aboutsummaryrefslogtreecommitdiffstatshomepage
path: root/Documentation/userspace-api/media/v4l/colorspaces.rst
diff options
context:
space:
mode:
Diffstat (limited to 'Documentation/userspace-api/media/v4l/colorspaces.rst')
-rw-r--r--Documentation/userspace-api/media/v4l/colorspaces.rst170
1 files changed, 170 insertions, 0 deletions
diff --git a/Documentation/userspace-api/media/v4l/colorspaces.rst b/Documentation/userspace-api/media/v4l/colorspaces.rst
new file mode 100644
index 000000000000..0846df9066c5
--- /dev/null
+++ b/Documentation/userspace-api/media/v4l/colorspaces.rst
@@ -0,0 +1,170 @@
+.. Permission is granted to copy, distribute and/or modify this
+.. document under the terms of the GNU Free Documentation License,
+.. Version 1.1 or any later version published by the Free Software
+.. Foundation, with no Invariant Sections, no Front-Cover Texts
+.. and no Back-Cover Texts. A copy of the license is included at
+.. Documentation/userspace-api/media/fdl-appendix.rst.
+..
+.. TODO: replace it to GFDL-1.1-or-later WITH no-invariant-sections
+
+.. _colorspaces:
+
+***********
+Colorspaces
+***********
+
+'Color' is a very complex concept and depends on physics, chemistry and
+biology. Just because you have three numbers that describe the 'red',
+'green' and 'blue' components of the color of a pixel does not mean that
+you can accurately display that color. A colorspace defines what it
+actually *means* to have an RGB value of e.g. (255, 0, 0). That is,
+which color should be reproduced on the screen in a perfectly calibrated
+environment.
+
+In order to do that we first need to have a good definition of color,
+i.e. some way to uniquely and unambiguously define a color so that
+someone else can reproduce it. Human color vision is trichromatic since
+the human eye has color receptors that are sensitive to three different
+wavelengths of light. Hence the need to use three numbers to describe
+color. Be glad you are not a mantis shrimp as those are sensitive to 12
+different wavelengths, so instead of RGB we would be using the
+ABCDEFGHIJKL colorspace...
+
+Color exists only in the eye and brain and is the result of how strongly
+color receptors are stimulated. This is based on the Spectral Power
+Distribution (SPD) which is a graph showing the intensity (radiant
+power) of the light at wavelengths covering the visible spectrum as it
+enters the eye. The science of colorimetry is about the relationship
+between the SPD and color as perceived by the human brain.
+
+Since the human eye has only three color receptors it is perfectly
+possible that different SPDs will result in the same stimulation of
+those receptors and are perceived as the same color, even though the SPD
+of the light is different.
+
+In the 1920s experiments were devised to determine the relationship
+between SPDs and the perceived color and that resulted in the CIE 1931
+standard that defines spectral weighting functions that model the
+perception of color. Specifically that standard defines functions that
+can take an SPD and calculate the stimulus for each color receptor.
+After some further mathematical transforms these stimuli are known as
+the *CIE XYZ tristimulus* values and these X, Y and Z values describe a
+color as perceived by a human unambiguously. These X, Y and Z values are
+all in the range [0…1].
+
+The Y value in the CIE XYZ colorspace corresponds to luminance. Often
+the CIE XYZ colorspace is transformed to the normalized CIE xyY
+colorspace:
+
+ x = X / (X + Y + Z)
+
+ y = Y / (X + Y + Z)
+
+The x and y values are the chromaticity coordinates and can be used to
+define a color without the luminance component Y. It is very confusing
+to have such similar names for these colorspaces. Just be aware that if
+colors are specified with lower case 'x' and 'y', then the CIE xyY
+colorspace is used. Upper case 'X' and 'Y' refer to the CIE XYZ
+colorspace. Also, y has nothing to do with luminance. Together x and y
+specify a color, and Y the luminance. That is really all you need to
+remember from a practical point of view. At the end of this section you
+will find reading resources that go into much more detail if you are
+interested.
+
+A monitor or TV will reproduce colors by emitting light at three
+different wavelengths, the combination of which will stimulate the color
+receptors in the eye and thus cause the perception of color.
+Historically these wavelengths were defined by the red, green and blue
+phosphors used in the displays. These *color primaries* are part of what
+defines a colorspace.
+
+Different display devices will have different primaries and some
+primaries are more suitable for some display technologies than others.
+This has resulted in a variety of colorspaces that are used for
+different display technologies or uses. To define a colorspace you need
+to define the three color primaries (these are typically defined as x, y
+chromaticity coordinates from the CIE xyY colorspace) but also the white
+reference: that is the color obtained when all three primaries are at
+maximum power. This determines the relative power or energy of the
+primaries. This is usually chosen to be close to daylight which has been
+defined as the CIE D65 Illuminant.
+
+To recapitulate: the CIE XYZ colorspace uniquely identifies colors.
+Other colorspaces are defined by three chromaticity coordinates defined
+in the CIE xyY colorspace. Based on those a 3x3 matrix can be
+constructed that transforms CIE XYZ colors to colors in the new
+colorspace.
+
+Both the CIE XYZ and the RGB colorspace that are derived from the
+specific chromaticity primaries are linear colorspaces. But neither the
+eye, nor display technology is linear. Doubling the values of all
+components in the linear colorspace will not be perceived as twice the
+intensity of the color. So each colorspace also defines a transfer
+function that takes a linear color component value and transforms it to
+the non-linear component value, which is a closer match to the
+non-linear performance of both the eye and displays. Linear component
+values are denoted RGB, non-linear are denoted as R'G'B'. In general
+colors used in graphics are all R'G'B', except in openGL which uses
+linear RGB. Special care should be taken when dealing with openGL to
+provide linear RGB colors or to use the built-in openGL support to apply
+the inverse transfer function.
+
+The final piece that defines a colorspace is a function that transforms
+non-linear R'G'B' to non-linear Y'CbCr. This function is determined by
+the so-called luma coefficients. There may be multiple possible Y'CbCr
+encodings allowed for the same colorspace. Many encodings of color
+prefer to use luma (Y') and chroma (CbCr) instead of R'G'B'. Since the
+human eye is more sensitive to differences in luminance than in color
+this encoding allows one to reduce the amount of color information
+compared to the luma data. Note that the luma (Y') is unrelated to the Y
+in the CIE XYZ colorspace. Also note that Y'CbCr is often called YCbCr
+or YUV even though these are strictly speaking wrong.
+
+Sometimes people confuse Y'CbCr as being a colorspace. This is not
+correct, it is just an encoding of an R'G'B' color into luma and chroma
+values. The underlying colorspace that is associated with the R'G'B'
+color is also associated with the Y'CbCr color.
+
+The final step is how the RGB, R'G'B' or Y'CbCr values are quantized.
+The CIE XYZ colorspace where X, Y and Z are in the range [0…1] describes
+all colors that humans can perceive, but the transform to another
+colorspace will produce colors that are outside the [0…1] range. Once
+clamped to the [0…1] range those colors can no longer be reproduced in
+that colorspace. This clamping is what reduces the extent or gamut of
+the colorspace. How the range of [0…1] is translated to integer values
+in the range of [0…255] (or higher, depending on the color depth) is
+called the quantization. This is *not* part of the colorspace
+definition. In practice RGB or R'G'B' values are full range, i.e. they
+use the full [0…255] range. Y'CbCr values on the other hand are limited
+range with Y' using [16…235] and Cb and Cr using [16…240].
+
+Unfortunately, in some cases limited range RGB is also used where the
+components use the range [16…235]. And full range Y'CbCr also exists
+using the [0…255] range.
+
+In order to correctly interpret a color you need to know the
+quantization range, whether it is R'G'B' or Y'CbCr, the used Y'CbCr
+encoding and the colorspace. From that information you can calculate the
+corresponding CIE XYZ color and map that again to whatever colorspace
+your display device uses.
+
+The colorspace definition itself consists of the three chromaticity
+primaries, the white reference chromaticity, a transfer function and the
+luma coefficients needed to transform R'G'B' to Y'CbCr. While some
+colorspace standards correctly define all four, quite often the
+colorspace standard only defines some, and you have to rely on other
+standards for the missing pieces. The fact that colorspaces are often a
+mix of different standards also led to very confusing naming conventions
+where the name of a standard was used to name a colorspace when in fact
+that standard was part of various other colorspaces as well.
+
+If you want to read more about colors and colorspaces, then the
+following resources are useful: :ref:`poynton` is a good practical
+book for video engineers, :ref:`colimg` has a much broader scope and
+describes many more aspects of color (physics, chemistry, biology,
+etc.). The
+`http://www.brucelindbloom.com <http://www.brucelindbloom.com>`__
+website is an excellent resource, especially with respect to the
+mathematics behind colorspace conversions. The wikipedia
+`CIE 1931 colorspace <http://en.wikipedia.org/wiki/CIE_1931_color_space#CIE_xy_chromaticity_diagram_and_the_CIE_xyY_color_space>`__
+article is also very useful.