aboutsummaryrefslogtreecommitdiffstatshomepage
path: root/arch/s390/mm/hugetlbpage.c (follow)
AgeCommit message (Collapse)AuthorFilesLines
2017-02-23s390/mm: use _SEGMENT_ENTRY_EMPTY in the codeDominik Dingel1-1/+1
_SEGMENT_ENTRY_INVALID denotes the invalid bit in a segment table entry whereas _SEGMENT_ENTRY_EMPTY means that the value of the whole entry is only the invalid bit, as the entry is completely empty. Therefore we use _SEGMENT_ENTRY_INVALID only to check and set the invalid bit with bitwise operations. _SEGMENT_ENTRY_EMPTY is only used to check for (un)equality. Signed-off-by: Dominik Dingel <dingel@linux.vnet.ibm.com> Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
2017-02-08s390: add no-execute supportMartin Schwidefsky1-1/+9
Bit 0x100 of a page table, segment table of region table entry can be used to disallow code execution for the virtual addresses associated with the entry. There is one tricky bit, the system call to return from a signal is part of the signal frame written to the user stack. With a non-executable stack this would stop working. To avoid breaking things the protection fault handler checks the opcode that caused the fault for 0x0a77 (sys_sigreturn) and 0x0aad (sys_rt_sigreturn) and injects a system call. This is preferable to the alternative solution with a stub function in the vdso because it works for vdso=off and statically linked binaries as well. Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
2016-10-17s390/mm: use hugetlb_bad_size()Shyam Saini1-0/+1
Update setup_hugepagesz() to call hugetlb_bad_size() when unsupported hugepage size is found. Signed-off-by: Shyam Saini <mayhs11saini@gmail.com> Signed-off-by: Heiko Carstens <heiko.carstens@de.ibm.com> Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
2016-07-31s390/mm: clean up pte/pmd encodingGerald Schaefer1-14/+38
The hugetlbfs pte<->pmd conversion functions currently assume that the pmd bit layout is consistent with the pte layout, which is not really true. The SW read and write bits are encoded as the sequence "wr" in a pte, but in a pmd it is "rw". The hugetlbfs conversion assumes that the sequence is identical in both cases, which results in swapped read and write bits in the pmd. In practice this is not a problem, because those pmd bits are only relevant for THP pmds and not for hugetlbfs pmds. The hugetlbfs code works on (fake) ptes, and the converted pte bits are correct. There is another variation in pte/pmd encoding which affects dirty prot-none ptes/pmds. In this case, a pmd has both its HW read-only and invalid bit set, while it is only the invalid bit for a pte. This also has no effect in practice, but it should better be consistent. This patch fixes both inconsistencies by changing the SW read/write bit layout for pmds as well as the PAGE_NONE encoding for ptes. It also makes the hugetlbfs conversion functions more robust by introducing a move_set_bit() macro that uses the pte/pmd bit #defines instead of constant shifts. Signed-off-by: Gerald Schaefer <gerald.schaefer@de.ibm.com> Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
2016-07-06s390/mm: add support for 2GB hugepagesGerald Schaefer1-39/+90
This adds support for 2GB hugetlbfs pages on s390. Reviewed-by: Martin Schwidefsky <schwidefsky@de.ibm.com> Signed-off-by: Gerald Schaefer <gerald.schaefer@de.ibm.com> Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
2016-03-08s390/mm: uninline pmdp_xxx functions from pgtable.hMartin Schwidefsky1-4/+3
The pmdp_xxx function are smaller than their ptep_xxx counterparts but to keep things symmetrical unline them as well. Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
2015-10-14s390/mm: implement soft-dirty bits for user memory change trackingMartin Schwidefsky1-0/+2
Use bit 2**1 of the pte and bit 2**14 of the pmd for the soft dirty bit. The fault mechanism to do dirty tracking is already in place. Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
2015-06-25s390/mm: forward check for huge pmds to pmd_large()Dominik Dingel1-4/+1
We already do the check in pmd_large, so we can just forward the call. Signed-off-by: Dominik Dingel <dingel@linux.vnet.ibm.com> Acked-by: Martin Schwidefsky <schwidefsky@de.ibm.com> Cc: Heiko Carstens <heiko.carstens@de.ibm.com> Cc: Christian Borntraeger <borntraeger@de.ibm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-06-25s390/hugetlb: remove dead code for sw emulated huge pagesDominik Dingel1-57/+3
We now support only hugepages on hardware with EDAT1 support. So we remove the prepare/release_hugepage hooks and simplify set_huge_pte_at and huge_ptep_get. Signed-off-by: Dominik Dingel <dingel@linux.vnet.ibm.com> Acked-by: Martin Schwidefsky <schwidefsky@de.ibm.com> Cc: Heiko Carstens <heiko.carstens@de.ibm.com> Cc: Christian Borntraeger <borntraeger@de.ibm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-06-24mm/hugetlb: reduce arch dependent code about huge_pmd_unshareZhang Zhen1-5/+0
Currently we have many duplicates in definitions of huge_pmd_unshare. In all architectures this function just returns 0 when CONFIG_ARCH_WANT_HUGE_PMD_SHARE is N. This patch puts the default implementation in mm/hugetlb.c and lets these architectures use the common code. Signed-off-by: Zhang Zhen <zhenzhang.zhang@huawei.com> Cc: Russell King <linux@arm.linux.org.uk> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Tony Luck <tony.luck@intel.com> Cc: James Hogan <james.hogan@imgtec.com> Cc: Ralf Baechle <ralf@linux-mips.org> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Martin Schwidefsky <schwidefsky@de.ibm.com> Cc: Chris Metcalf <cmetcalf@ezchip.com> Cc: David Rientjes <rientjes@google.com> Cc: James Yang <James.Yang@freescale.com> Cc: Aneesh Kumar <aneesh.kumar@linux.vnet.ibm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-04-23s390/mm: change swap pte encoding and pgtable cleanupMartin Schwidefsky1-28/+34
After the file ptes have been removed the bit combination used to encode non-linear mappings can be reused for the swap ptes. This frees up a precious pte software bit. Reflect the change in the swap encoding in the comments and do some cleanup while we are at it. Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
2015-04-23s390/mm: correct transfer of dirty & young bits in __pmd_to_pteMartin Schwidefsky1-2/+2
The dirty & young bit from the pmd is not copied correctly to the pseudo pte in __pmd_to_pte. In fact it is not copied at all, the bits get lost. As the old style huge page currently does not need the dirty & young information this has no effect, but may be needed in the future. Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
2015-02-11mm/hugetlb: reduce arch dependent code around follow_huge_*Naoya Horiguchi1-20/+0
Currently we have many duplicates in definitions around follow_huge_addr(), follow_huge_pmd(), and follow_huge_pud(), so this patch tries to remove the m. The basic idea is to put the default implementation for these functions in mm/hugetlb.c as weak symbols (regardless of CONFIG_ARCH_WANT_GENERAL_HUGETL B), and to implement arch-specific code only when the arch needs it. For follow_huge_addr(), only powerpc and ia64 have their own implementation, and in all other architectures this function just returns ERR_PTR(-EINVAL). So this patch sets returning ERR_PTR(-EINVAL) as default. As for follow_huge_(pmd|pud)(), if (pmd|pud)_huge() is implemented to always return 0 in your architecture (like in ia64 or sparc,) it's never called (the callsite is optimized away) no matter how implemented it is. So in such architectures, we don't need arch-specific implementation. In some architecture (like mips, s390 and tile,) their current arch-specific follow_huge_(pmd|pud)() are effectively identical with the common code, so this patch lets these architecture use the common code. One exception is metag, where pmd_huge() could return non-zero but it expects follow_huge_pmd() to always return NULL. This means that we need arch-specific implementation which returns NULL. This behavior looks strange to me (because non-zero pmd_huge() implies that the architecture supports PMD-based hugepage, so follow_huge_pmd() can/should return some relevant value,) but that's beyond this cleanup patch, so let's keep it. Justification of non-trivial changes: - in s390, follow_huge_pmd() checks !MACHINE_HAS_HPAGE at first, and this patch removes the check. This is OK because we can assume MACHINE_HAS_HPAGE is true when follow_huge_pmd() can be called (note that pmd_huge() has the same check and always returns 0 for !MACHINE_HAS_HPAGE.) - in s390 and mips, we use HPAGE_MASK instead of PMD_MASK as done in common code. This patch forces these archs use PMD_MASK, but it's OK because they are identical in both archs. In s390, both of HPAGE_SHIFT and PMD_SHIFT are 20. In mips, HPAGE_SHIFT is defined as (PAGE_SHIFT + PAGE_SHIFT - 3) and PMD_SHIFT is define as (PAGE_SHIFT + PAGE_SHIFT + PTE_ORDER - 3), but PTE_ORDER is always 0, so these are identical. Signed-off-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Acked-by: Hugh Dickins <hughd@google.com> Cc: James Hogan <james.hogan@imgtec.com> Cc: David Rientjes <rientjes@google.com> Cc: Mel Gorman <mel@csn.ul.ie> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@suse.cz> Cc: Rik van Riel <riel@redhat.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Luiz Capitulino <lcapitulino@redhat.com> Cc: Nishanth Aravamudan <nacc@linux.vnet.ibm.com> Cc: Lee Schermerhorn <lee.schermerhorn@hp.com> Cc: Steve Capper <steve.capper@linaro.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-09-25s390/mm: remove change bit override supportHeiko Carstens1-1/+1
Signed-off-by: Heiko Carstens <heiko.carstens@de.ibm.com> Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
2014-08-01s390/mm: implement dirty bits for large segment table entriesMartin Schwidefsky1-56/+47
The large segment table entry format has block of bits for the ACC/F values for the large page. These bits are valid only if another bit (AV bit 0x10000) of the segment table entry is set. The ACC/F bits do not have a meaning if the AV bit is off. This allows to put the THP splitting bit, the segment young bit and the new segment dirty bit into the ACC/F bits as long as the AV bit stays off. The dirty and young information is only available if the pmd is large. Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
2014-06-04hugetlb: restrict hugepage_migration_support() to x86_64Naoya Horiguchi1-5/+0
Currently hugepage migration is available for all archs which support pmd-level hugepage, but testing is done only for x86_64 and there're bugs for other archs. So to avoid breaking such archs, this patch limits the availability strictly to x86_64 until developers of other archs get interested in enabling this feature. Simply disabling hugepage migration on non-x86_64 archs is not enough to fix the reported problem where sys_move_pages() hits the BUG_ON() in follow_page(FOLL_GET), so let's fix this by checking if hugepage migration is supported in vma_migratable(). Signed-off-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Reported-by: Michael Ellerman <mpe@ellerman.id.au> Tested-by: Michael Ellerman <mpe@ellerman.id.au> Acked-by: Hugh Dickins <hughd@google.com> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Tony Luck <tony.luck@intel.com> Cc: Russell King <rmk@arm.linux.org.uk> Cc: Martin Schwidefsky <schwidefsky@de.ibm.com> Cc: James Hogan <james.hogan@imgtec.com> Cc: Ralf Baechle <ralf@linux-mips.org> Cc: David Miller <davem@davemloft.net> Cc: <stable@vger.kernel.org> [3.12+] Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-04-03s390/mm,tlb: optimize TLB flushing for zEC12Martin Schwidefsky1-4/+1
The zEC12 machines introduced the local-clearing control for the IDTE and IPTE instruction. If the control is set only the TLB of the local CPU is cleared of entries, either all entries of a single address space for IDTE, or the entry for a single page-table entry for IPTE. Without the local-clearing control the TLB flush is broadcasted to all CPUs in the configuration, which is expensive. The reset of the bit mask of the CPUs that need flushing after a non-local IDTE is tricky. As TLB entries for an address space remain in the TLB even if the address space is detached a new bit field is required to keep track of attached CPUs vs. CPUs in the need of a flush. After a non-local flush with IDTE the bit-field of attached CPUs is copied to the bit-field of CPUs in need of a flush. The ordering of operations on cpu_attach_mask, attach_count and mm_cpumask(mm) is such that an underindication in mm_cpumask(mm) is prevented but an overindication in mm_cpumask(mm) is possible. Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
2013-09-11mm: migrate: check movability of hugepage in unmap_and_move_huge_page()Naoya Horiguchi1-0/+5
Currently hugepage migration works well only for pmd-based hugepages (mainly due to lack of testing,) so we had better not enable migration of other levels of hugepages until we are ready for it. Some users of hugepage migration (mbind, move_pages, and migrate_pages) do page table walk and check pud/pmd_huge() there, so they are safe. But the other users (softoffline and memory hotremove) don't do this, so without this patch they can try to migrate unexpected types of hugepages. To prevent this, we introduce hugepage_migration_support() as an architecture dependent check of whether hugepage are implemented on a pmd basis or not. And on some architecture multiple sizes of hugepages are available, so hugepage_migration_support() also checks hugepage size. Signed-off-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: Andi Kleen <ak@linux.intel.com> Cc: Hillf Danton <dhillf@gmail.com> Cc: Wanpeng Li <liwanp@linux.vnet.ibm.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Hugh Dickins <hughd@google.com> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Cc: Michal Hocko <mhocko@suse.cz> Cc: Rik van Riel <riel@redhat.com> Cc: "Aneesh Kumar K.V" <aneesh.kumar@linux.vnet.ibm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-08-29s390/mm: implement software referenced bitsMartin Schwidefsky1-19/+39
The last remaining use for the storage key of the s390 architecture is reference counting. The alternative is to make page table entries invalid while they are old. On access the fault handler marks the pte/pmd as young which makes the pte/pmd valid if the access rights allow read access. The pte/pmd invalidations required for software managed reference bits cost a bit of performance, on the other hand the RRBE/RRBM instructions to read and reset the referenced bits are quite expensive as well. Reviewed-by: Gerald Schaefer <gerald.schaefer@de.ibm.com> Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
2013-08-22s390/mm: cleanup page table definitionsMartin Schwidefsky1-9/+95
Improve the encoding of the different pte types and the naming of the page, segment table and region table bits. Due to the different pte encoding the hugetlbfs primitives need to be adapted as well. To improve compatability with common code make the huge ptes use the encoding of normal ptes. The conversion between the pte and pmd encoding for a huge pte is done with set_huge_pte_at and huge_ptep_get. Overall the code is now easier to understand. Reviewed-by: Gerald Schaefer <gerald.schaefer@de.ibm.com> Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
2013-04-29mm/hugetlb: add more arch-defined huge_pte functionsGerald Schaefer1-1/+1
Commit abf09bed3cce ("s390/mm: implement software dirty bits") introduced another difference in the pte layout vs. the pmd layout on s390, thoroughly breaking the s390 support for hugetlbfs. This requires replacing some more pte_xxx functions in mm/hugetlbfs.c with a huge_pte_xxx version. This patch introduces those huge_pte_xxx functions and their generic implementation in asm-generic/hugetlb.h, which will now be included on all architectures supporting hugetlbfs apart from s390. This change will be a no-op for those architectures. [akpm@linux-foundation.org: fix warning] Signed-off-by: Gerald Schaefer <gerald.schaefer@de.ibm.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Hugh Dickins <hughd@google.com> Cc: Hillf Danton <dhillf@gmail.com> Acked-by: Michal Hocko <mhocko@suse.cz> [for !s390 parts] Cc: Tony Luck <tony.luck@intel.com> Cc: Fenghua Yu <fenghua.yu@intel.com> Cc: Ralf Baechle <ralf@linux-mips.org> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Paul Mackerras <paulus@samba.org> Cc: Paul Mundt <lethal@linux-sh.org> Cc: "David S. Miller" <davem@davemloft.net> Cc: Chris Metcalf <cmetcalf@tilera.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Ingo Molnar <mingo@redhat.com> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Martin Schwidefsky <schwidefsky@de.ibm.com> Cc: Heiko Carstens <heiko.carstens@de.ibm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-07-20s390/comments: unify copyright messages and remove file namesHeiko Carstens1-1/+1
Remove the file name from the comment at top of many files. In most cases the file name was wrong anyway, so it's rather pointless. Also unify the IBM copyright statement. We did have a lot of sightly different statements and wanted to change them one after another whenever a file gets touched. However that never happened. Instead people start to take the old/"wrong" statements to use as a template for new files. So unify all of them in one go. Signed-off-by: Heiko Carstens <heiko.carstens@de.ibm.com>
2012-05-16s390/hugepages: clear page table for sw large page emulationGerald Schaefer1-0/+2
The software large page emulation on s390 did not clear the the pre-allocated page table in arch_release_hugepage() before freeing it. This could trigger the WARN_ON(!pte_none(*pte) in mm/vmalloc.c:106 and make vmap_pte_range() fail, because the page table could be reused in page_table_alloc(). This is fixed now by calling clear_table() before page_table_free(). Signed-off-by: Gerald Schaefer <gerald.schaefer@de.ibm.com> Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
2011-07-24[S390] kvm guest address space mappingMartin Schwidefsky1-1/+1
Add code that allows KVM to control the virtual memory layout that is seen by a guest. The guest address space uses a second page table that shares the last level pte-tables with the process page table. If a page is unmapped from the process page table it is automatically unmapped from the guest page table as well. The guest address space mapping starts out empty, KVM can map any individual 1MB segments from the process virtual memory to any 1MB aligned location in the guest virtual memory. If a target segment in the process virtual memory does not exist or is unmapped while a guest mapping exists the desired target address is stored as an invalid segment table entry in the guest page table. The population of the guest page table is fault driven. Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
2011-05-23[S390] Remove data execution protectionMartin Schwidefsky1-10/+0
The noexec support on s390 does not rely on a bit in the page table entry but utilizes the secondary space mode to distinguish between memory accesses for instructions vs. data. The noexec code relies on the assumption that the cpu will always use the secondary space page table for data accesses while it is running in the secondary space mode. Up to the z9-109 class machines this has been the case. Unfortunately this is not true anymore with z10 and later machines. The load-relative-long instructions lrl, lgrl and lgfrl access the memory operand using the same addressing-space mode that has been used to fetch the instruction. This breaks the noexec mode for all user space binaries compiled with march=z10 or later. The only option is to remove the current noexec support. Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
2010-10-25[S390] lockless get_user_pages_fast()Martin Schwidefsky1-1/+1
Implement get_user_pages_fast without locking in the fastpath on s390. Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
2008-07-24hugetlb: introduce pud_hugeAndi Kleen1-0/+5
Straight forward extensions for huge pages located in the PUD instead of PMDs. Signed-off-by: Andi Kleen <ak@suse.de> Signed-off-by: Nick Piggin <npiggin@suse.de> Cc: Martin Schwidefsky <schwidefsky@de.ibm.com> Cc: Heiko Carstens <heiko.carstens@de.ibm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-07-24hugetlb: modular state for hugetlb page sizeAndi Kleen1-1/+2
The goal of this patchset is to support multiple hugetlb page sizes. This is achieved by introducing a new struct hstate structure, which encapsulates the important hugetlb state and constants (eg. huge page size, number of huge pages currently allocated, etc). The hstate structure is then passed around the code which requires these fields, they will do the right thing regardless of the exact hstate they are operating on. This patch adds the hstate structure, with a single global instance of it (default_hstate), and does the basic work of converting hugetlb to use the hstate. Future patches will add more hstate structures to allow for different hugetlbfs mounts to have different page sizes. [akpm@linux-foundation.org: coding-style fixes] Acked-by: Adam Litke <agl@us.ibm.com> Acked-by: Nishanth Aravamudan <nacc@us.ibm.com> Signed-off-by: Andi Kleen <ak@suse.de> Signed-off-by: Nick Piggin <npiggin@suse.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-04-30[S390] System z large page support.Gerald Schaefer1-0/+134
This adds hugetlbfs support on System z, using both hardware large page support if available and software large page emulation on older hardware. Shared (large) page tables are implemented in software emulation mode, by using page->index of the first tail page from a compound large page to store page table information. Signed-off-by: Gerald Schaefer <geraldsc@de.ibm.com> Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>