aboutsummaryrefslogtreecommitdiffstatshomepage
path: root/Documentation/translations/it_IT/kernel-hacking/locking.rst
diff options
context:
space:
mode:
Diffstat (limited to 'Documentation/translations/it_IT/kernel-hacking/locking.rst')
-rw-r--r--Documentation/translations/it_IT/kernel-hacking/locking.rst69
1 files changed, 37 insertions, 32 deletions
diff --git a/Documentation/translations/it_IT/kernel-hacking/locking.rst b/Documentation/translations/it_IT/kernel-hacking/locking.rst
index 4615df5723fb..4c21cf60f775 100644
--- a/Documentation/translations/it_IT/kernel-hacking/locking.rst
+++ b/Documentation/translations/it_IT/kernel-hacking/locking.rst
@@ -1,5 +1,7 @@
.. include:: ../disclaimer-ita.rst
+.. c:namespace:: it_IT
+
:Original: :ref:`Documentation/kernel-hacking/locking.rst <kernel_hacking_lock>`
:Translator: Federico Vaga <federico.vaga@vaga.pv.it>
@@ -100,16 +102,11 @@ che non esistano.
Sincronizzazione nel kernel Linux
=================================
-Se posso darvi un suggerimento: non dormite mai con qualcuno più pazzo di
-voi. Ma se dovessi darvi un suggerimento sulla sincronizzazione:
-**mantenetela semplice**.
+Se dovessi darvi un suggerimento sulla sincronizzazione: **mantenetela
+semplice**.
Siate riluttanti nell'introduzione di nuovi *lock*.
-Abbastanza strano, quest'ultimo è l'esatto opposto del mio suggerimento
-su quando **avete** dormito con qualcuno più pazzo di voi. E dovreste
-pensare a prendervi un cane bello grande.
-
I due principali tipi di *lock* nel kernel: spinlock e mutex
------------------------------------------------------------
@@ -125,11 +122,11 @@ il vostro processo si auto-sospenderà; verrà riattivato quando il mutex
verrà rilasciato. Questo significa che il processore potrà occuparsi d'altro
mentre il vostro processo è in attesa. Esistono molti casi in cui non potete
permettervi di sospendere un processo (vedere
-:ref:`Quali funzioni possono essere chiamate in modo sicuro dalle interruzioni? <it_sleeping-things>`)
+`Quali funzioni possono essere chiamate in modo sicuro dalle interruzioni?`_)
e quindi dovrete utilizzare gli spinlock.
Nessuno di questi *lock* è ricorsivo: vedere
-:ref:`Stallo: semplice ed avanzato <it_deadlock>`
+`Stallo: semplice ed avanzato`_
I *lock* e i kernel per sistemi monoprocessore
----------------------------------------------
@@ -188,7 +185,7 @@ perfetto questa funzione si chiamerebbe 'spin_lock_softirq()').
Da notare che in questo caso potete utilizzare anche spin_lock_irq()
o spin_lock_irqsave(), queste fermano anche le interruzioni hardware:
-vedere :ref:`Contesto di interruzione hardware <it_hardirq-context>`.
+vedere `Contesto di interruzione hardware`_.
Questo funziona alla perfezione anche sui sistemi monoprocessore: gli spinlock
svaniscono e questa macro diventa semplicemente local_bh_disable()
@@ -239,7 +236,7 @@ Lo stesso softirq
Lo stesso softirq può essere eseguito su un diverso processore: allo scopo
di migliorare le prestazioni potete utilizzare dati riservati ad ogni
-processore (vedere :ref:`Dati per processore <it_per-cpu>`). Se siete arrivati
+processore (vedere `Dati per processore`_). Se siete arrivati
fino a questo punto nell'uso dei softirq, probabilmente tenete alla scalabilità
delle prestazioni abbastanza da giustificarne la complessità aggiuntiva.
@@ -314,7 +311,7 @@ Pete Zaitcev ci offre il seguente riassunto:
- Se siete in un contesto utente (una qualsiasi chiamata di sistema)
e volete sincronizzarvi con altri processi, usate i mutex. Potete trattenere
- il mutex e dormire (``copy_from_user*(`` o ``kmalloc(x,GFP_KERNEL)``).
+ il mutex e dormire (``copy_from_user(`` o ``kmalloc(x,GFP_KERNEL)``).
- Altrimenti (== i dati possono essere manipolati da un'interruzione) usate
spin_lock_irqsave() e spin_unlock_irqrestore().
@@ -894,8 +891,6 @@ leggendo solamente il codice. E come dice Alan Cox: “Lock data, not code”.
Problemi comuni
===============
-.. _`it_deadlock`:
-
Stallo: semplice ed avanzato
----------------------------
@@ -979,9 +974,6 @@ fallisce nel trovare quello che vuole, quindi rilascia il *lock* di lettura,
trattiene un *lock* di scrittura ed inserisce un oggetto; questo genere di
codice presenta una corsa critica.
-Se non riuscite a capire il perché, per favore state alla larga dal mio
-codice.
-
corsa fra temporizzatori: un passatempo del kernel
--------------------------------------------------
@@ -998,7 +990,7 @@ potreste fare come segue::
while (list) {
struct foo *next = list->next;
- del_timer(&list->timer);
+ timer_delete(&list->timer);
kfree(list);
list = next;
}
@@ -1011,7 +1003,7 @@ e prenderà il *lock* solo dopo spin_unlock_bh(), e cercherà
di eliminare il suo oggetto (che però è già stato eliminato).
Questo può essere evitato controllando il valore di ritorno di
-del_timer(): se ritorna 1, il temporizzatore è stato già
+timer_delete(): se ritorna 1, il temporizzatore è stato già
rimosso. Se 0, significa (in questo caso) che il temporizzatore è in
esecuzione, quindi possiamo fare come segue::
@@ -1020,7 +1012,7 @@ esecuzione, quindi possiamo fare come segue::
while (list) {
struct foo *next = list->next;
- if (!del_timer(&list->timer)) {
+ if (!timer_delete(&list->timer)) {
/* Give timer a chance to delete this */
spin_unlock_bh(&list_lock);
goto retry;
@@ -1034,10 +1026,13 @@ esecuzione, quindi possiamo fare come segue::
Un altro problema è l'eliminazione dei temporizzatori che si riavviano
da soli (chiamando add_timer() alla fine della loro esecuzione).
Dato che questo è un problema abbastanza comune con una propensione
-alle corse critiche, dovreste usare del_timer_sync()
-(``include/linux/timer.h``) per gestire questo caso. Questa ritorna il
-numero di volte che il temporizzatore è stato interrotto prima che
-fosse in grado di fermarlo senza che si riavviasse.
+alle corse critiche, dovreste usare timer_delete_sync()
+(``include/linux/timer.h``) per gestire questo caso.
+
+Prima di rilasciare un temporizzatore dovreste chiamare la funzione
+timer_shutdown() o timer_shutdown_sync() di modo che non venga più riarmato.
+Ogni successivo tentativo di riarmare il temporizzatore verrà silenziosamente
+ignorato.
Velocità della sincronizzazione
===============================
@@ -1280,7 +1275,6 @@ Il beneficio qui sta nel fatto che il contatore di riferimenti no
viene scritto: l'oggetto non viene alterato in alcun modo e quindi diventa
molto più veloce su sistemi molti-processore grazie alla loro memoria cache.
-.. _`it_per-cpu`:
Dati per processore
-------------------
@@ -1318,11 +1312,11 @@ se i dati vengono occasionalmente utilizzati da un contesto utente o
da un'interruzione software. Il gestore d'interruzione non utilizza alcun
*lock*, e tutti gli altri accessi verranno fatti così::
- spin_lock(&lock);
+ mutex_lock(&lock);
disable_irq(irq);
...
enable_irq(irq);
- spin_unlock(&lock);
+ mutex_unlock(&lock);
La funzione disable_irq() impedisce al gestore d'interruzioni
d'essere eseguito (e aspetta che finisca nel caso fosse in esecuzione su
@@ -1331,7 +1325,6 @@ Naturalmente, questo è più lento della semplice chiamata
spin_lock_irq(), quindi ha senso solo se questo genere di accesso
è estremamente raro.
-.. _`it_sleeping-things`:
Quali funzioni possono essere chiamate in modo sicuro dalle interruzioni?
=========================================================================
@@ -1384,7 +1377,7 @@ contesto, o trattenendo un qualsiasi *lock*.
- kfree()
-- add_timer() e del_timer()
+- add_timer() e timer_delete()
Riferimento per l'API dei Mutex
===============================
@@ -1398,7 +1391,19 @@ Riferimento per l'API dei Mutex
Riferimento per l'API dei Futex
===============================
-.. kernel-doc:: kernel/futex.c
+.. kernel-doc:: kernel/futex/core.c
+ :internal:
+
+.. kernel-doc:: kernel/futex/futex.h
+ :internal:
+
+.. kernel-doc:: kernel/futex/pi.c
+ :internal:
+
+.. kernel-doc:: kernel/futex/requeue.c
+ :internal:
+
+.. kernel-doc:: kernel/futex/waitwake.c
:internal:
Approfondimenti
@@ -1461,11 +1466,11 @@ contesto utente
che hardware.
interruzione hardware
- Richiesta di interruzione hardware. in_irq() ritorna vero in un
+ Richiesta di interruzione hardware. in_hardirq() ritorna vero in un
gestore d'interruzioni hardware.
interruzione software / softirq
- Gestore di interruzioni software: in_irq() ritorna falso;
+ Gestore di interruzioni software: in_hardirq() ritorna falso;
in_softirq() ritorna vero. I tasklet e le softirq sono entrambi
considerati 'interruzioni software'.