aboutsummaryrefslogtreecommitdiffstatshomepage
path: root/Documentation/powerpc/vas-api.rst
diff options
context:
space:
mode:
Diffstat (limited to 'Documentation/powerpc/vas-api.rst')
-rw-r--r--Documentation/powerpc/vas-api.rst292
1 files changed, 292 insertions, 0 deletions
diff --git a/Documentation/powerpc/vas-api.rst b/Documentation/powerpc/vas-api.rst
new file mode 100644
index 000000000000..1217c2f1595e
--- /dev/null
+++ b/Documentation/powerpc/vas-api.rst
@@ -0,0 +1,292 @@
+.. SPDX-License-Identifier: GPL-2.0
+.. _VAS-API:
+
+===================================================
+Virtual Accelerator Switchboard (VAS) userspace API
+===================================================
+
+Introduction
+============
+
+Power9 processor introduced Virtual Accelerator Switchboard (VAS) which
+allows both userspace and kernel communicate to co-processor
+(hardware accelerator) referred to as the Nest Accelerator (NX). The NX
+unit comprises of one or more hardware engines or co-processor types
+such as 842 compression, GZIP compression and encryption. On power9,
+userspace applications will have access to only GZIP Compression engine
+which supports ZLIB and GZIP compression algorithms in the hardware.
+
+To communicate with NX, kernel has to establish a channel or window and
+then requests can be submitted directly without kernel involvement.
+Requests to the GZIP engine must be formatted as a co-processor Request
+Block (CRB) and these CRBs must be submitted to the NX using COPY/PASTE
+instructions to paste the CRB to hardware address that is associated with
+the engine's request queue.
+
+The GZIP engine provides two priority levels of requests: Normal and
+High. Only Normal requests are supported from userspace right now.
+
+This document explains userspace API that is used to interact with
+kernel to setup channel / window which can be used to send compression
+requests directly to NX accelerator.
+
+
+Overview
+========
+
+Application access to the GZIP engine is provided through
+/dev/crypto/nx-gzip device node implemented by the VAS/NX device driver.
+An application must open the /dev/crypto/nx-gzip device to obtain a file
+descriptor (fd). Then should issue VAS_TX_WIN_OPEN ioctl with this fd to
+establish connection to the engine. It means send window is opened on GZIP
+engine for this process. Once a connection is established, the application
+should use the mmap() system call to map the hardware address of engine's
+request queue into the application's virtual address space.
+
+The application can then submit one or more requests to the the engine by
+using copy/paste instructions and pasting the CRBs to the virtual address
+(aka paste_address) returned by mmap(). User space can close the
+established connection or send window by closing the file descriptior
+(close(fd)) or upon the process exit.
+
+Note that applications can send several requests with the same window or
+can establish multiple windows, but one window for each file descriptor.
+
+Following sections provide additional details and references about the
+individual steps.
+
+NX-GZIP Device Node
+===================
+
+There is one /dev/crypto/nx-gzip node in the system and it provides
+access to all GZIP engines in the system. The only valid operations on
+/dev/crypto/nx-gzip are:
+
+ * open() the device for read and write.
+ * issue VAS_TX_WIN_OPEN ioctl
+ * mmap() the engine's request queue into application's virtual
+ address space (i.e. get a paste_address for the co-processor
+ engine).
+ * close the device node.
+
+Other file operations on this device node are undefined.
+
+Note that the copy and paste operations go directly to the hardware and
+do not go through this device. Refer COPY/PASTE document for more
+details.
+
+Although a system may have several instances of the NX co-processor
+engines (typically, one per P9 chip) there is just one
+/dev/crypto/nx-gzip device node in the system. When the nx-gzip device
+node is opened, Kernel opens send window on a suitable instance of NX
+accelerator. It finds CPU on which the user process is executing and
+determine the NX instance for the corresponding chip on which this CPU
+belongs.
+
+Applications may chose a specific instance of the NX co-processor using
+the vas_id field in the VAS_TX_WIN_OPEN ioctl as detailed below.
+
+A userspace library libnxz is available here but still in development:
+ https://github.com/abalib/power-gzip
+
+Applications that use inflate / deflate calls can link with libnxz
+instead of libz and use NX GZIP compression without any modification.
+
+Open /dev/crypto/nx-gzip
+========================
+
+The nx-gzip device should be opened for read and write. No special
+privileges are needed to open the device. Each window corresponds to one
+file descriptor. So if the userspace process needs multiple windows,
+several open calls have to be issued.
+
+See open(2) system call man pages for other details such as return values,
+error codes and restrictions.
+
+VAS_TX_WIN_OPEN ioctl
+=====================
+
+Applications should use the VAS_TX_WIN_OPEN ioctl as follows to establish
+a connection with NX co-processor engine:
+
+ ::
+ struct vas_tx_win_open_attr {
+ __u32 version;
+ __s16 vas_id; /* specific instance of vas or -1
+ for default */
+ __u16 reserved1;
+ __u64 flags; /* For future use */
+ __u64 reserved2[6];
+ };
+
+ version: The version field must be currently set to 1.
+ vas_id: If '-1' is passed, kernel will make a best-effort attempt
+ to assign an optimal instance of NX for the process. To
+ select the specific VAS instance, refer
+ "Discovery of available VAS engines" section below.
+
+ flags, reserved1 and reserved2[6] fields are for future extension
+ and must be set to 0.
+
+ The attributes attr for the VAS_TX_WIN_OPEN ioctl are defined as
+ follows:
+ #define VAS_MAGIC 'v'
+ #define VAS_TX_WIN_OPEN _IOW(VAS_MAGIC, 1,
+ struct vas_tx_win_open_attr)
+
+ struct vas_tx_win_open_attr attr;
+ rc = ioctl(fd, VAS_TX_WIN_OPEN, &attr);
+
+ The VAS_TX_WIN_OPEN ioctl returns 0 on success. On errors, it
+ returns -1 and sets the errno variable to indicate the error.
+
+ Error conditions:
+ EINVAL fd does not refer to a valid VAS device.
+ EINVAL Invalid vas ID
+ EINVAL version is not set with proper value
+ EEXIST Window is already opened for the given fd
+ ENOMEM Memory is not available to allocate window
+ ENOSPC System has too many active windows (connections)
+ opened
+ EINVAL reserved fields are not set to 0.
+
+ See the ioctl(2) man page for more details, error codes and
+ restrictions.
+
+mmap() NX-GZIP device
+=====================
+
+The mmap() system call for a NX-GZIP device fd returns a paste_address
+that the application can use to copy/paste its CRB to the hardware engines.
+ ::
+
+ paste_addr = mmap(addr, size, prot, flags, fd, offset);
+
+ Only restrictions on mmap for a NX-GZIP device fd are:
+ * size should be PAGE_SIZE
+ * offset parameter should be 0ULL
+
+ Refer to mmap(2) man page for additional details/restrictions.
+ In addition to the error conditions listed on the mmap(2) man
+ page, can also fail with one of the following error codes:
+
+ EINVAL fd is not associated with an open window
+ (i.e mmap() does not follow a successful call
+ to the VAS_TX_WIN_OPEN ioctl).
+ EINVAL offset field is not 0ULL.
+
+Discovery of available VAS engines
+==================================
+
+Each available VAS instance in the system will have a device tree node
+like /proc/device-tree/vas@* or /proc/device-tree/xscom@*/vas@*.
+Determine the chip or VAS instance and use the corresponding ibm,vas-id
+property value in this node to select specific VAS instance.
+
+Copy/Paste operations
+=====================
+
+Applications should use the copy and paste instructions to send CRB to NX.
+Refer section 4.4 in PowerISA for Copy/Paste instructions:
+https://openpowerfoundation.org/?resource_lib=power-isa-version-3-0
+
+CRB Specification and use NX
+============================
+
+Applications should format requests to the co-processor using the
+co-processor Request Block (CRBs). Refer NX-GZIP user's manual for the format
+of CRB and use NX from userspace such as sending requests and checking
+request status.
+
+NX Fault handling
+=================
+
+Applications send requests to NX and wait for the status by polling on
+co-processor Status Block (CSB) flags. NX updates status in CSB after each
+request is processed. Refer NX-GZIP user's manual for the format of CSB and
+status flags.
+
+In case if NX encounters translation error (called NX page fault) on CSB
+address or any request buffer, raises an interrupt on the CPU to handle the
+fault. Page fault can happen if an application passes invalid addresses or
+request buffers are not in memory. The operating system handles the fault by
+updating CSB with the following data:
+
+ csb.flags = CSB_V;
+ csb.cc = CSB_CC_TRANSLATION;
+ csb.ce = CSB_CE_TERMINATION;
+ csb.address = fault_address;
+
+When an application receives translation error, it can touch or access
+the page that has a fault address so that this page will be in memory. Then
+the application can resend this request to NX.
+
+If the OS can not update CSB due to invalid CSB address, sends SEGV signal
+to the process who opened the send window on which the original request was
+issued. This signal returns with the following siginfo struct:
+
+ siginfo.si_signo = SIGSEGV;
+ siginfo.si_errno = EFAULT;
+ siginfo.si_code = SEGV_MAPERR;
+ siginfo.si_addr = CSB adress;
+
+In the case of multi-thread applications, NX send windows can be shared
+across all threads. For example, a child thread can open a send window,
+but other threads can send requests to NX using this window. These
+requests will be successful even in the case of OS handling faults as long
+as CSB address is valid. If the NX request contains an invalid CSB address,
+the signal will be sent to the child thread that opened the window. But if
+the thread is exited without closing the window and the request is issued
+using this window. the signal will be issued to the thread group leader
+(tgid). It is up to the application whether to ignore or handle these
+signals.
+
+NX-GZIP User's Manual:
+https://github.com/libnxz/power-gzip/blob/master/power_nx_gzip_um.pdf
+
+Simple example
+==============
+
+ ::
+ int use_nx_gzip()
+ {
+ int rc, fd;
+ void *addr;
+ struct vas_setup_attr txattr;
+
+ fd = open("/dev/crypto/nx-gzip", O_RDWR);
+ if (fd < 0) {
+ fprintf(stderr, "open nx-gzip failed\n");
+ return -1;
+ }
+ memset(&txattr, 0, sizeof(txattr));
+ txattr.version = 1;
+ txattr.vas_id = -1
+ rc = ioctl(fd, VAS_TX_WIN_OPEN,
+ (unsigned long)&txattr);
+ if (rc < 0) {
+ fprintf(stderr, "ioctl() n %d, error %d\n",
+ rc, errno);
+ return rc;
+ }
+ addr = mmap(NULL, 4096, PROT_READ|PROT_WRITE,
+ MAP_SHARED, fd, 0ULL);
+ if (addr == MAP_FAILED) {
+ fprintf(stderr, "mmap() failed, errno %d\n",
+ errno);
+ return -errno;
+ }
+ do {
+ //Format CRB request with compression or
+ //uncompression
+ // Refer tests for vas_copy/vas_paste
+ vas_copy((&crb, 0, 1);
+ vas_paste(addr, 0, 1);
+ // Poll on csb.flags with timeout
+ // csb address is listed in CRB
+ } while (true)
+ close(fd) or window can be closed upon process exit
+ }
+
+ Refer https://github.com/abalib/power-gzip for tests or more
+ use cases.