aboutsummaryrefslogtreecommitdiffstatshomepage
path: root/fs/btrfs/delalloc-space.c
diff options
context:
space:
mode:
Diffstat (limited to 'fs/btrfs/delalloc-space.c')
-rw-r--r--fs/btrfs/delalloc-space.c106
1 files changed, 104 insertions, 2 deletions
diff --git a/fs/btrfs/delalloc-space.c b/fs/btrfs/delalloc-space.c
index 4cdac4d834f5..1245739a3a6e 100644
--- a/fs/btrfs/delalloc-space.c
+++ b/fs/btrfs/delalloc-space.c
@@ -9,6 +9,108 @@
#include "qgroup.h"
#include "block-group.h"
+/*
+ * HOW DOES THIS WORK
+ *
+ * There are two stages to data reservations, one for data and one for metadata
+ * to handle the new extents and checksums generated by writing data.
+ *
+ *
+ * DATA RESERVATION
+ * The general flow of the data reservation is as follows
+ *
+ * -> Reserve
+ * We call into btrfs_reserve_data_bytes() for the user request bytes that
+ * they wish to write. We make this reservation and add it to
+ * space_info->bytes_may_use. We set EXTENT_DELALLOC on the inode io_tree
+ * for the range and carry on if this is buffered, or follow up trying to
+ * make a real allocation if we are pre-allocating or doing O_DIRECT.
+ *
+ * -> Use
+ * At writepages()/prealloc/O_DIRECT time we will call into
+ * btrfs_reserve_extent() for some part or all of this range of bytes. We
+ * will make the allocation and subtract space_info->bytes_may_use by the
+ * original requested length and increase the space_info->bytes_reserved by
+ * the allocated length. This distinction is important because compression
+ * may allocate a smaller on disk extent than we previously reserved.
+ *
+ * -> Allocation
+ * finish_ordered_io() will insert the new file extent item for this range,
+ * and then add a delayed ref update for the extent tree. Once that delayed
+ * ref is written the extent size is subtracted from
+ * space_info->bytes_reserved and added to space_info->bytes_used.
+ *
+ * Error handling
+ *
+ * -> By the reservation maker
+ * This is the simplest case, we haven't completed our operation and we know
+ * how much we reserved, we can simply call
+ * btrfs_free_reserved_data_space*() and it will be removed from
+ * space_info->bytes_may_use.
+ *
+ * -> After the reservation has been made, but before cow_file_range()
+ * This is specifically for the delalloc case. You must clear
+ * EXTENT_DELALLOC with the EXTENT_CLEAR_DATA_RESV bit, and the range will
+ * be subtracted from space_info->bytes_may_use.
+ *
+ * METADATA RESERVATION
+ * The general metadata reservation lifetimes are discussed elsewhere, this
+ * will just focus on how it is used for delalloc space.
+ *
+ * We keep track of two things on a per inode bases
+ *
+ * ->outstanding_extents
+ * This is the number of file extent items we'll need to handle all of the
+ * outstanding DELALLOC space we have in this inode. We limit the maximum
+ * size of an extent, so a large contiguous dirty area may require more than
+ * one outstanding_extent, which is why count_max_extents() is used to
+ * determine how many outstanding_extents get added.
+ *
+ * ->csum_bytes
+ * This is essentially how many dirty bytes we have for this inode, so we
+ * can calculate the number of checksum items we would have to add in order
+ * to checksum our outstanding data.
+ *
+ * We keep a per-inode block_rsv in order to make it easier to keep track of
+ * our reservation. We use btrfs_calculate_inode_block_rsv_size() to
+ * calculate the current theoretical maximum reservation we would need for the
+ * metadata for this inode. We call this and then adjust our reservation as
+ * necessary, either by attempting to reserve more space, or freeing up excess
+ * space.
+ *
+ * OUTSTANDING_EXTENTS HANDLING
+ *
+ * ->outstanding_extents is used for keeping track of how many extents we will
+ * need to use for this inode, and it will fluctuate depending on where you are
+ * in the life cycle of the dirty data. Consider the following normal case for
+ * a completely clean inode, with a num_bytes < our maximum allowed extent size
+ *
+ * -> reserve
+ * ->outstanding_extents += 1 (current value is 1)
+ *
+ * -> set_delalloc
+ * ->outstanding_extents += 1 (currrent value is 2)
+ *
+ * -> btrfs_delalloc_release_extents()
+ * ->outstanding_extents -= 1 (current value is 1)
+ *
+ * We must call this once we are done, as we hold our reservation for the
+ * duration of our operation, and then assume set_delalloc will update the
+ * counter appropriately.
+ *
+ * -> add ordered extent
+ * ->outstanding_extents += 1 (current value is 2)
+ *
+ * -> btrfs_clear_delalloc_extent
+ * ->outstanding_extents -= 1 (current value is 1)
+ *
+ * -> finish_ordered_io/btrfs_remove_ordered_extent
+ * ->outstanding_extents -= 1 (current value is 0)
+ *
+ * Each stage is responsible for their own accounting of the extent, thus
+ * making error handling and cleanup easier.
+ */
+
int btrfs_alloc_data_chunk_ondemand(struct btrfs_inode *inode, u64 bytes)
{
struct btrfs_root *root = inode->root;
@@ -228,8 +330,8 @@ static void btrfs_inode_rsv_release(struct btrfs_inode *inode, bool qgroup_free)
* are releasing 0 bytes, and then we'll just get the reservation over
* the size free'd.
*/
- released = __btrfs_block_rsv_release(fs_info, block_rsv, 0,
- &qgroup_to_release);
+ released = btrfs_block_rsv_release(fs_info, block_rsv, 0,
+ &qgroup_to_release);
if (released > 0)
trace_btrfs_space_reservation(fs_info, "delalloc",
btrfs_ino(inode), released, 0);