aboutsummaryrefslogtreecommitdiffstatshomepage
path: root/Documentation/mm/zsmalloc.rst
diff options
context:
space:
mode:
Diffstat (limited to 'Documentation/mm/zsmalloc.rst')
-rw-r--r--Documentation/mm/zsmalloc.rst270
1 files changed, 270 insertions, 0 deletions
diff --git a/Documentation/mm/zsmalloc.rst b/Documentation/mm/zsmalloc.rst
new file mode 100644
index 000000000000..76902835e68e
--- /dev/null
+++ b/Documentation/mm/zsmalloc.rst
@@ -0,0 +1,270 @@
+========
+zsmalloc
+========
+
+This allocator is designed for use with zram. Thus, the allocator is
+supposed to work well under low memory conditions. In particular, it
+never attempts higher order page allocation which is very likely to
+fail under memory pressure. On the other hand, if we just use single
+(0-order) pages, it would suffer from very high fragmentation --
+any object of size PAGE_SIZE/2 or larger would occupy an entire page.
+This was one of the major issues with its predecessor (xvmalloc).
+
+To overcome these issues, zsmalloc allocates a bunch of 0-order pages
+and links them together using various 'struct page' fields. These linked
+pages act as a single higher-order page i.e. an object can span 0-order
+page boundaries. The code refers to these linked pages as a single entity
+called zspage.
+
+For simplicity, zsmalloc can only allocate objects of size up to PAGE_SIZE
+since this satisfies the requirements of all its current users (in the
+worst case, page is incompressible and is thus stored "as-is" i.e. in
+uncompressed form). For allocation requests larger than this size, failure
+is returned (see zs_malloc).
+
+Additionally, zs_malloc() does not return a dereferenceable pointer.
+Instead, it returns an opaque handle (unsigned long) which encodes actual
+location of the allocated object. The reason for this indirection is that
+zsmalloc does not keep zspages permanently mapped since that would cause
+issues on 32-bit systems where the VA region for kernel space mappings
+is very small. So, before using the allocating memory, the object has to
+be mapped using zs_map_object() to get a usable pointer and subsequently
+unmapped using zs_unmap_object().
+
+stat
+====
+
+With CONFIG_ZSMALLOC_STAT, we could see zsmalloc internal information via
+``/sys/kernel/debug/zsmalloc/<user name>``. Here is a sample of stat output::
+
+ # cat /sys/kernel/debug/zsmalloc/zram0/classes
+
+ class size 10% 20% 30% 40% 50% 60% 70% 80% 90% 99% 100% obj_allocated obj_used pages_used pages_per_zspage freeable
+ ...
+ ...
+ 30 512 0 12 4 1 0 1 0 0 1 0 414 3464 3346 433 1 14
+ 31 528 2 7 2 2 1 0 1 0 0 2 117 4154 3793 536 4 44
+ 32 544 6 3 4 1 2 1 0 0 0 1 260 4170 3965 556 2 26
+ ...
+ ...
+
+
+class
+ index
+size
+ object size zspage stores
+10%
+ the number of zspages with usage ratio less than 10% (see below)
+20%
+ the number of zspages with usage ratio between 10% and 20%
+30%
+ the number of zspages with usage ratio between 20% and 30%
+40%
+ the number of zspages with usage ratio between 30% and 40%
+50%
+ the number of zspages with usage ratio between 40% and 50%
+60%
+ the number of zspages with usage ratio between 50% and 60%
+70%
+ the number of zspages with usage ratio between 60% and 70%
+80%
+ the number of zspages with usage ratio between 70% and 80%
+90%
+ the number of zspages with usage ratio between 80% and 90%
+99%
+ the number of zspages with usage ratio between 90% and 99%
+100%
+ the number of zspages with usage ratio 100%
+obj_allocated
+ the number of objects allocated
+obj_used
+ the number of objects allocated to the user
+pages_used
+ the number of pages allocated for the class
+pages_per_zspage
+ the number of 0-order pages to make a zspage
+freeable
+ the approximate number of pages class compaction can free
+
+Each zspage maintains inuse counter which keeps track of the number of
+objects stored in the zspage. The inuse counter determines the zspage's
+"fullness group" which is calculated as the ratio of the "inuse" objects to
+the total number of objects the zspage can hold (objs_per_zspage). The
+closer the inuse counter is to objs_per_zspage, the better.
+
+Internals
+=========
+
+zsmalloc has 255 size classes, each of which can hold a number of zspages.
+Each zspage can contain up to ZSMALLOC_CHAIN_SIZE physical (0-order) pages.
+The optimal zspage chain size for each size class is calculated during the
+creation of the zsmalloc pool (see calculate_zspage_chain_size()).
+
+As an optimization, zsmalloc merges size classes that have similar
+characteristics in terms of the number of pages per zspage and the number
+of objects that each zspage can store.
+
+For instance, consider the following size classes:::
+
+ class size 10% .... 100% obj_allocated obj_used pages_used pages_per_zspage freeable
+ ...
+ 94 1536 0 .... 0 0 0 0 3 0
+ 100 1632 0 .... 0 0 0 0 2 0
+ ...
+
+
+Size classes #95-99 are merged with size class #100. This means that when we
+need to store an object of size, say, 1568 bytes, we end up using size class
+#100 instead of size class #96. Size class #100 is meant for objects of size
+1632 bytes, so each object of size 1568 bytes wastes 1632-1568=64 bytes.
+
+Size class #100 consists of zspages with 2 physical pages each, which can
+hold a total of 5 objects. If we need to store 13 objects of size 1568, we
+end up allocating three zspages, or 6 physical pages.
+
+However, if we take a closer look at size class #96 (which is meant for
+objects of size 1568 bytes) and trace `calculate_zspage_chain_size()`, we
+find that the most optimal zspage configuration for this class is a chain
+of 5 physical pages:::
+
+ pages per zspage wasted bytes used%
+ 1 960 76
+ 2 352 95
+ 3 1312 89
+ 4 704 95
+ 5 96 99
+
+This means that a class #96 configuration with 5 physical pages can store 13
+objects of size 1568 in a single zspage, using a total of 5 physical pages.
+This is more efficient than the class #100 configuration, which would use 6
+physical pages to store the same number of objects.
+
+As the zspage chain size for class #96 increases, its key characteristics
+such as pages per-zspage and objects per-zspage also change. This leads to
+dewer class mergers, resulting in a more compact grouping of classes, which
+reduces memory wastage.
+
+Let's take a closer look at the bottom of `/sys/kernel/debug/zsmalloc/zramX/classes`:::
+
+ class size 10% .... 100% obj_allocated obj_used pages_used pages_per_zspage freeable
+
+ ...
+ 202 3264 0 .. 0 0 0 0 4 0
+ 254 4096 0 .. 0 0 0 0 1 0
+ ...
+
+Size class #202 stores objects of size 3264 bytes and has a maximum of 4 pages
+per zspage. Any object larger than 3264 bytes is considered huge and belongs
+to size class #254, which stores each object in its own physical page (objects
+in huge classes do not share pages).
+
+Increasing the size of the chain of zspages also results in a higher watermark
+for the huge size class and fewer huge classes overall. This allows for more
+efficient storage of large objects.
+
+For zspage chain size of 8, huge class watermark becomes 3632 bytes:::
+
+ class size 10% .... 100% obj_allocated obj_used pages_used pages_per_zspage freeable
+
+ ...
+ 202 3264 0 .. 0 0 0 0 4 0
+ 211 3408 0 .. 0 0 0 0 5 0
+ 217 3504 0 .. 0 0 0 0 6 0
+ 222 3584 0 .. 0 0 0 0 7 0
+ 225 3632 0 .. 0 0 0 0 8 0
+ 254 4096 0 .. 0 0 0 0 1 0
+ ...
+
+For zspage chain size of 16, huge class watermark becomes 3840 bytes:::
+
+ class size 10% .... 100% obj_allocated obj_used pages_used pages_per_zspage freeable
+
+ ...
+ 202 3264 0 .. 0 0 0 0 4 0
+ 206 3328 0 .. 0 0 0 0 13 0
+ 207 3344 0 .. 0 0 0 0 9 0
+ 208 3360 0 .. 0 0 0 0 14 0
+ 211 3408 0 .. 0 0 0 0 5 0
+ 212 3424 0 .. 0 0 0 0 16 0
+ 214 3456 0 .. 0 0 0 0 11 0
+ 217 3504 0 .. 0 0 0 0 6 0
+ 219 3536 0 .. 0 0 0 0 13 0
+ 222 3584 0 .. 0 0 0 0 7 0
+ 223 3600 0 .. 0 0 0 0 15 0
+ 225 3632 0 .. 0 0 0 0 8 0
+ 228 3680 0 .. 0 0 0 0 9 0
+ 230 3712 0 .. 0 0 0 0 10 0
+ 232 3744 0 .. 0 0 0 0 11 0
+ 234 3776 0 .. 0 0 0 0 12 0
+ 235 3792 0 .. 0 0 0 0 13 0
+ 236 3808 0 .. 0 0 0 0 14 0
+ 238 3840 0 .. 0 0 0 0 15 0
+ 254 4096 0 .. 0 0 0 0 1 0
+ ...
+
+Overall the combined zspage chain size effect on zsmalloc pool configuration:::
+
+ pages per zspage number of size classes (clusters) huge size class watermark
+ 4 69 3264
+ 5 86 3408
+ 6 93 3504
+ 7 112 3584
+ 8 123 3632
+ 9 140 3680
+ 10 143 3712
+ 11 159 3744
+ 12 164 3776
+ 13 180 3792
+ 14 183 3808
+ 15 188 3840
+ 16 191 3840
+
+
+A synthetic test
+----------------
+
+zram as a build artifacts storage (Linux kernel compilation).
+
+* `CONFIG_ZSMALLOC_CHAIN_SIZE=4`
+
+ zsmalloc classes stats:::
+
+ class size 10% .... 100% obj_allocated obj_used pages_used pages_per_zspage freeable
+
+ ...
+ Total 13 .. 51 413836 412973 159955 3
+
+ zram mm_stat:::
+
+ 1691783168 628083717 655175680 0 655175680 60 0 34048 34049
+
+
+* `CONFIG_ZSMALLOC_CHAIN_SIZE=8`
+
+ zsmalloc classes stats:::
+
+ class size 10% .... 100% obj_allocated obj_used pages_used pages_per_zspage freeable
+
+ ...
+ Total 18 .. 87 414852 412978 156666 0
+
+ zram mm_stat:::
+
+ 1691803648 627793930 641703936 0 641703936 60 0 33591 33591
+
+Using larger zspage chains may result in using fewer physical pages, as seen
+in the example where the number of physical pages used decreased from 159955
+to 156666, at the same time maximum zsmalloc pool memory usage went down from
+655175680 to 641703936 bytes.
+
+However, this advantage may be offset by the potential for increased system
+memory pressure (as some zspages have larger chain sizes) in cases where there
+is heavy internal fragmentation and zspool compaction is unable to relocate
+objects and release zspages. In these cases, it is recommended to decrease
+the limit on the size of the zspage chains (as specified by the
+CONFIG_ZSMALLOC_CHAIN_SIZE option).
+
+Functions
+=========
+
+.. kernel-doc:: mm/zsmalloc.c