Ryusuke Konishi <konishi.ryusuke@gmail.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
In an error injection test of a routine for mount-time recovery, KASAN
found a use-after-free bug.
It turned out that if data recovery was performed using partial logs
created by dsync writes, but an error occurred before starting the log
writer to create a recovered checkpoint, the inodes whose data had been
recovered were left in the ns_dirty_files list of the nilfs object and
were not freed.
Fix this issue by cleaning up inodes that have read the recovery data if
the recovery routine fails midway before the log writer starts.
Link: https://lkml.kernel.org/r/20240810065242.3701-1-konishi.ryusuke@gmail.com
Fixes: 0f3e1c7f23f8 ("nilfs2: recovery functions")
Signed-off-by: Ryusuke Konishi <konishi.ryusuke@gmail.com>
Tested-by: Ryusuke Konishi <konishi.ryusuke@gmail.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
The superblock buffers of nilfs2 can not only be overwritten at runtime
for modifications/repairs, but they are also regularly swapped, replaced
during resizing, and even abandoned when degrading to one side due to
backing device issues. So, accessing them requires mutual exclusion using
the reader/writer semaphore "nilfs->ns_sem".
Some sysfs attribute show methods read this superblock buffer without the
necessary mutual exclusion, which can cause problems with pointer
dereferencing and memory access, so fix it.
Link: https://lkml.kernel.org/r/20240811100320.9913-1-konishi.ryusuke@gmail.com
Fixes: da7141fb78db ("nilfs2: add /sys/fs/nilfs2/<device> group")
Signed-off-by: Ryusuke Konishi <konishi.ryusuke@gmail.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
Since khugepaged was changed to allow retracting page tables in file
mappings without holding the mmap lock, these BUG_ON()s are wrong - get
rid of them.
We could also remove the preceding "if (unlikely(...))" block, but then we
could reach pte_offset_map_lock() with transhuge pages not just for file
mappings but also for anonymous mappings - which would probably be fine
but I think is not necessarily expected.
Link: https://lkml.kernel.org/r/20240813-uffd-thp-flip-fix-v2-2-5efa61078a41@google.com
Fixes: 1d65b771bc08 ("mm/khugepaged: retract_page_tables() without mmap or vma lock")
Signed-off-by: Jann Horn <jannh@google.com>
Reviewed-by: Qi Zheng <zhengqi.arch@bytedance.com>
Acked-by: David Hildenbrand <david@redhat.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Pavel Emelyanov <xemul@virtuozzo.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
Patch series "userfaultfd: fix races around pmd_trans_huge() check", v2.
The pmd_trans_huge() code in mfill_atomic() is wrong in three different
ways depending on kernel version:
1. The pmd_trans_huge() check is racy and can lead to a BUG_ON() (if you hit
the right two race windows) - I've tested this in a kernel build with
some extra mdelay() calls. See the commit message for a description
of the race scenario.
On older kernels (before 6.5), I think the same bug can even
theoretically lead to accessing transhuge page contents as a page table
if you hit the right 5 narrow race windows (I haven't tested this case).
2. As pointed out by Qi Zheng, pmd_trans_huge() is not sufficient for
detecting PMDs that don't point to page tables.
On older kernels (before 6.5), you'd just have to win a single fairly
wide race to hit this.
I've tested this on 6.1 stable by racing migration (with a mdelay()
patched into try_to_migrate()) against UFFDIO_ZEROPAGE - on my x86
VM, that causes a kernel oops in ptlock_ptr().
3. On newer kernels (>=6.5), for shmem mappings, khugepaged is allowed
to yank page tables out from under us (though I haven't tested that),
so I think the BUG_ON() checks in mfill_atomic() are just wrong.
I decided to write two separate fixes for these (one fix for bugs 1+2, one
fix for bug 3), so that the first fix can be backported to kernels
affected by bugs 1+2.
This patch (of 2):
This fixes two issues.
I discovered that the following race can occur:
mfill_atomic other thread
============ ============
<zap PMD>
pmdp_get_lockless() [reads none pmd]
<bail if trans_huge>
<if none:>
<pagefault creates transhuge zeropage>
__pte_alloc [no-op]
<zap PMD>
<bail if pmd_trans_huge(*dst_pmd)>
BUG_ON(pmd_none(*dst_pmd))
I have experimentally verified this in a kernel with extra mdelay() calls;
the BUG_ON(pmd_none(*dst_pmd)) triggers.
On kernels newer than commit 0d940a9b270b ("mm/pgtable: allow
pte_offset_map[_lock]() to fail"), this can't lead to anything worse than
a BUG_ON(), since the page table access helpers are actually designed to
deal with page tables concurrently disappearing; but on older kernels
(<=6.4), I think we could probably theoretically race past the two
BUG_ON() checks and end up treating a hugepage as a page table.
The second issue is that, as Qi Zheng pointed out, there are other types
of huge PMDs that pmd_trans_huge() can't catch: devmap PMDs and swap PMDs
(in particular, migration PMDs).
On <=6.4, this is worse than the first issue: If mfill_atomic() runs on a
PMD that contains a migration entry (which just requires winning a single,
fairly wide race), it will pass the PMD to pte_offset_map_lock(), which
assumes that the PMD points to a page table.
Breakage follows: First, the kernel tries to take the PTE lock (which will
crash or maybe worse if there is no "struct page" for the address bits in
the migration entry PMD - I think at least on X86 there usually is no
corresponding "struct page" thanks to the PTE inversion mitigation, amd64
looks different).
If that didn't crash, the kernel would next try to write a PTE into what
it wrongly thinks is a page table.
As part of fixing these issues, get rid of the check for pmd_trans_huge()
before __pte_alloc() - that's redundant, we're going to have to check for
that after the __pte_alloc() anyway.
Backport note: pmdp_get_lockless() is pmd_read_atomic() in older kernels.
Link: https://lkml.kernel.org/r/20240813-uffd-thp-flip-fix-v2-0-5efa61078a41@google.com
Link: https://lkml.kernel.org/r/20240813-uffd-thp-flip-fix-v2-1-5efa61078a41@google.com
Fixes: c1a4de99fada ("userfaultfd: mcopy_atomic|mfill_zeropage: UFFDIO_COPY|UFFDIO_ZEROPAGE preparation")
Signed-off-by: Jann Horn <jannh@google.com>
Acked-by: David Hildenbrand <david@redhat.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Jann Horn <jannh@google.com>
Cc: Pavel Emelyanov <xemul@virtuozzo.com>
Cc: Qi Zheng <zhengqi.arch@bytedance.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
Commit 8c61291fd850 ("mm: fix incorrect vbq reference in
purge_fragmented_block") extended the 'vmap_block' structure to contain a
'cpu' field which is set at allocation time to the id of the initialising
CPU.
When a new 'vmap_block' is being instantiated by new_vmap_block(), the
partially initialised structure is added to the local 'vmap_block_queue'
xarray before the 'cpu' field has been initialised. If another CPU is
concurrently walking the xarray (e.g. via vm_unmap_aliases()), then it
may perform an out-of-bounds access to the remote queue thanks to an
uninitialised index.
This has been observed as UBSAN errors in Android:
| Internal error: UBSAN: array index out of bounds: 00000000f2005512 [#1] PREEMPT SMP
|
| Call trace:
| purge_fragmented_block+0x204/0x21c
| _vm_unmap_aliases+0x170/0x378
| vm_unmap_aliases+0x1c/0x28
| change_memory_common+0x1dc/0x26c
| set_memory_ro+0x18/0x24
| module_enable_ro+0x98/0x238
| do_init_module+0x1b0/0x310
Move the initialisation of 'vb->cpu' in new_vmap_block() ahead of the
addition to the xarray.
Link: https://lkml.kernel.org/r/20240812171606.17486-1-will@kernel.org
Fixes: 8c61291fd850 ("mm: fix incorrect vbq reference in purge_fragmented_block")
Signed-off-by: Will Deacon <will@kernel.org>
Reviewed-by: Baoquan He <bhe@redhat.com>
Reviewed-by: Uladzislau Rezki (Sony) <urezki@gmail.com>
Cc: Zhaoyang Huang <zhaoyang.huang@unisoc.com>
Cc: Hailong.Liu <hailong.liu@oppo.com>
Cc: Christoph Hellwig <hch@infradead.org>
Cc: Lorenzo Stoakes <lstoakes@gmail.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
The __NR_mmap isn't found on armhf. The mmap() is commonly available
system call and its wrapper is present on all architectures. So it should
be used directly. It solves problem for armhf and doesn't create problem
for other architectures.
Remove sys_mmap() functions as they aren't doing anything else other than
calling mmap(). There is no need to set errno = 0 manually as glibc
always resets it.
For reference errors are as following:
CC seal_elf
seal_elf.c: In function 'sys_mmap':
seal_elf.c:39:33: error: '__NR_mmap' undeclared (first use in this function)
39 | sret = (void *) syscall(__NR_mmap, addr, len, prot,
| ^~~~~~~~~
mseal_test.c: In function 'sys_mmap':
mseal_test.c:90:33: error: '__NR_mmap' undeclared (first use in this function)
90 | sret = (void *) syscall(__NR_mmap, addr, len, prot,
| ^~~~~~~~~
Link: https://lkml.kernel.org/r/20240809082511.497266-1-usama.anjum@collabora.com
Fixes: 4926c7a52de7 ("selftest mm/mseal memory sealing")
Signed-off-by: Muhammad Usama Anjum <usama.anjum@collabora.com>
Cc: Jeff Xu <jeffxu@chromium.org>
Cc: Kees Cook <kees@kernel.org>
Cc: Liam R. Howlett <Liam.Howlett@oracle.com>
Cc: Shuah Khan <shuah@kernel.org>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
Fixes: 49aa7830396b ("bcachefs: Fix rebalance_work accounting")
Signed-off-by: Kent Overstreet <kent.overstreet@linux.dev>
|
|
In the LTC2991, V5 and V6 channels use the low nibble of the
"V5, V6, V7, and V8 Control Register" for configuration, but currently,
the high nibble is defined.
This patch changes the defines to use the low nibble.
Fixes: 2b9ea4262ae9 ("hwmon: Add driver for ltc2991")
Signed-off-by: Pawel Dembicki <paweldembicki@gmail.com>
Message-ID: <20240830111349.30531-1-paweldembicki@gmail.com>
Signed-off-by: Guenter Roeck <linux@roeck-us.net>
|
|
The fscache_cookie_lru_timer is initialized when the fscache module
is inserted, but is not deleted when the fscache module is removed.
If timer_reduce() is called before removing the fscache module,
the fscache_cookie_lru_timer will be added to the timer list of
the current cpu. Afterwards, a use-after-free will be triggered
in the softIRQ after removing the fscache module, as follows:
==================================================================
BUG: unable to handle page fault for address: fffffbfff803c9e9
PF: supervisor read access in kernel mode
PF: error_code(0x0000) - not-present page
PGD 21ffea067 P4D 21ffea067 PUD 21ffe6067 PMD 110a7c067 PTE 0
Oops: Oops: 0000 [#1] PREEMPT SMP KASAN PTI
CPU: 1 UID: 0 PID: 0 Comm: swapper/1 Tainted: G W 6.11.0-rc3 #855
Tainted: [W]=WARN
RIP: 0010:__run_timer_base.part.0+0x254/0x8a0
Call Trace:
<IRQ>
tmigr_handle_remote_up+0x627/0x810
__walk_groups.isra.0+0x47/0x140
tmigr_handle_remote+0x1fa/0x2f0
handle_softirqs+0x180/0x590
irq_exit_rcu+0x84/0xb0
sysvec_apic_timer_interrupt+0x6e/0x90
</IRQ>
<TASK>
asm_sysvec_apic_timer_interrupt+0x1a/0x20
RIP: 0010:default_idle+0xf/0x20
default_idle_call+0x38/0x60
do_idle+0x2b5/0x300
cpu_startup_entry+0x54/0x60
start_secondary+0x20d/0x280
common_startup_64+0x13e/0x148
</TASK>
Modules linked in: [last unloaded: netfs]
==================================================================
Therefore delete fscache_cookie_lru_timer when removing the fscahe module.
Fixes: 12bb21a29c19 ("fscache: Implement cookie user counting and resource pinning")
Cc: stable@kernel.org
Signed-off-by: Baokun Li <libaokun1@huawei.com>
Link: https://lore.kernel.org/r/20240826112056.2458299-1-libaokun@huaweicloud.com
Acked-by: David Howells <dhowells@redhat.com>
Signed-off-by: Christian Brauner <brauner@kernel.org>
|
|
|
|
errors that are known to always be safe to fix should be autofix: this
should be most errors even at this point, but that will need some
thorough review.
note that errors are still logged in the superblock, so we'll still know
that they happened.
Signed-off-by: Kent Overstreet <kent.overstreet@linux.dev>
|
|
We had a report of data corruption on nixos when building installer
images.
https://github.com/NixOS/nixpkgs/pull/321055#issuecomment-2184131334
It seems that writes are being dropped, but only when issued by QEMU,
and possibly only in snapshot mode. It's undetermined if it's write
calls are being dropped or dirty folios.
Further testing, via minimizing the original patch to just the change
that skips the inode lock on non appends/truncates, reveals that it
really is just not taking the inode lock that causes the corruption: it
has nothing to do with the other logic changes for preserving write
atomicity in corner cases.
It's also kernel config dependent: it doesn't reproduce with the minimal
kernel config that ktest uses, but it does reproduce with nixos's distro
config. Bisection the kernel config initially pointer the finger at page
migration or compaction, but it appears that was erroneous; we haven't
yet determined what kernel config option actually triggers it.
Sadly it appears this will have to be reverted since we're getting too
close to release and my plate is full, but we'd _really_ like to fully
debug it.
My suspicion is that this patch is exposing a preexisting bug - the
inode lock actually covers very little in IO paths, and we have a
different lock (the pagecache add lock) that guards against races with
truncate here.
Fixes: 7e64c86cdc6c ("bcachefs: Buffered write path now can avoid the inode lock")
Signed-off-by: Kent Overstreet <kent.overstreet@linux.dev>
|
|
Commit a9aaf1ff88a8 ("power: sequencing: request the WLAN enable GPIO
as-is") broke WLAN on boards on which the wlan-enable GPIO enabling the
wifi module isn't in output mode by default. We need to set direction to
output while retaining the value that was already set to keep the ath
module on if it's already started.
Fixes: a9aaf1ff88a8 ("power: sequencing: request the WLAN enable GPIO as-is")
Link: https://lore.kernel.org/r/20240823115500.37280-1-brgl@bgdev.pl
Signed-off-by: Bartosz Golaszewski <bartosz.golaszewski@linaro.org>
|
|
Add imx mailing list imx@lists.linux.dev for PCI controller of NXP chips
(Layerscape and iMX).
Link: https://lore.kernel.org/r/20240826202740.970015-1-Frank.Li@nxp.com
Signed-off-by: Frank Li <Frank.Li@nxp.com>
Signed-off-by: Bjorn Helgaas <bhelgaas@google.com>
Acked-by: Richard Zhu <hongxing.zhu@nxp.com>
|
|
io_provided_buffers_select() returns 0 to indicate success, but it should
be returning 1 to indicate that 1 vec was mapped. This causes peeking
to fail with classic provided buffers, and while that's not a use case
that anyone should use, it should still work correctly.
The end result is that no buffer will be selected, and hence a completion
with '0' as the result will be posted, without a buffer attached.
Fixes: 35c8711c8fc4 ("io_uring/kbuf: add helpers for getting/peeking multiple buffers")
Signed-off-by: Jens Axboe <axboe@kernel.dk>
|