aboutsummaryrefslogtreecommitdiffstatshomepage
path: root/drivers/gpu/drm/i915/i915_request.h
diff options
context:
space:
mode:
Diffstat (limited to '')
-rw-r--r--drivers/gpu/drm/i915/i915_request.h105
1 files changed, 96 insertions, 9 deletions
diff --git a/drivers/gpu/drm/i915/i915_request.h b/drivers/gpu/drm/i915/i915_request.h
index 565322640378..f57eadcf3583 100644
--- a/drivers/gpu/drm/i915/i915_request.h
+++ b/drivers/gpu/drm/i915/i915_request.h
@@ -51,7 +51,7 @@ struct i915_capture_list {
#define RQ_TRACE(rq, fmt, ...) do { \
const struct i915_request *rq__ = (rq); \
- ENGINE_TRACE(rq__->engine, "fence %llx:%lld, current %d" fmt, \
+ ENGINE_TRACE(rq__->engine, "fence %llx:%lld, current %d " fmt, \
rq__->fence.context, rq__->fence.seqno, \
hwsp_seqno(rq__), ##__VA_ARGS__); \
} while (0)
@@ -71,12 +71,63 @@ enum {
I915_FENCE_FLAG_ACTIVE = DMA_FENCE_FLAG_USER_BITS,
/*
+ * I915_FENCE_FLAG_PQUEUE - this request is ready for execution
+ *
+ * Using the scheduler, when a request is ready for execution it is put
+ * into the priority queue, and removed from that queue when transferred
+ * to the HW runlists. We want to track its membership within the
+ * priority queue so that we can easily check before rescheduling.
+ *
+ * See i915_request_in_priority_queue()
+ */
+ I915_FENCE_FLAG_PQUEUE,
+
+ /*
* I915_FENCE_FLAG_SIGNAL - this request is currently on signal_list
*
* Internal bookkeeping used by the breadcrumb code to track when
* a request is on the various signal_list.
*/
I915_FENCE_FLAG_SIGNAL,
+
+ /*
+ * I915_FENCE_FLAG_HOLD - this request is currently on hold
+ *
+ * This request has been suspended, pending an ongoing investigation.
+ */
+ I915_FENCE_FLAG_HOLD,
+
+ /*
+ * I915_FENCE_FLAG_NOPREEMPT - this request should not be preempted
+ *
+ * The execution of some requests should not be interrupted. This is
+ * a sensitive operation as it makes the request super important,
+ * blocking other higher priority work. Abuse of this flag will
+ * lead to quality of service issues.
+ */
+ I915_FENCE_FLAG_NOPREEMPT,
+
+ /*
+ * I915_FENCE_FLAG_SENTINEL - this request should be last in the queue
+ *
+ * A high priority sentinel request may be submitted to clear the
+ * submission queue. As it will be the only request in-flight, upon
+ * execution all other active requests will have been preempted and
+ * unsubmitted. This preemptive pulse is used to re-evaluate the
+ * in-flight requests, particularly in cases where an active context
+ * is banned and those active requests need to be cancelled.
+ */
+ I915_FENCE_FLAG_SENTINEL,
+
+ /*
+ * I915_FENCE_FLAG_BOOST - upclock the gpu for this request
+ *
+ * Some requests are more important than others! In particular, a
+ * request that the user is waiting on is typically required for
+ * interactive latency, for which we want to minimise by upclocking
+ * the GPU. Here we track such boost requests on a per-request basis.
+ */
+ I915_FENCE_FLAG_BOOST,
};
/**
@@ -225,11 +276,6 @@ struct i915_request {
/** Time at which this request was emitted, in jiffies. */
unsigned long emitted_jiffies;
- unsigned long flags;
-#define I915_REQUEST_WAITBOOST BIT(0)
-#define I915_REQUEST_NOPREEMPT BIT(1)
-#define I915_REQUEST_SENTINEL BIT(2)
-
/** timeline->request entry for this request */
struct list_head link;
@@ -334,6 +380,11 @@ static inline bool i915_request_is_active(const struct i915_request *rq)
return test_bit(I915_FENCE_FLAG_ACTIVE, &rq->fence.flags);
}
+static inline bool i915_request_in_priority_queue(const struct i915_request *rq)
+{
+ return test_bit(I915_FENCE_FLAG_PQUEUE, &rq->fence.flags);
+}
+
/**
* Returns true if seq1 is later than seq2.
*/
@@ -427,6 +478,27 @@ static inline bool i915_request_is_running(const struct i915_request *rq)
return __i915_request_has_started(rq);
}
+/**
+ * i915_request_is_running - check if the request is ready for execution
+ * @rq: the request
+ *
+ * Upon construction, the request is instructed to wait upon various
+ * signals before it is ready to be executed by the HW. That is, we do
+ * not want to start execution and read data before it is written. In practice,
+ * this is controlled with a mixture of interrupts and semaphores. Once
+ * the submit fence is completed, the backend scheduler will place the
+ * request into its queue and from there submit it for execution. So we
+ * can detect when a request is eligible for execution (and is under control
+ * of the scheduler) by querying where it is in any of the scheduler's lists.
+ *
+ * Returns true if the request is ready for execution (it may be inflight),
+ * false otherwise.
+ */
+static inline bool i915_request_is_ready(const struct i915_request *rq)
+{
+ return !list_empty(&rq->sched.link);
+}
+
static inline bool i915_request_completed(const struct i915_request *rq)
{
if (i915_request_signaled(rq))
@@ -442,18 +514,33 @@ static inline void i915_request_mark_complete(struct i915_request *rq)
static inline bool i915_request_has_waitboost(const struct i915_request *rq)
{
- return rq->flags & I915_REQUEST_WAITBOOST;
+ return test_bit(I915_FENCE_FLAG_BOOST, &rq->fence.flags);
}
static inline bool i915_request_has_nopreempt(const struct i915_request *rq)
{
/* Preemption should only be disabled very rarely */
- return unlikely(rq->flags & I915_REQUEST_NOPREEMPT);
+ return unlikely(test_bit(I915_FENCE_FLAG_NOPREEMPT, &rq->fence.flags));
}
static inline bool i915_request_has_sentinel(const struct i915_request *rq)
{
- return unlikely(rq->flags & I915_REQUEST_SENTINEL);
+ return unlikely(test_bit(I915_FENCE_FLAG_SENTINEL, &rq->fence.flags));
+}
+
+static inline bool i915_request_on_hold(const struct i915_request *rq)
+{
+ return unlikely(test_bit(I915_FENCE_FLAG_HOLD, &rq->fence.flags));
+}
+
+static inline void i915_request_set_hold(struct i915_request *rq)
+{
+ set_bit(I915_FENCE_FLAG_HOLD, &rq->fence.flags);
+}
+
+static inline void i915_request_clear_hold(struct i915_request *rq)
+{
+ clear_bit(I915_FENCE_FLAG_HOLD, &rq->fence.flags);
}
static inline struct intel_timeline *