diff options
Diffstat (limited to '')
| -rw-r--r-- | kernel/sched/core.c (renamed from kernel/sched.c) | 2306 |
1 files changed, 341 insertions, 1965 deletions
diff --git a/kernel/sched.c b/kernel/sched/core.c index 0e9344a71be3..33a0676ea744 100644 --- a/kernel/sched.c +++ b/kernel/sched/core.c @@ -1,5 +1,5 @@ /* - * kernel/sched.c + * kernel/sched/core.c * * Kernel scheduler and related syscalls * @@ -56,7 +56,6 @@ #include <linux/percpu.h> #include <linux/proc_fs.h> #include <linux/seq_file.h> -#include <linux/stop_machine.h> #include <linux/sysctl.h> #include <linux/syscalls.h> #include <linux/times.h> @@ -71,6 +70,7 @@ #include <linux/ctype.h> #include <linux/ftrace.h> #include <linux/slab.h> +#include <linux/init_task.h> #include <asm/tlb.h> #include <asm/irq_regs.h> @@ -79,124 +79,13 @@ #include <asm/paravirt.h> #endif -#include "sched_cpupri.h" -#include "workqueue_sched.h" -#include "sched_autogroup.h" +#include "sched.h" +#include "../workqueue_sched.h" #define CREATE_TRACE_POINTS #include <trace/events/sched.h> -/* - * Convert user-nice values [ -20 ... 0 ... 19 ] - * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ], - * and back. - */ -#define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20) -#define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20) -#define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio) - -/* - * 'User priority' is the nice value converted to something we - * can work with better when scaling various scheduler parameters, - * it's a [ 0 ... 39 ] range. - */ -#define USER_PRIO(p) ((p)-MAX_RT_PRIO) -#define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio) -#define MAX_USER_PRIO (USER_PRIO(MAX_PRIO)) - -/* - * Helpers for converting nanosecond timing to jiffy resolution - */ -#define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ)) - -#define NICE_0_LOAD SCHED_LOAD_SCALE -#define NICE_0_SHIFT SCHED_LOAD_SHIFT - -/* - * These are the 'tuning knobs' of the scheduler: - * - * default timeslice is 100 msecs (used only for SCHED_RR tasks). - * Timeslices get refilled after they expire. - */ -#define DEF_TIMESLICE (100 * HZ / 1000) - -/* - * single value that denotes runtime == period, ie unlimited time. - */ -#define RUNTIME_INF ((u64)~0ULL) - -static inline int rt_policy(int policy) -{ - if (policy == SCHED_FIFO || policy == SCHED_RR) - return 1; - return 0; -} - -static inline int task_has_rt_policy(struct task_struct *p) -{ - return rt_policy(p->policy); -} - -/* - * This is the priority-queue data structure of the RT scheduling class: - */ -struct rt_prio_array { - DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */ - struct list_head queue[MAX_RT_PRIO]; -}; - -struct rt_bandwidth { - /* nests inside the rq lock: */ - raw_spinlock_t rt_runtime_lock; - ktime_t rt_period; - u64 rt_runtime; - struct hrtimer rt_period_timer; -}; - -static struct rt_bandwidth def_rt_bandwidth; - -static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun); - -static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer) -{ - struct rt_bandwidth *rt_b = - container_of(timer, struct rt_bandwidth, rt_period_timer); - ktime_t now; - int overrun; - int idle = 0; - - for (;;) { - now = hrtimer_cb_get_time(timer); - overrun = hrtimer_forward(timer, now, rt_b->rt_period); - - if (!overrun) - break; - - idle = do_sched_rt_period_timer(rt_b, overrun); - } - - return idle ? HRTIMER_NORESTART : HRTIMER_RESTART; -} - -static -void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime) -{ - rt_b->rt_period = ns_to_ktime(period); - rt_b->rt_runtime = runtime; - - raw_spin_lock_init(&rt_b->rt_runtime_lock); - - hrtimer_init(&rt_b->rt_period_timer, - CLOCK_MONOTONIC, HRTIMER_MODE_REL); - rt_b->rt_period_timer.function = sched_rt_period_timer; -} - -static inline int rt_bandwidth_enabled(void) -{ - return sysctl_sched_rt_runtime >= 0; -} - -static void start_bandwidth_timer(struct hrtimer *period_timer, ktime_t period) +void start_bandwidth_timer(struct hrtimer *period_timer, ktime_t period) { unsigned long delta; ktime_t soft, hard, now; @@ -216,580 +105,12 @@ static void start_bandwidth_timer(struct hrtimer *period_timer, ktime_t period) } } -static void start_rt_bandwidth(struct rt_bandwidth *rt_b) -{ - if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF) - return; - - if (hrtimer_active(&rt_b->rt_period_timer)) - return; - - raw_spin_lock(&rt_b->rt_runtime_lock); - start_bandwidth_timer(&rt_b->rt_period_timer, rt_b->rt_period); - raw_spin_unlock(&rt_b->rt_runtime_lock); -} - -#ifdef CONFIG_RT_GROUP_SCHED -static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b) -{ - hrtimer_cancel(&rt_b->rt_period_timer); -} -#endif - -/* - * sched_domains_mutex serializes calls to init_sched_domains, - * detach_destroy_domains and partition_sched_domains. - */ -static DEFINE_MUTEX(sched_domains_mutex); - -#ifdef CONFIG_CGROUP_SCHED - -#include <linux/cgroup.h> - -struct cfs_rq; - -static LIST_HEAD(task_groups); - -struct cfs_bandwidth { -#ifdef CONFIG_CFS_BANDWIDTH - raw_spinlock_t lock; - ktime_t period; - u64 quota, runtime; - s64 hierarchal_quota; - u64 runtime_expires; - - int idle, timer_active; - struct hrtimer period_timer, slack_timer; - struct list_head throttled_cfs_rq; - - /* statistics */ - int nr_periods, nr_throttled; - u64 throttled_time; -#endif -}; - -/* task group related information */ -struct task_group { - struct cgroup_subsys_state css; - -#ifdef CONFIG_FAIR_GROUP_SCHED - /* schedulable entities of this group on each cpu */ - struct sched_entity **se; - /* runqueue "owned" by this group on each cpu */ - struct cfs_rq **cfs_rq; - unsigned long shares; - - atomic_t load_weight; -#endif - -#ifdef CONFIG_RT_GROUP_SCHED - struct sched_rt_entity **rt_se; - struct rt_rq **rt_rq; - - struct rt_bandwidth rt_bandwidth; -#endif - - struct rcu_head rcu; - struct list_head list; - - struct task_group *parent; - struct list_head siblings; - struct list_head children; - -#ifdef CONFIG_SCHED_AUTOGROUP - struct autogroup *autogroup; -#endif - - struct cfs_bandwidth cfs_bandwidth; -}; - -/* task_group_lock serializes the addition/removal of task groups */ -static DEFINE_SPINLOCK(task_group_lock); - -#ifdef CONFIG_FAIR_GROUP_SCHED - -# define ROOT_TASK_GROUP_LOAD NICE_0_LOAD - -/* - * A weight of 0 or 1 can cause arithmetics problems. - * A weight of a cfs_rq is the sum of weights of which entities - * are queued on this cfs_rq, so a weight of a entity should not be - * too large, so as the shares value of a task group. - * (The default weight is 1024 - so there's no practical - * limitation from this.) - */ -#define MIN_SHARES (1UL << 1) -#define MAX_SHARES (1UL << 18) - -static int root_task_group_load = ROOT_TASK_GROUP_LOAD; -#endif - -/* Default task group. - * Every task in system belong to this group at bootup. - */ -struct task_group root_task_group; - -#endif /* CONFIG_CGROUP_SCHED */ - -/* CFS-related fields in a runqueue */ -struct cfs_rq { - struct load_weight load; - unsigned long nr_running, h_nr_running; - - u64 exec_clock; - u64 min_vruntime; -#ifndef CONFIG_64BIT - u64 min_vruntime_copy; -#endif - - struct rb_root tasks_timeline; - struct rb_node *rb_leftmost; - - struct list_head tasks; - struct list_head *balance_iterator; - - /* - * 'curr' points to currently running entity on this cfs_rq. - * It is set to NULL otherwise (i.e when none are currently running). - */ - struct sched_entity *curr, *next, *last, *skip; - -#ifdef CONFIG_SCHED_DEBUG - unsigned int nr_spread_over; -#endif - -#ifdef CONFIG_FAIR_GROUP_SCHED - struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */ - - /* - * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in - * a hierarchy). Non-leaf lrqs hold other higher schedulable entities - * (like users, containers etc.) - * - * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This - * list is used during load balance. - */ - int on_list; - struct list_head leaf_cfs_rq_list; - struct task_group *tg; /* group that "owns" this runqueue */ - -#ifdef CONFIG_SMP - /* - * the part of load.weight contributed by tasks - */ - unsigned long task_weight; - - /* - * h_load = weight * f(tg) - * - * Where f(tg) is the recursive weight fraction assigned to - * this group. - */ - unsigned long h_load; - - /* - * Maintaining per-cpu shares distribution for group scheduling - * - * load_stamp is the last time we updated the load average - * load_last is the last time we updated the load average and saw load - * load_unacc_exec_time is currently unaccounted execution time - */ - u64 load_avg; - u64 load_period; - u64 load_stamp, load_last, load_unacc_exec_time; - - unsigned long load_contribution; -#endif -#ifdef CONFIG_CFS_BANDWIDTH - int runtime_enabled; - u64 runtime_expires; - s64 runtime_remaining; - - u64 throttled_timestamp; - int throttled, throttle_count; - struct list_head throttled_list; -#endif -#endif -}; - -#ifdef CONFIG_FAIR_GROUP_SCHED -#ifdef CONFIG_CFS_BANDWIDTH -static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg) -{ - return &tg->cfs_bandwidth; -} - -static inline u64 default_cfs_period(void); -static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun); -static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b); - -static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer) -{ - struct cfs_bandwidth *cfs_b = - container_of(timer, struct cfs_bandwidth, slack_timer); - do_sched_cfs_slack_timer(cfs_b); - - return HRTIMER_NORESTART; -} - -static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer) -{ - struct cfs_bandwidth *cfs_b = - container_of(timer, struct cfs_bandwidth, period_timer); - ktime_t now; - int overrun; - int idle = 0; - - for (;;) { - now = hrtimer_cb_get_time(timer); - overrun = hrtimer_forward(timer, now, cfs_b->period); - - if (!overrun) - break; - - idle = do_sched_cfs_period_timer(cfs_b, overrun); - } - - return idle ? HRTIMER_NORESTART : HRTIMER_RESTART; -} - -static void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) -{ - raw_spin_lock_init(&cfs_b->lock); - cfs_b->runtime = 0; - cfs_b->quota = RUNTIME_INF; - cfs_b->period = ns_to_ktime(default_cfs_period()); - - INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq); - hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); - cfs_b->period_timer.function = sched_cfs_period_timer; - hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); - cfs_b->slack_timer.function = sched_cfs_slack_timer; -} - -static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) -{ - cfs_rq->runtime_enabled = 0; - INIT_LIST_HEAD(&cfs_rq->throttled_list); -} - -/* requires cfs_b->lock, may release to reprogram timer */ -static void __start_cfs_bandwidth(struct cfs_bandwidth *cfs_b) -{ - /* - * The timer may be active because we're trying to set a new bandwidth - * period or because we're racing with the tear-down path - * (timer_active==0 becomes visible before the hrtimer call-back - * terminates). In either case we ensure that it's re-programmed - */ - while (unlikely(hrtimer_active(&cfs_b->period_timer))) { - raw_spin_unlock(&cfs_b->lock); - /* ensure cfs_b->lock is available while we wait */ - hrtimer_cancel(&cfs_b->period_timer); - - raw_spin_lock(&cfs_b->lock); - /* if someone else restarted the timer then we're done */ - if (cfs_b->timer_active) - return; - } - - cfs_b->timer_active = 1; - start_bandwidth_timer(&cfs_b->period_timer, cfs_b->period); -} - -static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) -{ - hrtimer_cancel(&cfs_b->period_timer); - hrtimer_cancel(&cfs_b->slack_timer); -} -#else -static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {} -static void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {} -static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {} - -static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg) -{ - return NULL; -} -#endif /* CONFIG_CFS_BANDWIDTH */ -#endif /* CONFIG_FAIR_GROUP_SCHED */ - -/* Real-Time classes' related field in a runqueue: */ -struct rt_rq { - struct rt_prio_array active; - unsigned long rt_nr_running; -#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED - struct { - int curr; /* highest queued rt task prio */ -#ifdef CONFIG_SMP - int next; /* next highest */ -#endif - } highest_prio; -#endif -#ifdef CONFIG_SMP - unsigned long rt_nr_migratory; - unsigned long rt_nr_total; - int overloaded; - struct plist_head pushable_tasks; -#endif - int rt_throttled; - u64 rt_time; - u64 rt_runtime; - /* Nests inside the rq lock: */ - raw_spinlock_t rt_runtime_lock; - -#ifdef CONFIG_RT_GROUP_SCHED - unsigned long rt_nr_boosted; - - struct rq *rq; - struct list_head leaf_rt_rq_list; - struct task_group *tg; -#endif -}; - -#ifdef CONFIG_SMP - -/* - * We add the notion of a root-domain which will be used to define per-domain - * variables. Each exclusive cpuset essentially defines an island domain by - * fully partitioning the member cpus from any other cpuset. Whenever a new - * exclusive cpuset is created, we also create and attach a new root-domain - * object. - * - */ -struct root_domain { - atomic_t refcount; - atomic_t rto_count; - struct rcu_head rcu; - cpumask_var_t span; - cpumask_var_t online; - - /* - * The "RT overload" flag: it gets set if a CPU has more than - * one runnable RT task. - */ - cpumask_var_t rto_mask; - struct cpupri cpupri; -}; - -/* - * By default the system creates a single root-domain with all cpus as - * members (mimicking the global state we have today). - */ -static struct root_domain def_root_domain; - -#endif /* CONFIG_SMP */ - -/* - * This is the main, per-CPU runqueue data structure. - * - * Locking rule: those places that want to lock multiple runqueues - * (such as the load balancing or the thread migration code), lock - * acquire operations must be ordered by ascending &runqueue. - */ -struct rq { - /* runqueue lock: */ - raw_spinlock_t lock; - - /* - * nr_running and cpu_load should be in the same cacheline because - * remote CPUs use both these fields when doing load calculation. - */ - unsigned long nr_running; - #define CPU_LOAD_IDX_MAX 5 - unsigned long cpu_load[CPU_LOAD_IDX_MAX]; - unsigned long last_load_update_tick; -#ifdef CONFIG_NO_HZ - u64 nohz_stamp; - unsigned char nohz_balance_kick; -#endif - int skip_clock_update; - - /* capture load from *all* tasks on this cpu: */ - struct load_weight load; - unsigned long nr_load_updates; - u64 nr_switches; - - struct cfs_rq cfs; - struct rt_rq rt; - -#ifdef CONFIG_FAIR_GROUP_SCHED - /* list of leaf cfs_rq on this cpu: */ - struct list_head leaf_cfs_rq_list; -#endif -#ifdef CONFIG_RT_GROUP_SCHED - struct list_head leaf_rt_rq_list; -#endif - - /* - * This is part of a global counter where only the total sum - * over all CPUs matters. A task can increase this counter on - * one CPU and if it got migrated afterwards it may decrease - * it on another CPU. Always updated under the runqueue lock: - */ - unsigned long nr_uninterruptible; - - struct task_struct *curr, *idle, *stop; - unsigned long next_balance; - struct mm_struct *prev_mm; - - u64 clock; - u64 clock_task; - - atomic_t nr_iowait; - -#ifdef CONFIG_SMP - struct root_domain *rd; - struct sched_domain *sd; - - unsigned long cpu_power; - - unsigned char idle_balance; - /* For active balancing */ - int post_schedule; - int active_balance; - int push_cpu; - struct cpu_stop_work active_balance_work; - /* cpu of this runqueue: */ - int cpu; - int online; - - u64 rt_avg; - u64 age_stamp; - u64 idle_stamp; - u64 avg_idle; -#endif - -#ifdef CONFIG_IRQ_TIME_ACCOUNTING - u64 prev_irq_time; -#endif -#ifdef CONFIG_PARAVIRT - u64 prev_steal_time; -#endif -#ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING - u64 prev_steal_time_rq; -#endif - - /* calc_load related fields */ - unsigned long calc_load_update; - long calc_load_active; - -#ifdef CONFIG_SCHED_HRTICK -#ifdef CONFIG_SMP - int hrtick_csd_pending; - struct call_single_data hrtick_csd; -#endif - struct hrtimer hrtick_timer; -#endif - -#ifdef CONFIG_SCHEDSTATS - /* latency stats */ - struct sched_info rq_sched_info; - unsigned long long rq_cpu_time; - /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */ - - /* sys_sched_yield() stats */ - unsigned int yld_count; - - /* schedule() stats */ - unsigned int sched_switch; - unsigned int sched_count; - unsigned int sched_goidle; - - /* try_to_wake_up() stats */ - unsigned int ttwu_count; - unsigned int ttwu_local; -#endif - -#ifdef CONFIG_SMP - struct llist_head wake_list; -#endif -}; - -static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues); - - -static void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags); - -static inline int cpu_of(struct rq *rq) -{ -#ifdef CONFIG_SMP - return rq->cpu; -#else - return 0; -#endif -} - -#define rcu_dereference_check_sched_domain(p) \ - rcu_dereference_check((p), \ - lockdep_is_held(&sched_domains_mutex)) - -/* - * The domain tree (rq->sd) is protected by RCU's quiescent state transition. - * See detach_destroy_domains: synchronize_sched for details. - * - * The domain tree of any CPU may only be accessed from within - * preempt-disabled sections. - */ -#define for_each_domain(cpu, __sd) \ - for (__sd = rcu_dereference_check_sched_domain(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent) - -#define cpu_rq(cpu) (&per_cpu(runqueues, (cpu))) -#define this_rq() (&__get_cpu_var(runqueues)) -#define task_rq(p) cpu_rq(task_cpu(p)) -#define cpu_curr(cpu) (cpu_rq(cpu)->curr) -#define raw_rq() (&__raw_get_cpu_var(runqueues)) - -#ifdef CONFIG_CGROUP_SCHED - -/* - * Return the group to which this tasks belongs. - * - * We use task_subsys_state_check() and extend the RCU verification with - * pi->lock and rq->lock because cpu_cgroup_attach() holds those locks for each - * task it moves into the cgroup. Therefore by holding either of those locks, - * we pin the task to the current cgroup. - */ -static inline struct task_group *task_group(struct task_struct *p) -{ - struct task_group *tg; - struct cgroup_subsys_state *css; - - css = task_subsys_state_check(p, cpu_cgroup_subsys_id, - lockdep_is_held(&p->pi_lock) || - lockdep_is_held(&task_rq(p)->lock)); - tg = container_of(css, struct task_group, css); - - return autogroup_task_group(p, tg); -} - -/* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */ -static inline void set_task_rq(struct task_struct *p, unsigned int cpu) -{ -#ifdef CONFIG_FAIR_GROUP_SCHED - p->se.cfs_rq = task_group(p)->cfs_rq[cpu]; - p->se.parent = task_group(p)->se[cpu]; -#endif - -#ifdef CONFIG_RT_GROUP_SCHED - p->rt.rt_rq = task_group(p)->rt_rq[cpu]; - p->rt.parent = task_group(p)->rt_se[cpu]; -#endif -} - -#else /* CONFIG_CGROUP_SCHED */ - -static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { } -static inline struct task_group *task_group(struct task_struct *p) -{ - return NULL; -} - -#endif /* CONFIG_CGROUP_SCHED */ +DEFINE_MUTEX(sched_domains_mutex); +DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues); static void update_rq_clock_task(struct rq *rq, s64 delta); -static void update_rq_clock(struct rq *rq) +void update_rq_clock(struct rq *rq) { s64 delta; @@ -802,44 +123,14 @@ static void update_rq_clock(struct rq *rq) } /* - * Tunables that become constants when CONFIG_SCHED_DEBUG is off: - */ -#ifdef CONFIG_SCHED_DEBUG -# define const_debug __read_mostly -#else -# define const_debug static const -#endif - -/** - * runqueue_is_locked - Returns true if the current cpu runqueue is locked - * @cpu: the processor in question. - * - * This interface allows printk to be called with the runqueue lock - * held and know whether or not it is OK to wake up the klogd. - */ -int runqueue_is_locked(int cpu) -{ - return raw_spin_is_locked(&cpu_rq(cpu)->lock); -} - -/* * Debugging: various feature bits */ #define SCHED_FEAT(name, enabled) \ - __SCHED_FEAT_##name , - -enum { -#include "sched_features.h" -}; - -#undef SCHED_FEAT - -#define SCHED_FEAT(name, enabled) \ (1UL << __SCHED_FEAT_##name) * enabled | const_debug unsigned int sysctl_sched_features = -#include "sched_features.h" +#include "features.h" 0; #undef SCHED_FEAT @@ -849,7 +140,7 @@ const_debug unsigned int sysctl_sched_features = #name , static __read_mostly char *sched_feat_names[] = { -#include "sched_features.h" +#include "features.h" NULL }; @@ -859,7 +150,7 @@ static int sched_feat_show(struct seq_file *m, void *v) { int i; - for (i = 0; sched_feat_names[i]; i++) { + for (i = 0; i < __SCHED_FEAT_NR; i++) { if (!(sysctl_sched_features & (1UL << i))) seq_puts(m, "NO_"); seq_printf(m, "%s ", sched_feat_names[i]); @@ -869,6 +160,36 @@ static int sched_feat_show(struct seq_file *m, void *v) return 0; } +#ifdef HAVE_JUMP_LABEL + +#define jump_label_key__true jump_label_key_enabled +#define jump_label_key__false jump_label_key_disabled + +#define SCHED_FEAT(name, enabled) \ + jump_label_key__##enabled , + +struct jump_label_key sched_feat_keys[__SCHED_FEAT_NR] = { +#include "features.h" +}; + +#undef SCHED_FEAT + +static void sched_feat_disable(int i) +{ + if (jump_label_enabled(&sched_feat_keys[i])) + jump_label_dec(&sched_feat_keys[i]); +} + +static void sched_feat_enable(int i) +{ + if (!jump_label_enabled(&sched_feat_keys[i])) + jump_label_inc(&sched_feat_keys[i]); +} +#else +static void sched_feat_disable(int i) { }; +static void sched_feat_enable(int i) { }; +#endif /* HAVE_JUMP_LABEL */ + static ssize_t sched_feat_write(struct file *filp, const char __user *ubuf, size_t cnt, loff_t *ppos) @@ -892,17 +213,20 @@ sched_feat_write(struct file *filp, const char __user *ubuf, cmp += 3; } - for (i = 0; sched_feat_names[i]; i++) { + for (i = 0; i < __SCHED_FEAT_NR; i++) { if (strcmp(cmp, sched_feat_names[i]) == 0) { - if (neg) + if (neg) { sysctl_sched_features &= ~(1UL << i); - else + sched_feat_disable(i); + } else { sysctl_sched_features |= (1UL << i); + sched_feat_enable(i); + } break; } } - if (!sched_feat_names[i]) + if (i == __SCHED_FEAT_NR) return -EINVAL; *ppos += cnt; @@ -931,10 +255,7 @@ static __init int sched_init_debug(void) return 0; } late_initcall(sched_init_debug); - -#endif - -#define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x)) +#endif /* CONFIG_SCHED_DEBUG */ /* * Number of tasks to iterate in a single balance run. @@ -956,7 +277,7 @@ const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC; */ unsigned int sysctl_sched_rt_period = 1000000; -static __read_mostly int scheduler_running; +__read_mostly int scheduler_running; /* * part of the period that we allow rt tasks to run in us. @@ -964,112 +285,7 @@ static __read_mostly int scheduler_running; */ int sysctl_sched_rt_runtime = 950000; -static inline u64 global_rt_period(void) -{ - return (u64)sysctl_sched_rt_period * NSEC_PER_USEC; -} - -static inline u64 global_rt_runtime(void) -{ - if (sysctl_sched_rt_runtime < 0) - return RUNTIME_INF; - - return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC; -} - -#ifndef prepare_arch_switch -# define prepare_arch_switch(next) do { } while (0) -#endif -#ifndef finish_arch_switch -# define finish_arch_switch(prev) do { } while (0) -#endif - -static inline int task_current(struct rq *rq, struct task_struct *p) -{ - return rq->curr == p; -} - -static inline int task_running(struct rq *rq, struct task_struct *p) -{ -#ifdef CONFIG_SMP - return p->on_cpu; -#else - return task_current(rq, p); -#endif -} - -#ifndef __ARCH_WANT_UNLOCKED_CTXSW -static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next) -{ -#ifdef CONFIG_SMP - /* - * We can optimise this out completely for !SMP, because the - * SMP rebalancing from interrupt is the only thing that cares - * here. - */ - next->on_cpu = 1; -#endif -} -static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev) -{ -#ifdef CONFIG_SMP - /* - * After ->on_cpu is cleared, the task can be moved to a different CPU. - * We must ensure this doesn't happen until the switch is completely - * finished. - */ - smp_wmb(); - prev->on_cpu = 0; -#endif -#ifdef CONFIG_DEBUG_SPINLOCK - /* this is a valid case when another task releases the spinlock */ - rq->lock.owner = current; -#endif - /* - * If we are tracking spinlock dependencies then we have to - * fix up the runqueue lock - which gets 'carried over' from - * prev into current: - */ - spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_); - - raw_spin_unlock_irq(&rq->lock); -} - -#else /* __ARCH_WANT_UNLOCKED_CTXSW */ -static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next) -{ -#ifdef CONFIG_SMP - /* - * We can optimise this out completely for !SMP, because the - * SMP rebalancing from interrupt is the only thing that cares - * here. - */ - next->on_cpu = 1; -#endif -#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW - raw_spin_unlock_irq(&rq->lock); -#else - raw_spin_unlock(&rq->lock); -#endif -} - -static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev) -{ -#ifdef CONFIG_SMP - /* - * After ->on_cpu is cleared, the task can be moved to a different CPU. - * We must ensure this doesn't happen until the switch is completely - * finished. - */ - smp_wmb(); - prev->on_cpu = 0; -#endif -#ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW - local_irq_enable(); -#endif -} -#endif /* __ARCH_WANT_UNLOCKED_CTXSW */ /* * __task_rq_lock - lock the rq @p resides on. @@ -1152,20 +368,6 @@ static struct rq *this_rq_lock(void) * rq->lock. */ -/* - * Use hrtick when: - * - enabled by features - * - hrtimer is actually high res - */ -static inline int hrtick_enabled(struct rq *rq) -{ - if (!sched_feat(HRTICK)) - return 0; - if (!cpu_active(cpu_of(rq))) - return 0; - return hrtimer_is_hres_active(&rq->hrtick_timer); -} - static void hrtick_clear(struct rq *rq) { if (hrtimer_active(&rq->hrtick_timer)) @@ -1209,7 +411,7 @@ static void __hrtick_start(void *arg) * * called with rq->lock held and irqs disabled */ -static void hrtick_start(struct rq *rq, u64 delay) +void hrtick_start(struct rq *rq, u64 delay) { struct hrtimer *timer = &rq->hrtick_timer; ktime_t time = ktime_add_ns(timer->base->get_time(), delay); @@ -1253,7 +455,7 @@ static __init void init_hrtick(void) * * called with rq->lock held and irqs disabled */ -static void hrtick_start(struct rq *rq, u64 delay) +void hrtick_start(struct rq *rq, u64 delay) { __hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0, HRTIMER_MODE_REL_PINNED, 0); @@ -1304,7 +506,7 @@ static inline void init_hrtick(void) #define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG) #endif -static void resched_task(struct task_struct *p) +void resched_task(struct task_struct *p) { int cpu; @@ -1325,7 +527,7 @@ static void resched_task(struct task_struct *p) smp_send_reschedule(cpu); } -static void resched_cpu(int cpu) +void resched_cpu(int cpu) { struct rq *rq = cpu_rq(cpu); unsigned long flags; @@ -1406,7 +608,8 @@ void wake_up_idle_cpu(int cpu) static inline bool got_nohz_idle_kick(void) { - return idle_cpu(smp_processor_id()) && this_rq()->nohz_balance_kick; + int cpu = smp_processor_id(); + return idle_cpu(cpu) && test_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu)); } #else /* CONFIG_NO_HZ */ @@ -1418,12 +621,7 @@ static inline bool got_nohz_idle_kick(void) #endif /* CONFIG_NO_HZ */ -static u64 sched_avg_period(void) -{ - return (u64)sysctl_sched_time_avg * NSEC_PER_MSEC / 2; -} - -static void sched_avg_update(struct rq *rq) +void sched_avg_update(struct rq *rq) { s64 period = sched_avg_period(); @@ -1439,193 +637,23 @@ static void sched_avg_update(struct rq *rq) } } -static void sched_rt_avg_update(struct rq *rq, u64 rt_delta) -{ - rq->rt_avg += rt_delta; - sched_avg_update(rq); -} - #else /* !CONFIG_SMP */ -static void resched_task(struct task_struct *p) +void resched_task(struct task_struct *p) { assert_raw_spin_locked(&task_rq(p)->lock); set_tsk_need_resched(p); } - -static void sched_rt_avg_update(struct rq *rq, u64 rt_delta) -{ -} - -static void sched_avg_update(struct rq *rq) -{ -} #endif /* CONFIG_SMP */ -#if BITS_PER_LONG == 32 -# define WMULT_CONST (~0UL) -#else -# define WMULT_CONST (1UL << 32) -#endif - -#define WMULT_SHIFT 32 - -/* - * Shift right and round: - */ -#define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y)) - -/* - * delta *= weight / lw - */ -static unsigned long -calc_delta_mine(unsigned long delta_exec, unsigned long weight, - struct load_weight *lw) -{ - u64 tmp; - - /* - * weight can be less than 2^SCHED_LOAD_RESOLUTION for task group sched - * entities since MIN_SHARES = 2. Treat weight as 1 if less than - * 2^SCHED_LOAD_RESOLUTION. - */ - if (likely(weight > (1UL << SCHED_LOAD_RESOLUTION))) - tmp = (u64)delta_exec * scale_load_down(weight); - else - tmp = (u64)delta_exec; - - if (!lw->inv_weight) { - unsigned long w = scale_load_down(lw->weight); - - if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST)) - lw->inv_weight = 1; - else if (unlikely(!w)) - lw->inv_weight = WMULT_CONST; - else - lw->inv_weight = WMULT_CONST / w; - } - - /* - * Check whether we'd overflow the 64-bit multiplication: - */ - if (unlikely(tmp > WMULT_CONST)) - tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight, - WMULT_SHIFT/2); - else - tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT); - - return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX); -} - -static inline void update_load_add(struct load_weight *lw, unsigned long inc) -{ - lw->weight += inc; - lw->inv_weight = 0; -} - -static inline void update_load_sub(struct load_weight *lw, unsigned long dec) -{ - lw->weight -= dec; - lw->inv_weight = 0; -} - -static inline void update_load_set(struct load_weight *lw, unsigned long w) -{ - lw->weight = w; - lw->inv_weight = 0; -} - -/* - * To aid in avoiding the subversion of "niceness" due to uneven distribution - * of tasks with abnormal "nice" values across CPUs the contribution that - * each task makes to its run queue's load is weighted according to its - * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a - * scaled version of the new time slice allocation that they receive on time - * slice expiry etc. - */ - -#define WEIGHT_IDLEPRIO 3 -#define WMULT_IDLEPRIO 1431655765 - -/* - * Nice levels are multiplicative, with a gentle 10% change for every - * nice level changed. I.e. when a CPU-bound task goes from nice 0 to - * nice 1, it will get ~10% less CPU time than another CPU-bound task - * that remained on nice 0. - * - * The "10% effect" is relative and cumulative: from _any_ nice level, - * if you go up 1 level, it's -10% CPU usage, if you go down 1 level - * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25. - * If a task goes up by ~10% and another task goes down by ~10% then - * the relative distance between them is ~25%.) - */ -static const int prio_to_weight[40] = { - /* -20 */ 88761, 71755, 56483, 46273, 36291, - /* -15 */ 29154, 23254, 18705, 14949, 11916, - /* -10 */ 9548, 7620, 6100, 4904, 3906, - /* -5 */ 3121, 2501, 1991, 1586, 1277, - /* 0 */ 1024, 820, 655, 526, 423, - /* 5 */ 335, 272, 215, 172, 137, - /* 10 */ 110, 87, 70, 56, 45, - /* 15 */ 36, 29, 23, 18, 15, -}; - -/* - * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated. - * - * In cases where the weight does not change often, we can use the - * precalculated inverse to speed up arithmetics by turning divisions - * into multiplications: - */ -static const u32 prio_to_wmult[40] = { - /* -20 */ 48388, 59856, 76040, 92818, 118348, - /* -15 */ 147320, 184698, 229616, 287308, 360437, - /* -10 */ 449829, 563644, 704093, 875809, 1099582, - /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326, - /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587, - /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126, - /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717, - /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153, -}; - -/* Time spent by the tasks of the cpu accounting group executing in ... */ -enum cpuacct_stat_index { - CPUACCT_STAT_USER, /* ... user mode */ - CPUACCT_STAT_SYSTEM, /* ... kernel mode */ - - CPUACCT_STAT_NSTATS, -}; - -#ifdef CONFIG_CGROUP_CPUACCT -static void cpuacct_charge(struct task_struct *tsk, u64 cputime); -static void cpuacct_update_stats(struct task_struct *tsk, - enum cpuacct_stat_index idx, cputime_t val); -#else -static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {} -static inline void cpuacct_update_stats(struct task_struct *tsk, - enum cpuacct_stat_index idx, cputime_t val) {} -#endif - -static inline void inc_cpu_load(struct rq *rq, unsigned long load) -{ - update_load_add(&rq->load, load); -} - -static inline void dec_cpu_load(struct rq *rq, unsigned long load) -{ - update_load_sub(&rq->load, load); -} - #if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \ (defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH))) -typedef int (*tg_visitor)(struct task_group *, void *); - /* * Iterate task_group tree rooted at *from, calling @down when first entering a * node and @up when leaving it for the final time. * * Caller must hold rcu_lock or sufficient equivalent. */ -static int walk_tg_tree_from(struct task_group *from, +int walk_tg_tree_from(struct task_group *from, tg_visitor down, tg_visitor up, void *data) { struct task_group *parent, *child; @@ -1656,270 +684,13 @@ out: return ret; } -/* - * Iterate the full tree, calling @down when first entering a node and @up when - * leaving it for the final time. - * - * Caller must hold rcu_lock or sufficient equivalent. - */ - -static inline int walk_tg_tree(tg_visitor down, tg_visitor up, void *data) -{ - return walk_tg_tree_from(&root_task_group, down, up, data); -} - -static int tg_nop(struct task_group *tg, void *data) +int tg_nop(struct task_group *tg, void *data) { return 0; } #endif -#ifdef CONFIG_SMP -/* Used instead of source_load when we know the type == 0 */ -static unsigned long weighted_cpuload(const int cpu) -{ - return cpu_rq(cpu)->load.weight; -} - -/* - * Return a low guess at the load of a migration-source cpu weighted - * according to the scheduling class and "nice" value. - * - * We want to under-estimate the load of migration sources, to - * balance conservatively. - */ -static unsigned long source_load(int cpu, int type) -{ - struct rq *rq = cpu_rq(cpu); - unsigned long total = weighted_cpuload(cpu); - - if (type == 0 || !sched_feat(LB_BIAS)) - return total; - - return min(rq->cpu_load[type-1], total); -} - -/* - * Return a high guess at the load of a migration-target cpu weighted - * according to the scheduling class and "nice" value. - */ -static unsigned long target_load(int cpu, int type) -{ - struct rq *rq = cpu_rq(cpu); - unsigned long total = weighted_cpuload(cpu); - - if (type == 0 || !sched_feat(LB_BIAS)) - return total; - - return max(rq->cpu_load[type-1], total); -} - -static unsigned long power_of(int cpu) -{ - return cpu_rq(cpu)->cpu_power; -} - -static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd); - -static unsigned long cpu_avg_load_per_task(int cpu) -{ - struct rq *rq = cpu_rq(cpu); - unsigned long nr_running = ACCESS_ONCE(rq->nr_running); - - if (nr_running) - return rq->load.weight / nr_running; - - return 0; -} - -#ifdef CONFIG_PREEMPT - -static void double_rq_lock(struct rq *rq1, struct rq *rq2); - -/* - * fair double_lock_balance: Safely acquires both rq->locks in a fair - * way at the expense of forcing extra atomic operations in all - * invocations. This assures that the double_lock is acquired using the - * same underlying policy as the spinlock_t on this architecture, which - * reduces latency compared to the unfair variant below. However, it - * also adds more overhead and therefore may reduce throughput. - */ -static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest) - __releases(this_rq->lock) - __acquires(busiest->lock) - __acquires(this_rq->lock) -{ - raw_spin_unlock(&this_rq->lock); - double_rq_lock(this_rq, busiest); - - return 1; -} - -#else -/* - * Unfair double_lock_balance: Optimizes throughput at the expense of - * latency by eliminating extra atomic operations when the locks are - * already in proper order on entry. This favors lower cpu-ids and will - * grant the double lock to lower cpus over higher ids under contention, - * regardless of entry order into the function. - */ -static int _double_lock_balance(struct rq *this_rq, struct rq *busiest) - __releases(this_rq->lock) - __acquires(busiest->lock) - __acquires(this_rq->lock) -{ - int ret = 0; - - if (unlikely(!raw_spin_trylock(&busiest->lock))) { - if (busiest < this_rq) { - raw_spin_unlock(&this_rq->lock); - raw_spin_lock(&busiest->lock); - raw_spin_lock_nested(&this_rq->lock, - SINGLE_DEPTH_NESTING); - ret = 1; - } else - raw_spin_lock_nested(&busiest->lock, - SINGLE_DEPTH_NESTING); - } - return ret; -} - -#endif /* CONFIG_PREEMPT */ - -/* - * double_lock_balance - lock the busiest runqueue, this_rq is locked already. - */ -static int double_lock_balance(struct rq *this_rq, struct rq *busiest) -{ - if (unlikely(!irqs_disabled())) { - /* printk() doesn't work good under rq->lock */ - raw_spin_unlock(&this_rq->lock); - BUG_ON(1); - } - - return _double_lock_balance(this_rq, busiest); -} - -static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest) - __releases(busiest->lock) -{ - raw_spin_unlock(&busiest->lock); - lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_); -} - -/* - * double_rq_lock - safely lock two runqueues - * - * Note this does not disable interrupts like task_rq_lock, - * you need to do so manually before calling. - */ -static void double_rq_lock(struct rq *rq1, struct rq *rq2) - __acquires(rq1->lock) - __acquires(rq2->lock) -{ - BUG_ON(!irqs_disabled()); - if (rq1 == rq2) { - raw_spin_lock(&rq1->lock); - __acquire(rq2->lock); /* Fake it out ;) */ - } else { - if (rq1 < rq2) { - raw_spin_lock(&rq1->lock); - raw_spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING); - } else { - raw_spin_lock(&rq2->lock); - raw_spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING); - } - } -} - -/* - * double_rq_unlock - safely unlock two runqueues - * - * Note this does not restore interrupts like task_rq_unlock, - * you need to do so manually after calling. - */ -static void double_rq_unlock(struct rq *rq1, struct rq *rq2) - __releases(rq1->lock) - __releases(rq2->lock) -{ - raw_spin_unlock(&rq1->lock); - if (rq1 != rq2) - raw_spin_unlock(&rq2->lock); - else - __release(rq2->lock); -} - -#else /* CONFIG_SMP */ - -/* - * double_rq_lock - safely lock two runqueues - * - * Note this does not disable interrupts like task_rq_lock, - * you need to do so manually before calling. - */ -static void double_rq_lock(struct rq *rq1, struct rq *rq2) - __acquires(rq1->lock) - __acquires(rq2->lock) -{ - BUG_ON(!irqs_disabled()); - BUG_ON(rq1 != rq2); - raw_spin_lock(&rq1->lock); - __acquire(rq2->lock); /* Fake it out ;) */ -} - -/* - * double_rq_unlock - safely unlock two runqueues - * - * Note this does not restore interrupts like task_rq_unlock, - * you need to do so manually after calling. - */ -static void double_rq_unlock(struct rq *rq1, struct rq *rq2) - __releases(rq1->lock) - __releases(rq2->lock) -{ - BUG_ON(rq1 != rq2); - raw_spin_unlock(&rq1->lock); - __release(rq2->lock); -} - -#endif - -static void calc_load_account_idle(struct rq *this_rq); -static void update_sysctl(void); -static int get_update_sysctl_factor(void); -static void update_cpu_load(struct rq *this_rq); - -static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu) -{ - set_task_rq(p, cpu); -#ifdef CONFIG_SMP - /* - * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be - * successfully executed on another CPU. We must ensure that updates of - * per-task data have been completed by this moment. - */ - smp_wmb(); - task_thread_info(p)->cpu = cpu; -#endif -} - -static const struct sched_class rt_sched_class; - -#define sched_class_highest (&stop_sched_class) -#define for_each_class(class) \ - for (class = sched_class_highest; class; class = class->next) - -#include "sched_stats.h" - -static void inc_nr_running(struct rq *rq) -{ - rq->nr_running++; -} - -static void dec_nr_running(struct rq *rq) -{ - rq->nr_running--; -} +void update_cpu_load(struct rq *this_rq); static void set_load_weight(struct task_struct *p) { @@ -1953,10 +724,7 @@ static void dequeue_task(struct rq *rq, struct task_struct *p, int flags) p->sched_class->dequeue_task(rq, p, flags); } -/* - * activate_task - move a task to the runqueue. - */ -static void activate_task(struct rq *rq, struct task_struct *p, int flags) +void activate_task(struct rq *rq, struct task_struct *p, int flags) { if (task_contributes_to_load(p)) rq->nr_uninterruptible--; @@ -1964,10 +732,7 @@ static void activate_task(struct rq *rq, struct task_struct *p, int flags) enqueue_task(rq, p, flags); } -/* - * deactivate_task - remove a task from the runqueue. - */ -static void deactivate_task(struct rq *rq, struct task_struct *p, int flags) +void deactivate_task(struct rq *rq, struct task_struct *p, int flags) { if (task_contributes_to_load(p)) rq->nr_uninterruptible++; @@ -2158,14 +923,14 @@ static void update_rq_clock_task(struct rq *rq, s64 delta) #ifdef CONFIG_IRQ_TIME_ACCOUNTING static int irqtime_account_hi_update(void) { - struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat; + u64 *cpustat = kcpustat_this_cpu->cpustat; unsigned long flags; u64 latest_ns; int ret = 0; local_irq_save(flags); latest_ns = this_cpu_read(cpu_hardirq_time); - if (cputime64_gt(nsecs_to_cputime64(latest_ns), cpustat->irq)) + if (nsecs_to_cputime64(latest_ns) > cpustat[CPUTIME_IRQ]) ret = 1; local_irq_restore(flags); return ret; @@ -2173,14 +938,14 @@ static int irqtime_account_hi_update(void) static int irqtime_account_si_update(void) { - struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat; + u64 *cpustat = kcpustat_this_cpu->cpustat; unsigned long flags; u64 latest_ns; int ret = 0; local_irq_save(flags); latest_ns = this_cpu_read(cpu_softirq_time); - if (cputime64_gt(nsecs_to_cputime64(latest_ns), cpustat->softirq)) + if (nsecs_to_cputime64(latest_ns) > cpustat[CPUTIME_SOFTIRQ]) ret = 1; local_irq_restore(flags); return ret; @@ -2192,15 +957,6 @@ static int irqtime_account_si_update(void) #endif -#include "sched_idletask.c" -#include "sched_fair.c" -#include "sched_rt.c" -#include "sched_autogroup.c" -#include "sched_stoptask.c" -#ifdef CONFIG_SCHED_DEBUG -# include "sched_debug.c" -#endif - void sched_set_stop_task(int cpu, struct task_struct *stop) { struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 }; @@ -2298,7 +1054,7 @@ static inline void check_class_changed(struct rq *rq, struct task_struct *p, p->sched_class->prio_changed(rq, p, oldprio); } -static void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags) +void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags) { const struct sched_class *class; @@ -2324,38 +1080,6 @@ static void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags) } #ifdef CONFIG_SMP -/* - * Is this task likely cache-hot: - */ -static int -task_hot(struct task_struct *p, u64 now, struct sched_domain *sd) -{ - s64 delta; - - if (p->sched_class != &fair_sched_class) - return 0; - - if (unlikely(p->policy == SCHED_IDLE)) - return 0; - - /* - * Buddy candidates are cache hot: - */ - if (sched_feat(CACHE_HOT_BUDDY) && this_rq()->nr_running && - (&p->se == cfs_rq_of(&p->se)->next || - &p->se == cfs_rq_of(&p->se)->last)) - return 1; - - if (sysctl_sched_migration_cost == -1) - return 1; - if (sysctl_sched_migration_cost == 0) - return 0; - - delta = now - p->se.exec_start; - - return delta < (s64)sysctl_sched_migration_cost; -} - void set_task_cpu(struct task_struct *p, unsigned int new_cpu) { #ifdef CONFIG_SCHED_DEBUG @@ -2782,6 +1506,11 @@ static int ttwu_activate_remote(struct task_struct *p, int wake_flags) } #endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */ + +static inline int ttwu_share_cache(int this_cpu, int that_cpu) +{ + return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu); +} #endif /* CONFIG_SMP */ static void ttwu_queue(struct task_struct *p, int cpu) @@ -2789,7 +1518,7 @@ static void ttwu_queue(struct task_struct *p, int cpu) struct rq *rq = cpu_rq(cpu); #if defined(CONFIG_SMP) - if (sched_feat(TTWU_QUEUE) && cpu != smp_processor_id()) { + if (sched_feat(TTWU_QUEUE) && !ttwu_share_cache(smp_processor_id(), cpu)) { sched_clock_cpu(cpu); /* sync clocks x-cpu */ ttwu_queue_remote(p, cpu); return; @@ -3438,7 +2167,7 @@ calc_load(unsigned long load, unsigned long exp, unsigned long active) */ static atomic_long_t calc_load_tasks_idle; -static void calc_load_account_idle(struct rq *this_rq) +void calc_load_account_idle(struct rq *this_rq) { long delta; @@ -3582,7 +2311,7 @@ static void calc_global_nohz(unsigned long ticks) */ } #else -static void calc_load_account_idle(struct rq *this_rq) +void calc_load_account_idle(struct rq *this_rq) { } @@ -3725,7 +2454,7 @@ decay_load_missed(unsigned long load, unsigned long missed_updates, int idx) * scheduler tick (TICK_NSEC). With tickless idle this will not be called * every tick. We fix it up based on jiffies. */ -static void update_cpu_load(struct rq *this_rq) +void update_cpu_load(struct rq *this_rq) { unsigned long this_load = this_rq->load.weight; unsigned long curr_jiffies = jiffies; @@ -3803,8 +2532,10 @@ unlock: #endif DEFINE_PER_CPU(struct kernel_stat, kstat); +DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat); EXPORT_PER_CPU_SYMBOL(kstat); +EXPORT_PER_CPU_SYMBOL(kernel_cpustat); /* * Return any ns on the sched_clock that have not yet been accounted in @@ -3857,6 +2588,42 @@ unsigned long long task_sched_runtime(struct task_struct *p) return ns; } +#ifdef CONFIG_CGROUP_CPUACCT +struct cgroup_subsys cpuacct_subsys; +struct cpuacct root_cpuacct; +#endif + +static inline void task_group_account_field(struct task_struct *p, int index, + u64 tmp) +{ +#ifdef CONFIG_CGROUP_CPUACCT + struct kernel_cpustat *kcpustat; + struct cpuacct *ca; +#endif + /* + * Since all updates are sure to touch the root cgroup, we + * get ourselves ahead and touch it first. If the root cgroup + * is the only cgroup, then nothing else should be necessary. + * + */ + __get_cpu_var(kernel_cpustat).cpustat[index] += tmp; + +#ifdef CONFIG_CGROUP_CPUACCT + if (unlikely(!cpuacct_subsys.active)) + return; + + rcu_read_lock(); + ca = task_ca(p); + while (ca && (ca != &root_cpuacct)) { + kcpustat = this_cpu_ptr(ca->cpustat); + kcpustat->cpustat[index] += tmp; + ca = parent_ca(ca); + } + rcu_read_unlock(); +#endif +} + + /* * Account user cpu time to a process. * @p: the process that the cpu time gets accounted to @@ -3866,22 +2633,18 @@ unsigned long long task_sched_runtime(struct task_struct *p) void account_user_time(struct task_struct *p, cputime_t cputime, cputime_t cputime_scaled) { - struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat; - cputime64_t tmp; + int index; /* Add user time to process. */ - p->utime = cputime_add(p->utime, cputime); - p->utimescaled = cputime_add(p->utimescaled, cputime_scaled); + p->utime += cputime; + p->utimescaled += cputime_scaled; account_group_user_time(p, cputime); + index = (TASK_NICE(p) > 0) ? CPUTIME_NICE : CPUTIME_USER; + /* Add user time to cpustat. */ - tmp = cputime_to_cputime64(cputime); - if (TASK_NICE(p) > 0) - cpustat->nice = cputime64_add(cpustat->nice, tmp); - else - cpustat->user = cputime64_add(cpustat->user, tmp); + task_group_account_field(p, index, (__force u64) cputime); - cpuacct_update_stats(p, CPUACCT_STAT_USER, cputime); /* Account for user time used */ acct_update_integrals(p); } @@ -3895,24 +2658,21 @@ void account_user_time(struct task_struct *p, cputime_t cputime, static void account_guest_time(struct task_struct *p, cputime_t cputime, cputime_t cputime_scaled) { - cputime64_t tmp; - struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat; - - tmp = cputime_to_cputime64(cputime); + u64 *cpustat = kcpustat_this_cpu->cpustat; /* Add guest time to process. */ - p->utime = cputime_add(p->utime, cputime); - p->utimescaled = cputime_add(p->utimescaled, cputime_scaled); + p->utime += cputime; + p->utimescaled += cputime_scaled; account_group_user_time(p, cputime); - p->gtime = cputime_add(p->gtime, cputime); + p->gtime += cputime; /* Add guest time to cpustat. */ if (TASK_NICE(p) > 0) { - cpustat->nice = cputime64_add(cpustat->nice, tmp); - cpustat->guest_nice = cputime64_add(cpustat->guest_nice, tmp); + cpustat[CPUTIME_NICE] += (__force u64) cputime; + cpustat[CPUTIME_GUEST_NICE] += (__force u64) cputime; } else { - cpustat->user = cputime64_add(cpustat->user, tmp); - cpustat->guest = cputime64_add(cpustat->guest, tmp); + cpustat[CPUTIME_USER] += (__force u64) cputime; + cpustat[CPUTIME_GUEST] += (__force u64) cputime; } } @@ -3925,18 +2685,15 @@ static void account_guest_time(struct task_struct *p, cputime_t cputime, */ static inline void __account_system_time(struct task_struct *p, cputime_t cputime, - cputime_t cputime_scaled, cputime64_t *target_cputime64) + cputime_t cputime_scaled, int index) { - cputime64_t tmp = cputime_to_cputime64(cputime); - /* Add system time to process. */ - p->stime = cputime_add(p->stime, cputime); - p->stimescaled = cputime_add(p->stimescaled, cputime_scaled); + p->stime += cputime; + p->stimescaled += cputime_scaled; account_group_system_time(p, cputime); /* Add system time to cpustat. */ - *target_cputime64 = cputime64_add(*target_cputime64, tmp); - cpuacct_update_stats(p, CPUACCT_STAT_SYSTEM, cputime); + task_group_account_field(p, index, (__force u64) cputime); /* Account for system time used */ acct_update_integrals(p); @@ -3952,8 +2709,7 @@ void __account_system_time(struct task_struct *p, cputime_t cputime, void account_system_time(struct task_struct *p, int hardirq_offset, cputime_t cputime, cputime_t cputime_scaled) { - struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat; - cputime64_t *target_cputime64; + int index; if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) { account_guest_time(p, cputime, cputime_scaled); @@ -3961,13 +2717,13 @@ void account_system_time(struct task_struct *p, int hardirq_offset, } if (hardirq_count() - hardirq_offset) - target_cputime64 = &cpustat->irq; + index = CPUTIME_IRQ; else if (in_serving_softirq()) - target_cputime64 = &cpustat->softirq; + index = CPUTIME_SOFTIRQ; else - target_cputime64 = &cpustat->system; + index = CPUTIME_SYSTEM; - __account_system_time(p, cputime, cputime_scaled, target_cputime64); + __account_system_time(p, cputime, cputime_scaled, index); } /* @@ -3976,10 +2732,9 @@ void account_system_time(struct task_struct *p, int hardirq_offset, */ void account_steal_time(cputime_t cputime) { - struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat; - cputime64_t cputime64 = cputime_to_cputime64(cputime); + u64 *cpustat = kcpustat_this_cpu->cpustat; - cpustat->steal = cputime64_add(cpustat->steal, cputime64); + cpustat[CPUTIME_STEAL] += (__force u64) cputime; } /* @@ -3988,14 +2743,13 @@ void account_steal_time(cputime_t cputime) */ void account_idle_time(cputime_t cputime) { - struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat; - cputime64_t cputime64 = cputime_to_cputime64(cputime); + u64 *cpustat = kcpustat_this_cpu->cpustat; struct rq *rq = this_rq(); if (atomic_read(&rq->nr_iowait) > 0) - cpustat->iowait = cputime64_add(cpustat->iowait, cputime64); + cpustat[CPUTIME_IOWAIT] += (__force u64) cputime; else - cpustat->idle = cputime64_add(cpustat->idle, cputime64); + cpustat[CPUTIME_IDLE] += (__force u64) cputime; } static __always_inline bool steal_account_process_tick(void) @@ -4045,16 +2799,15 @@ static void irqtime_account_process_tick(struct task_struct *p, int user_tick, struct rq *rq) { cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy); - cputime64_t tmp = cputime_to_cputime64(cputime_one_jiffy); - struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat; + u64 *cpustat = kcpustat_this_cpu->cpustat; if (steal_account_process_tick()) return; if (irqtime_account_hi_update()) { - cpustat->irq = cputime64_add(cpustat->irq, tmp); + cpustat[CPUTIME_IRQ] += (__force u64) cputime_one_jiffy; } else if (irqtime_account_si_update()) { - cpustat->softirq = cputime64_add(cpustat->softirq, tmp); + cpustat[CPUTIME_SOFTIRQ] += (__force u64) cputime_one_jiffy; } else if (this_cpu_ksoftirqd() == p) { /* * ksoftirqd time do not get accounted in cpu_softirq_time. @@ -4062,7 +2815,7 @@ static void irqtime_account_process_tick(struct task_struct *p, int user_tick, * Also, p->stime needs to be updated for ksoftirqd. */ __account_system_time(p, cputime_one_jiffy, one_jiffy_scaled, - &cpustat->softirq); + CPUTIME_SOFTIRQ); } else if (user_tick) { account_user_time(p, cputime_one_jiffy, one_jiffy_scaled); } else if (p == rq->idle) { @@ -4071,7 +2824,7 @@ static void irqtime_account_process_tick(struct task_struct *p, int user_tick, account_guest_time(p, cputime_one_jiffy, one_jiffy_scaled); } else { __account_system_time(p, cputime_one_jiffy, one_jiffy_scaled, - &cpustat->system); + CPUTIME_SYSTEM); } } @@ -4170,7 +2923,7 @@ void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st) void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st) { - cputime_t rtime, utime = p->utime, total = cputime_add(utime, p->stime); + cputime_t rtime, utime = p->utime, total = utime + p->stime; /* * Use CFS's precise accounting: @@ -4178,11 +2931,11 @@ void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st) rtime = nsecs_to_cputime(p->se.sum_exec_runtime); if (total) { - u64 temp = rtime; + u64 temp = (__force u64) rtime; - temp *= utime; - do_div(temp, total); - utime = (cputime_t)temp; + temp *= (__force u64) utime; + do_div(temp, (__force u32) total); + utime = (__force cputime_t) temp; } else utime = rtime; @@ -4190,7 +2943,7 @@ void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st) * Compare with previous values, to keep monotonicity: */ p->prev_utime = max(p->prev_utime, utime); - p->prev_stime = max(p->prev_stime, cputime_sub(rtime, p->prev_utime)); + p->prev_stime = max(p->prev_stime, rtime - p->prev_utime); *ut = p->prev_utime; *st = p->prev_stime; @@ -4207,21 +2960,20 @@ void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st) thread_group_cputime(p, &cputime); - total = cputime_add(cputime.utime, cputime.stime); + total = cputime.utime + cputime.stime; rtime = nsecs_to_cputime(cputime.sum_exec_runtime); if (total) { - u64 temp = rtime; + u64 temp = (__force u64) rtime; - temp *= cputime.utime; - do_div(temp, total); - utime = (cputime_t)temp; + temp *= (__force u64) cputime.utime; + do_div(temp, (__force u32) total); + utime = (__force cputime_t) temp; } else utime = rtime; sig->prev_utime = max(sig->prev_utime, utime); - sig->prev_stime = max(sig->prev_stime, - cputime_sub(rtime, sig->prev_utime)); + sig->prev_stime = max(sig->prev_stime, rtime - sig->prev_utime); *ut = sig->prev_utime; *st = sig->prev_stime; @@ -4320,6 +3072,9 @@ static noinline void __schedule_bug(struct task_struct *prev) { struct pt_regs *regs = get_irq_regs(); + if (oops_in_progress) + return; + printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n", prev->comm, prev->pid, preempt_count()); @@ -4810,6 +3565,9 @@ EXPORT_SYMBOL(wait_for_completion); * This waits for either a completion of a specific task to be signaled or for a * specified timeout to expire. The timeout is in jiffies. It is not * interruptible. + * + * The return value is 0 if timed out, and positive (at least 1, or number of + * jiffies left till timeout) if completed. */ unsigned long __sched wait_for_completion_timeout(struct completion *x, unsigned long timeout) @@ -4824,6 +3582,8 @@ EXPORT_SYMBOL(wait_for_completion_timeout); * * This waits for completion of a specific task to be signaled. It is * interruptible. + * + * The return value is -ERESTARTSYS if interrupted, 0 if completed. */ int __sched wait_for_completion_interruptible(struct completion *x) { @@ -4841,6 +3601,9 @@ EXPORT_SYMBOL(wait_for_completion_interruptible); * * This waits for either a completion of a specific task to be signaled or for a * specified timeout to expire. It is interruptible. The timeout is in jiffies. + * + * The return value is -ERESTARTSYS if interrupted, 0 if timed out, + * positive (at least 1, or number of jiffies left till timeout) if completed. */ long __sched wait_for_completion_interruptible_timeout(struct completion *x, @@ -4856,6 +3619,8 @@ EXPORT_SYMBOL(wait_for_completion_interruptible_timeout); * * This waits to be signaled for completion of a specific task. It can be * interrupted by a kill signal. + * + * The return value is -ERESTARTSYS if interrupted, 0 if completed. */ int __sched wait_for_completion_killable(struct completion *x) { @@ -4874,6 +3639,9 @@ EXPORT_SYMBOL(wait_for_completion_killable); * This waits for either a completion of a specific task to be * signaled or for a specified timeout to expire. It can be * interrupted by a kill signal. The timeout is in jiffies. + * + * The return value is -ERESTARTSYS if interrupted, 0 if timed out, + * positive (at least 1, or number of jiffies left till timeout) if completed. */ long __sched wait_for_completion_killable_timeout(struct completion *x, @@ -5360,7 +4128,7 @@ recheck: on_rq = p->on_rq; running = task_current(rq, p); if (on_rq) - deactivate_task(rq, p, 0); + dequeue_task(rq, p, 0); if (running) p->sched_class->put_prev_task(rq, p); @@ -5373,7 +4141,7 @@ recheck: if (running) p->sched_class->set_curr_task(rq); if (on_rq) - activate_task(rq, p, 0); + enqueue_task(rq, p, 0); check_class_changed(rq, p, prev_class, oldprio); task_rq_unlock(rq, p, &flags); @@ -5556,7 +4324,7 @@ long sched_setaffinity(pid_t pid, const struct cpumask *in_mask) goto out_free_cpus_allowed; } retval = -EPERM; - if (!check_same_owner(p) && !task_ns_capable(p, CAP_SYS_NICE)) + if (!check_same_owner(p) && !ns_capable(task_user_ns(p), CAP_SYS_NICE)) goto out_unlock; retval = security_task_setscheduler(p); @@ -5838,6 +4606,13 @@ again: */ if (preempt && rq != p_rq) resched_task(p_rq->curr); + } else { + /* + * We might have set it in task_yield_fair(), but are + * not going to schedule(), so don't want to skip + * the next update. + */ + rq->skip_clock_update = 0; } out: @@ -6005,7 +4780,7 @@ void sched_show_task(struct task_struct *p) free = stack_not_used(p); #endif printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free, - task_pid_nr(p), task_pid_nr(p->real_parent), + task_pid_nr(p), task_pid_nr(rcu_dereference(p->real_parent)), (unsigned long)task_thread_info(p)->flags); show_stack(p, NULL); @@ -6099,53 +4874,9 @@ void __cpuinit init_idle(struct task_struct *idle, int cpu) */ idle->sched_class = &idle_sched_class; ftrace_graph_init_idle_task(idle, cpu); -} - -/* - * Increase the granularity value when there are more CPUs, - * because with more CPUs the 'effective latency' as visible - * to users decreases. But the relationship is not linear, - * so pick a second-best guess by going with the log2 of the - * number of CPUs. - * - * This idea comes from the SD scheduler of Con Kolivas: - */ -static int get_update_sysctl_factor(void) -{ - unsigned int cpus = min_t(int, num_online_cpus(), 8); - unsigned int factor; - - switch (sysctl_sched_tunable_scaling) { - case SCHED_TUNABLESCALING_NONE: - factor = 1; - break; - case SCHED_TUNABLESCALING_LINEAR: - factor = cpus; - break; - case SCHED_TUNABLESCALING_LOG: - default: - factor = 1 + ilog2(cpus); - break; - } - - return factor; -} - -static void update_sysctl(void) -{ - unsigned int factor = get_update_sysctl_factor(); - -#define SET_SYSCTL(name) \ - (sysctl_##name = (factor) * normalized_sysctl_##name) - SET_SYSCTL(sched_min_granularity); - SET_SYSCTL(sched_latency); - SET_SYSCTL(sched_wakeup_granularity); -#undef SET_SYSCTL -} - -static inline void sched_init_granularity(void) -{ - update_sysctl(); +#if defined(CONFIG_SMP) + sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu); +#endif } #ifdef CONFIG_SMP @@ -6261,9 +4992,9 @@ static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu) * placed properly. */ if (p->on_rq) { - deactivate_task(rq_src, p, 0); + dequeue_task(rq_src, p, 0); set_task_cpu(p, dest_cpu); - activate_task(rq_dest, p, 0); + enqueue_task(rq_dest, p, 0); check_preempt_curr(rq_dest, p, 0); } done: @@ -6334,30 +5065,6 @@ static void calc_global_load_remove(struct rq *rq) rq->calc_load_active = 0; } -#ifdef CONFIG_CFS_BANDWIDTH -static void unthrottle_offline_cfs_rqs(struct rq *rq) -{ - struct cfs_rq *cfs_rq; - - for_each_leaf_cfs_rq(rq, cfs_rq) { - struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg); - - if (!cfs_rq->runtime_enabled) - continue; - - /* - * clock_task is not advancing so we just need to make sure - * there's some valid quota amount - */ - cfs_rq->runtime_remaining = cfs_b->quota; - if (cfs_rq_throttled(cfs_rq)) - unthrottle_cfs_rq(cfs_rq); - } -} -#else -static void unthrottle_offline_cfs_rqs(struct rq *rq) {} -#endif - /* * Migrate all tasks from the rq, sleeping tasks will be migrated by * try_to_wake_up()->select_task_rq(). @@ -6463,7 +5170,7 @@ static void sd_free_ctl_entry(struct ctl_table **tablep) static void set_table_entry(struct ctl_table *entry, const char *procname, void *data, int maxlen, - mode_t mode, proc_handler *proc_handler) + umode_t mode, proc_handler *proc_handler) { entry->procname = procname; entry->data = data; @@ -6963,6 +5670,12 @@ out: return -ENOMEM; } +/* + * By default the system creates a single root-domain with all cpus as + * members (mimicking the global state we have today). + */ +struct root_domain def_root_domain; + static void init_defrootdomain(void) { init_rootdomain(&def_root_domain); @@ -7034,6 +5747,31 @@ static void destroy_sched_domains(struct sched_domain *sd, int cpu) } /* + * Keep a special pointer to the highest sched_domain that has + * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this + * allows us to avoid some pointer chasing select_idle_sibling(). + * + * Also keep a unique ID per domain (we use the first cpu number in + * the cpumask of the domain), this allows us to quickly tell if + * two cpus are in the same cache domain, see ttwu_share_cache(). + */ +DEFINE_PER_CPU(struct sched_domain *, sd_llc); +DEFINE_PER_CPU(int, sd_llc_id); + +static void update_top_cache_domain(int cpu) +{ + struct sched_domain *sd; + int id = cpu; + + sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES); + if (sd) + id = cpumask_first(sched_domain_span(sd)); + + rcu_assign_pointer(per_cpu(sd_llc, cpu), sd); + per_cpu(sd_llc_id, cpu) = id; +} + +/* * Attach the domain 'sd' to 'cpu' as its base domain. Callers must * hold the hotplug lock. */ @@ -7072,6 +5810,8 @@ cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu) tmp = rq->sd; rcu_assign_pointer(rq->sd, sd); destroy_sched_domains(tmp, cpu); + + update_top_cache_domain(cpu); } /* cpus with isolated domains */ @@ -7231,7 +5971,7 @@ build_overlap_sched_groups(struct sched_domain *sd, int cpu) continue; sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(), - GFP_KERNEL, cpu_to_node(i)); + GFP_KERNEL, cpu_to_node(cpu)); if (!sg) goto fail; @@ -7369,6 +6109,12 @@ static void init_sched_groups_power(int cpu, struct sched_domain *sd) return; update_group_power(sd, cpu); + atomic_set(&sg->sgp->nr_busy_cpus, sg->group_weight); +} + +int __weak arch_sd_sibling_asym_packing(void) +{ + return 0*SD_ASYM_PACKING; } /* @@ -7923,54 +6669,52 @@ static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt) } #ifdef CONFIG_SCHED_MC -static ssize_t sched_mc_power_savings_show(struct sysdev_class *class, - struct sysdev_class_attribute *attr, - char *page) +static ssize_t sched_mc_power_savings_show(struct device *dev, + struct device_attribute *attr, + char *buf) { - return sprintf(page, "%u\n", sched_mc_power_savings); + return sprintf(buf, "%u\n", sched_mc_power_savings); } -static ssize_t sched_mc_power_savings_store(struct sysdev_class *class, - struct sysdev_class_attribute *attr, +static ssize_t sched_mc_power_savings_store(struct device *dev, + struct device_attribute *attr, const char *buf, size_t count) { return sched_power_savings_store(buf, count, 0); } -static SYSDEV_CLASS_ATTR(sched_mc_power_savings, 0644, - sched_mc_power_savings_show, - sched_mc_power_savings_store); +static DEVICE_ATTR(sched_mc_power_savings, 0644, + sched_mc_power_savings_show, + sched_mc_power_savings_store); #endif #ifdef CONFIG_SCHED_SMT -static ssize_t sched_smt_power_savings_show(struct sysdev_class *dev, - struct sysdev_class_attribute *attr, - char *page) +static ssize_t sched_smt_power_savings_show(struct device *dev, + struct device_attribute *attr, + char *buf) { - return sprintf(page, "%u\n", sched_smt_power_savings); + return sprintf(buf, "%u\n", sched_smt_power_savings); } -static ssize_t sched_smt_power_savings_store(struct sysdev_class *dev, - struct sysdev_class_attribute *attr, +static ssize_t sched_smt_power_savings_store(struct device *dev, + struct device_attribute *attr, const char *buf, size_t count) { return sched_power_savings_store(buf, count, 1); } -static SYSDEV_CLASS_ATTR(sched_smt_power_savings, 0644, +static DEVICE_ATTR(sched_smt_power_savings, 0644, sched_smt_power_savings_show, sched_smt_power_savings_store); #endif -int __init sched_create_sysfs_power_savings_entries(struct sysdev_class *cls) +int __init sched_create_sysfs_power_savings_entries(struct device *dev) { int err = 0; #ifdef CONFIG_SCHED_SMT if (smt_capable()) - err = sysfs_create_file(&cls->kset.kobj, - &attr_sched_smt_power_savings.attr); + err = device_create_file(dev, &dev_attr_sched_smt_power_savings); #endif #ifdef CONFIG_SCHED_MC if (!err && mc_capable()) - err = sysfs_create_file(&cls->kset.kobj, - &attr_sched_mc_power_savings.attr); + err = device_create_file(dev, &dev_attr_sched_mc_power_savings); #endif return err; } @@ -7984,7 +6728,7 @@ int __init sched_create_sysfs_power_savings_entries(struct sysdev_class *cls) static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action, void *hcpu) { - switch (action & ~CPU_TASKS_FROZEN) { + switch (action) { case CPU_ONLINE: case CPU_DOWN_FAILED: cpuset_update_active_cpus(); @@ -7997,33 +6741,10 @@ static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action, static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action, void *hcpu) { - switch (action & ~CPU_TASKS_FROZEN) { - case CPU_DOWN_PREPARE: - cpuset_update_active_cpus(); - return NOTIFY_OK; - default: - return NOTIFY_DONE; - } -} - -static int update_runtime(struct notifier_block *nfb, - unsigned long action, void *hcpu) -{ - int cpu = (int)(long)hcpu; - switch (action) { case CPU_DOWN_PREPARE: - case CPU_DOWN_PREPARE_FROZEN: - disable_runtime(cpu_rq(cpu)); - return NOTIFY_OK; - - case CPU_DOWN_FAILED: - case CPU_DOWN_FAILED_FROZEN: - case CPU_ONLINE: - case CPU_ONLINE_FROZEN: - enable_runtime(cpu_rq(cpu)); + cpuset_update_active_cpus(); return NOTIFY_OK; - default: return NOTIFY_DONE; } @@ -8077,104 +6798,11 @@ int in_sched_functions(unsigned long addr) && addr < (unsigned long)__sched_text_end); } -static void init_cfs_rq(struct cfs_rq *cfs_rq) -{ - cfs_rq->tasks_timeline = RB_ROOT; - INIT_LIST_HEAD(&cfs_rq->tasks); - cfs_rq->min_vruntime = (u64)(-(1LL << 20)); -#ifndef CONFIG_64BIT - cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime; -#endif -} - -static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq) -{ - struct rt_prio_array *array; - int i; - - array = &rt_rq->active; - for (i = 0; i < MAX_RT_PRIO; i++) { - INIT_LIST_HEAD(array->queue + i); - __clear_bit(i, array->bitmap); - } - /* delimiter for bitsearch: */ - __set_bit(MAX_RT_PRIO, array->bitmap); - -#if defined CONFIG_SMP - rt_rq->highest_prio.curr = MAX_RT_PRIO; - rt_rq->highest_prio.next = MAX_RT_PRIO; - rt_rq->rt_nr_migratory = 0; - rt_rq->overloaded = 0; - plist_head_init(&rt_rq->pushable_tasks); -#endif - - rt_rq->rt_time = 0; - rt_rq->rt_throttled = 0; - rt_rq->rt_runtime = 0; - raw_spin_lock_init(&rt_rq->rt_runtime_lock); -} - -#ifdef CONFIG_FAIR_GROUP_SCHED -static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq, - struct sched_entity *se, int cpu, - struct sched_entity *parent) -{ - struct rq *rq = cpu_rq(cpu); - - cfs_rq->tg = tg; - cfs_rq->rq = rq; -#ifdef CONFIG_SMP - /* allow initial update_cfs_load() to truncate */ - cfs_rq->load_stamp = 1; -#endif - init_cfs_rq_runtime(cfs_rq); - - tg->cfs_rq[cpu] = cfs_rq; - tg->se[cpu] = se; - - /* se could be NULL for root_task_group */ - if (!se) - return; - - if (!parent) - se->cfs_rq = &rq->cfs; - else - se->cfs_rq = parent->my_q; - - se->my_q = cfs_rq; - update_load_set(&se->load, 0); - se->parent = parent; -} +#ifdef CONFIG_CGROUP_SCHED +struct task_group root_task_group; #endif -#ifdef CONFIG_RT_GROUP_SCHED -static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq, - struct sched_rt_entity *rt_se, int cpu, - struct sched_rt_entity *parent) -{ - struct rq *rq = cpu_rq(cpu); - - rt_rq->highest_prio.curr = MAX_RT_PRIO; - rt_rq->rt_nr_boosted = 0; - rt_rq->rq = rq; - rt_rq->tg = tg; - - tg->rt_rq[cpu] = rt_rq; - tg->rt_se[cpu] = rt_se; - - if (!rt_se) - return; - - if (!parent) - rt_se->rt_rq = &rq->rt; - else - rt_se->rt_rq = parent->my_q; - - rt_se->my_q = rt_rq; - rt_se->parent = parent; - INIT_LIST_HEAD(&rt_se->run_list); -} -#endif +DECLARE_PER_CPU(cpumask_var_t, load_balance_tmpmask); void __init sched_init(void) { @@ -8232,9 +6860,17 @@ void __init sched_init(void) #ifdef CONFIG_CGROUP_SCHED list_add(&root_task_group.list, &task_groups); INIT_LIST_HEAD(&root_task_group.children); + INIT_LIST_HEAD(&root_task_group.siblings); autogroup_init(&init_task); + #endif /* CONFIG_CGROUP_SCHED */ +#ifdef CONFIG_CGROUP_CPUACCT + root_cpuacct.cpustat = &kernel_cpustat; + root_cpuacct.cpuusage = alloc_percpu(u64); + /* Too early, not expected to fail */ + BUG_ON(!root_cpuacct.cpuusage); +#endif for_each_possible_cpu(i) { struct rq *rq; @@ -8246,7 +6882,7 @@ void __init sched_init(void) init_cfs_rq(&rq->cfs); init_rt_rq(&rq->rt, rq); #ifdef CONFIG_FAIR_GROUP_SCHED - root_task_group.shares = root_task_group_load; + root_task_group.shares = ROOT_TASK_GROUP_LOAD; INIT_LIST_HEAD(&rq->leaf_cfs_rq_list); /* * How much cpu bandwidth does root_task_group get? @@ -8296,7 +6932,7 @@ void __init sched_init(void) rq->avg_idle = 2*sysctl_sched_migration_cost; rq_attach_root(rq, &def_root_domain); #ifdef CONFIG_NO_HZ - rq->nohz_balance_kick = 0; + rq->nohz_flags = 0; #endif #endif init_rq_hrtick(rq); @@ -8309,10 +6945,6 @@ void __init sched_init(void) INIT_HLIST_HEAD(&init_task.preempt_notifiers); #endif -#ifdef CONFIG_SMP - open_softirq(SCHED_SOFTIRQ, run_rebalance_domains); -#endif - #ifdef CONFIG_RT_MUTEXES plist_head_init(&init_task.pi_waiters); #endif @@ -8340,17 +6972,11 @@ void __init sched_init(void) #ifdef CONFIG_SMP zalloc_cpumask_var(&sched_domains_tmpmask, GFP_NOWAIT); -#ifdef CONFIG_NO_HZ - zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT); - alloc_cpumask_var(&nohz.grp_idle_mask, GFP_NOWAIT); - atomic_set(&nohz.load_balancer, nr_cpu_ids); - atomic_set(&nohz.first_pick_cpu, nr_cpu_ids); - atomic_set(&nohz.second_pick_cpu, nr_cpu_ids); -#endif /* May be allocated at isolcpus cmdline parse time */ if (cpu_isolated_map == NULL) zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT); -#endif /* SMP */ +#endif + init_sched_fair_class(); scheduler_running = 1; } @@ -8400,10 +7026,10 @@ static void normalize_task(struct rq *rq, struct task_struct *p) on_rq = p->on_rq; if (on_rq) - deactivate_task(rq, p, 0); + dequeue_task(rq, p, 0); __setscheduler(rq, p, SCHED_NORMAL, 0); if (on_rq) { - activate_task(rq, p, 0); + enqueue_task(rq, p, 0); resched_task(rq->curr); } @@ -8502,169 +7128,10 @@ void set_curr_task(int cpu, struct task_struct *p) #endif -#ifdef CONFIG_FAIR_GROUP_SCHED -static void free_fair_sched_group(struct task_group *tg) -{ - int i; - - destroy_cfs_bandwidth(tg_cfs_bandwidth(tg)); - - for_each_possible_cpu(i) { - if (tg->cfs_rq) - kfree(tg->cfs_rq[i]); - if (tg->se) - kfree(tg->se[i]); - } - - kfree(tg->cfs_rq); - kfree(tg->se); -} - -static -int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent) -{ - struct cfs_rq *cfs_rq; - struct sched_entity *se; - int i; - - tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL); - if (!tg->cfs_rq) - goto err; - tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL); - if (!tg->se) - goto err; - - tg->shares = NICE_0_LOAD; - - init_cfs_bandwidth(tg_cfs_bandwidth(tg)); - - for_each_possible_cpu(i) { - cfs_rq = kzalloc_node(sizeof(struct cfs_rq), - GFP_KERNEL, cpu_to_node(i)); - if (!cfs_rq) - goto err; - - se = kzalloc_node(sizeof(struct sched_entity), - GFP_KERNEL, cpu_to_node(i)); - if (!se) - goto err_free_rq; - - init_cfs_rq(cfs_rq); - init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]); - } - - return 1; - -err_free_rq: - kfree(cfs_rq); -err: - return 0; -} - -static inline void unregister_fair_sched_group(struct task_group *tg, int cpu) -{ - struct rq *rq = cpu_rq(cpu); - unsigned long flags; - - /* - * Only empty task groups can be destroyed; so we can speculatively - * check on_list without danger of it being re-added. - */ - if (!tg->cfs_rq[cpu]->on_list) - return; - - raw_spin_lock_irqsave(&rq->lock, flags); - list_del_leaf_cfs_rq(tg->cfs_rq[cpu]); - raw_spin_unlock_irqrestore(&rq->lock, flags); -} -#else /* !CONFIG_FAIR_GROUP_SCHED */ -static inline void free_fair_sched_group(struct task_group *tg) -{ -} - -static inline -int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent) -{ - return 1; -} - -static inline void unregister_fair_sched_group(struct task_group *tg, int cpu) -{ -} -#endif /* CONFIG_FAIR_GROUP_SCHED */ - -#ifdef CONFIG_RT_GROUP_SCHED -static void free_rt_sched_group(struct task_group *tg) -{ - int i; - - if (tg->rt_se) - destroy_rt_bandwidth(&tg->rt_bandwidth); - - for_each_possible_cpu(i) { - if (tg->rt_rq) - kfree(tg->rt_rq[i]); - if (tg->rt_se) - kfree(tg->rt_se[i]); - } - - kfree(tg->rt_rq); - kfree(tg->rt_se); -} - -static -int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent) -{ - struct rt_rq *rt_rq; - struct sched_rt_entity *rt_se; - int i; - - tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL); - if (!tg->rt_rq) - goto err; - tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL); - if (!tg->rt_se) - goto err; - - init_rt_bandwidth(&tg->rt_bandwidth, - ktime_to_ns(def_rt_bandwidth.rt_period), 0); - - for_each_possible_cpu(i) { - rt_rq = kzalloc_node(sizeof(struct rt_rq), - GFP_KERNEL, cpu_to_node(i)); - if (!rt_rq) - goto err; - - rt_se = kzalloc_node(sizeof(struct sched_rt_entity), - GFP_KERNEL, cpu_to_node(i)); - if (!rt_se) - goto err_free_rq; - - init_rt_rq(rt_rq, cpu_rq(i)); - rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime; - init_tg_rt_entry(tg, rt_rq, rt_se, i, parent->rt_se[i]); - } - - return 1; - -err_free_rq: - kfree(rt_rq); -err: - return 0; -} -#else /* !CONFIG_RT_GROUP_SCHED */ -static inline void free_rt_sched_group(struct task_group *tg) -{ -} - -static inline -int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent) -{ - return 1; -} -#endif /* CONFIG_RT_GROUP_SCHED */ - #ifdef CONFIG_CGROUP_SCHED +/* task_group_lock serializes the addition/removal of task groups */ +static DEFINE_SPINLOCK(task_group_lock); + static void free_sched_group(struct task_group *tg) { free_fair_sched_group(tg); @@ -8769,50 +7236,6 @@ void sched_move_task(struct task_struct *tsk) } #endif /* CONFIG_CGROUP_SCHED */ -#ifdef CONFIG_FAIR_GROUP_SCHED -static DEFINE_MUTEX(shares_mutex); - -int sched_group_set_shares(struct task_group *tg, unsigned long shares) -{ - int i; - unsigned long flags; - - /* - * We can't change the weight of the root cgroup. - */ - if (!tg->se[0]) - return -EINVAL; - - shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES)); - - mutex_lock(&shares_mutex); - if (tg->shares == shares) - goto done; - - tg->shares = shares; - for_each_possible_cpu(i) { - struct rq *rq = cpu_rq(i); - struct sched_entity *se; - - se = tg->se[i]; - /* Propagate contribution to hierarchy */ - raw_spin_lock_irqsave(&rq->lock, flags); - for_each_sched_entity(se) - update_cfs_shares(group_cfs_rq(se)); - raw_spin_unlock_irqrestore(&rq->lock, flags); - } - -done: - mutex_unlock(&shares_mutex); - return 0; -} - -unsigned long sched_group_shares(struct task_group *tg) -{ - return tg->shares; -} -#endif - #if defined(CONFIG_RT_GROUP_SCHED) || defined(CONFIG_CFS_BANDWIDTH) static unsigned long to_ratio(u64 period, u64 runtime) { @@ -8835,7 +7258,7 @@ static inline int tg_has_rt_tasks(struct task_group *tg) struct task_struct *g, *p; do_each_thread(g, p) { - if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg) + if (rt_task(p) && task_rq(p)->rt.tg == tg) return 1; } while_each_thread(g, p); @@ -9127,24 +7550,31 @@ cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp) sched_destroy_group(tg); } -static int -cpu_cgroup_can_attach_task(struct cgroup *cgrp, struct task_struct *tsk) +static int cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp, + struct cgroup_taskset *tset) { + struct task_struct *task; + + cgroup_taskset_for_each(task, cgrp, tset) { #ifdef CONFIG_RT_GROUP_SCHED - if (!sched_rt_can_attach(cgroup_tg(cgrp), tsk)) - return -EINVAL; + if (!sched_rt_can_attach(cgroup_tg(cgrp), task)) + return -EINVAL; #else - /* We don't support RT-tasks being in separate groups */ - if (tsk->sched_class != &fair_sched_class) - return -EINVAL; + /* We don't support RT-tasks being in separate groups */ + if (task->sched_class != &fair_sched_class) + return -EINVAL; #endif + } return 0; } -static void -cpu_cgroup_attach_task(struct cgroup *cgrp, struct task_struct *tsk) +static void cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp, + struct cgroup_taskset *tset) { - sched_move_task(tsk); + struct task_struct *task; + + cgroup_taskset_for_each(task, cgrp, tset) + sched_move_task(task); } static void @@ -9186,8 +7616,8 @@ static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime); static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota) { - int i, ret = 0, runtime_enabled; - struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(tg); + int i, ret = 0, runtime_enabled, runtime_was_enabled; + struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth; if (tg == &root_task_group) return -EINVAL; @@ -9214,6 +7644,8 @@ static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota) goto out_unlock; runtime_enabled = quota != RUNTIME_INF; + runtime_was_enabled = cfs_b->quota != RUNTIME_INF; + account_cfs_bandwidth_used(runtime_enabled, runtime_was_enabled); raw_spin_lock_irq(&cfs_b->lock); cfs_b->period = ns_to_ktime(period); cfs_b->quota = quota; @@ -9229,13 +7661,13 @@ static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota) for_each_possible_cpu(i) { struct cfs_rq *cfs_rq = tg->cfs_rq[i]; - struct rq *rq = rq_of(cfs_rq); + struct rq *rq = cfs_rq->rq; raw_spin_lock_irq(&rq->lock); cfs_rq->runtime_enabled = runtime_enabled; cfs_rq->runtime_remaining = 0; - if (cfs_rq_throttled(cfs_rq)) + if (cfs_rq->throttled) unthrottle_cfs_rq(cfs_rq); raw_spin_unlock_irq(&rq->lock); } @@ -9249,7 +7681,7 @@ int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us) { u64 quota, period; - period = ktime_to_ns(tg_cfs_bandwidth(tg)->period); + period = ktime_to_ns(tg->cfs_bandwidth.period); if (cfs_quota_us < 0) quota = RUNTIME_INF; else @@ -9262,10 +7694,10 @@ long tg_get_cfs_quota(struct task_group *tg) { u64 quota_us; - if (tg_cfs_bandwidth(tg)->quota == RUNTIME_INF) + if (tg->cfs_bandwidth.quota == RUNTIME_INF) return -1; - quota_us = tg_cfs_bandwidth(tg)->quota; + quota_us = tg->cfs_bandwidth.quota; do_div(quota_us, NSEC_PER_USEC); return quota_us; @@ -9276,10 +7708,7 @@ int tg_set_cfs_period(struct task_group *tg, long cfs_period_us) u64 quota, period; period = (u64)cfs_period_us * NSEC_PER_USEC; - quota = tg_cfs_bandwidth(tg)->quota; - - if (period <= 0) - return -EINVAL; + quota = tg->cfs_bandwidth.quota; return tg_set_cfs_bandwidth(tg, period, quota); } @@ -9288,7 +7717,7 @@ long tg_get_cfs_period(struct task_group *tg) { u64 cfs_period_us; - cfs_period_us = ktime_to_ns(tg_cfs_bandwidth(tg)->period); + cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period); do_div(cfs_period_us, NSEC_PER_USEC); return cfs_period_us; @@ -9348,13 +7777,13 @@ static u64 normalize_cfs_quota(struct task_group *tg, static int tg_cfs_schedulable_down(struct task_group *tg, void *data) { struct cfs_schedulable_data *d = data; - struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(tg); + struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth; s64 quota = 0, parent_quota = -1; if (!tg->parent) { quota = RUNTIME_INF; } else { - struct cfs_bandwidth *parent_b = tg_cfs_bandwidth(tg->parent); + struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth; quota = normalize_cfs_quota(tg, d); parent_quota = parent_b->hierarchal_quota; @@ -9398,7 +7827,7 @@ static int cpu_stats_show(struct cgroup *cgrp, struct cftype *cft, struct cgroup_map_cb *cb) { struct task_group *tg = cgroup_tg(cgrp); - struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(tg); + struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth; cb->fill(cb, "nr_periods", cfs_b->nr_periods); cb->fill(cb, "nr_throttled", cfs_b->nr_throttled); @@ -9480,8 +7909,8 @@ struct cgroup_subsys cpu_cgroup_subsys = { .name = "cpu", .create = cpu_cgroup_create, .destroy = cpu_cgroup_destroy, - .can_attach_task = cpu_cgroup_can_attach_task, - .attach_task = cpu_cgroup_attach_task, + .can_attach = cpu_cgroup_can_attach, + .attach = cpu_cgroup_attach, .exit = cpu_cgroup_exit, .populate = cpu_cgroup_populate, .subsys_id = cpu_cgroup_subsys_id, @@ -9499,38 +7928,16 @@ struct cgroup_subsys cpu_cgroup_subsys = { * (balbir@in.ibm.com). */ -/* track cpu usage of a group of tasks and its child groups */ -struct cpuacct { - struct cgroup_subsys_state css; - /* cpuusage holds pointer to a u64-type object on every cpu */ - u64 __percpu *cpuusage; - struct percpu_counter cpustat[CPUACCT_STAT_NSTATS]; - struct cpuacct *parent; -}; - -struct cgroup_subsys cpuacct_subsys; - -/* return cpu accounting group corresponding to this container */ -static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp) -{ - return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id), - struct cpuacct, css); -} - -/* return cpu accounting group to which this task belongs */ -static inline struct cpuacct *task_ca(struct task_struct *tsk) -{ - return container_of(task_subsys_state(tsk, cpuacct_subsys_id), - struct cpuacct, css); -} - /* create a new cpu accounting group */ static struct cgroup_subsys_state *cpuacct_create( struct cgroup_subsys *ss, struct cgroup *cgrp) { - struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL); - int i; + struct cpuacct *ca; + + if (!cgrp->parent) + return &root_cpuacct.css; + ca = kzalloc(sizeof(*ca), GFP_KERNEL); if (!ca) goto out; @@ -9538,18 +7945,13 @@ static struct cgroup_subsys_state *cpuacct_create( if (!ca->cpuusage) goto out_free_ca; - for (i = 0; i < CPUACCT_STAT_NSTATS; i++) - if (percpu_counter_init(&ca->cpustat[i], 0)) - goto out_free_counters; - - if (cgrp->parent) - ca->parent = cgroup_ca(cgrp->parent); + ca->cpustat = alloc_percpu(struct kernel_cpustat); + if (!ca->cpustat) + goto out_free_cpuusage; return &ca->css; -out_free_counters: - while (--i >= 0) - percpu_counter_destroy(&ca->cpustat[i]); +out_free_cpuusage: free_percpu(ca->cpuusage); out_free_ca: kfree(ca); @@ -9562,10 +7964,8 @@ static void cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp) { struct cpuacct *ca = cgroup_ca(cgrp); - int i; - for (i = 0; i < CPUACCT_STAT_NSTATS; i++) - percpu_counter_destroy(&ca->cpustat[i]); + free_percpu(ca->cpustat); free_percpu(ca->cpuusage); kfree(ca); } @@ -9658,16 +8058,31 @@ static const char *cpuacct_stat_desc[] = { }; static int cpuacct_stats_show(struct cgroup *cgrp, struct cftype *cft, - struct cgroup_map_cb *cb) + struct cgroup_map_cb *cb) { struct cpuacct *ca = cgroup_ca(cgrp); - int i; + int cpu; + s64 val = 0; - for (i = 0; i < CPUACCT_STAT_NSTATS; i++) { - s64 val = percpu_counter_read(&ca->cpustat[i]); - val = cputime64_to_clock_t(val); - cb->fill(cb, cpuacct_stat_desc[i], val); + for_each_online_cpu(cpu) { + struct kernel_cpustat *kcpustat = per_cpu_ptr(ca->cpustat, cpu); + val += kcpustat->cpustat[CPUTIME_USER]; + val += kcpustat->cpustat[CPUTIME_NICE]; } + val = cputime64_to_clock_t(val); + cb->fill(cb, cpuacct_stat_desc[CPUACCT_STAT_USER], val); + + val = 0; + for_each_online_cpu(cpu) { + struct kernel_cpustat *kcpustat = per_cpu_ptr(ca->cpustat, cpu); + val += kcpustat->cpustat[CPUTIME_SYSTEM]; + val += kcpustat->cpustat[CPUTIME_IRQ]; + val += kcpustat->cpustat[CPUTIME_SOFTIRQ]; + } + + val = cputime64_to_clock_t(val); + cb->fill(cb, cpuacct_stat_desc[CPUACCT_STAT_SYSTEM], val); + return 0; } @@ -9697,7 +8112,7 @@ static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp) * * called with rq->lock held. */ -static void cpuacct_charge(struct task_struct *tsk, u64 cputime) +void cpuacct_charge(struct task_struct *tsk, u64 cputime) { struct cpuacct *ca; int cpu; @@ -9711,7 +8126,7 @@ static void cpuacct_charge(struct task_struct *tsk, u64 cputime) ca = task_ca(tsk); - for (; ca; ca = ca->parent) { + for (; ca; ca = parent_ca(ca)) { u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu); *cpuusage += cputime; } @@ -9719,45 +8134,6 @@ static void cpuacct_charge(struct task_struct *tsk, u64 cputime) rcu_read_unlock(); } -/* - * When CONFIG_VIRT_CPU_ACCOUNTING is enabled one jiffy can be very large - * in cputime_t units. As a result, cpuacct_update_stats calls - * percpu_counter_add with values large enough to always overflow the - * per cpu batch limit causing bad SMP scalability. - * - * To fix this we scale percpu_counter_batch by cputime_one_jiffy so we - * batch the same amount of time with CONFIG_VIRT_CPU_ACCOUNTING disabled - * and enabled. We cap it at INT_MAX which is the largest allowed batch value. - */ -#ifdef CONFIG_SMP -#define CPUACCT_BATCH \ - min_t(long, percpu_counter_batch * cputime_one_jiffy, INT_MAX) -#else -#define CPUACCT_BATCH 0 -#endif - -/* - * Charge the system/user time to the task's accounting group. - */ -static void cpuacct_update_stats(struct task_struct *tsk, - enum cpuacct_stat_index idx, cputime_t val) -{ - struct cpuacct *ca; - int batch = CPUACCT_BATCH; - - if (unlikely(!cpuacct_subsys.active)) - return; - - rcu_read_lock(); - ca = task_ca(tsk); - - do { - __percpu_counter_add(&ca->cpustat[idx], val, batch); - ca = ca->parent; - } while (ca); - rcu_read_unlock(); -} - struct cgroup_subsys cpuacct_subsys = { .name = "cpuacct", .create = cpuacct_create, |
