aboutsummaryrefslogtreecommitdiffstatshomepage
path: root/arch/x86/events/intel/ds.c (follow)
AgeCommit message (Collapse)AuthorFilesLines
2025-05-15perf/x86/intel: Fix segfault with PEBS-via-PT with sample_freqAdrian Hunter1-4/+5
Currently, using PEBS-via-PT with a sample frequency instead of a sample period, causes a segfault. For example: BUG: kernel NULL pointer dereference, address: 0000000000000195 <NMI> ? __die_body.cold+0x19/0x27 ? page_fault_oops+0xca/0x290 ? exc_page_fault+0x7e/0x1b0 ? asm_exc_page_fault+0x26/0x30 ? intel_pmu_pebs_event_update_no_drain+0x40/0x60 ? intel_pmu_pebs_event_update_no_drain+0x32/0x60 intel_pmu_drain_pebs_icl+0x333/0x350 handle_pmi_common+0x272/0x3c0 intel_pmu_handle_irq+0x10a/0x2e0 perf_event_nmi_handler+0x2a/0x50 That happens because intel_pmu_pebs_event_update_no_drain() assumes all the pebs_enabled bits represent counter indexes, which is not always the case. In this particular case, bits 60 and 61 are set for PEBS-via-PT purposes. The behaviour of PEBS-via-PT with sample frequency is questionable because although a PMI is generated (PEBS_PMI_AFTER_EACH_RECORD), the period is not adjusted anyway. Putting that aside, fix intel_pmu_pebs_event_update_no_drain() by passing the mask of counter bits instead of 'size'. Note, prior to the Fixes commit, 'size' would be limited to the maximum counter index, so the issue was not hit. Fixes: 722e42e45c2f1 ("perf/x86: Support counter mask") Signed-off-by: Adrian Hunter <adrian.hunter@intel.com> Signed-off-by: Ingo Molnar <mingo@kernel.org> Reviewed-by: Kan Liang <kan.liang@linux.intel.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Ingo Molnar <mingo@redhat.com> Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com> Cc: Arnaldo Carvalho de Melo <acme@kernel.org> Cc: Jiri Olsa <jolsa@kernel.org> Cc: Namhyung Kim <namhyung@kernel.org> Cc: Ian Rogers <irogers@google.com> Cc: linux-perf-users@vger.kernel.org Link: https://lore.kernel.org/r/20250508134452.73960-1-adrian.hunter@intel.com
2025-04-25perf/x86/intel/ds: Fix counter backwards of non-precise events counters-snapshottingKan Liang1-2/+19
The counter backwards may be observed in the PMI handler when counters-snapshotting some non-precise events in the freq mode. For the non-precise events, it's possible the counters-snapshotting records a positive value for an overflowed PEBS event. Then the HW auto-reload mechanism reset the counter to 0 immediately. Because the pebs_event_reset is cleared in the freq mode, which doesn't set the PERF_X86_EVENT_AUTO_RELOAD. In the PMI handler, 0 will be read rather than the positive value recorded in the counters-snapshotting record. The counters-snapshotting case has to be specially handled. Since the event value has been updated when processing the counters-snapshotting record, only needs to set the new period for the counter via x86_pmu_set_period(). Fixes: e02e9b0374c3 ("perf/x86/intel: Support PEBS counters snapshotting") Signed-off-by: Kan Liang <kan.liang@linux.intel.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Link: https://lkml.kernel.org/r/20250424134718.311934-6-kan.liang@linux.intel.com
2025-04-17perf/x86/intel: Allow to update user space GPRs from PEBS recordsDapeng Mi1-3/+5
Currently when a user samples user space GPRs (--user-regs option) with PEBS, the user space GPRs actually always come from software PMI instead of from PEBS hardware. This leads to the sampled GPRs to possibly be inaccurate for single PEBS record case because of the skid between counter overflow and GPRs sampling on PMI. For the large PEBS case, it is even worse. If user sets the exclude_kernel attribute, large PEBS would be used to sample user space GPRs, but since PEBS GPRs group is not really enabled, it leads to all samples in the large PEBS record to share the same piece of user space GPRs, like this reproducer shows: $ perf record -e branches:pu --user-regs=ip,ax -c 100000 ./foo $ perf report -D | grep "AX" .... AX 0x000000003a0d4ead .... AX 0x000000003a0d4ead .... AX 0x000000003a0d4ead .... AX 0x000000003a0d4ead .... AX 0x000000003a0d4ead .... AX 0x000000003a0d4ead .... AX 0x000000003a0d4ead .... AX 0x000000003a0d4ead .... AX 0x000000003a0d4ead .... AX 0x000000003a0d4ead .... AX 0x000000003a0d4ead So enable GPRs group for user space GPRs sampling and prioritize reading GPRs from PEBS. If the PEBS sampled GPRs is not user space GPRs (single PEBS record case), perf_sample_regs_user() modifies them to user space GPRs. [ mingo: Clarified the changelog. ] Fixes: c22497f5838c ("perf/x86/intel: Support adaptive PEBS v4") Signed-off-by: Dapeng Mi <dapeng1.mi@linux.intel.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Signed-off-by: Ingo Molnar <mingo@kernel.org> Cc: stable@vger.kernel.org Link: https://lore.kernel.org/r/20250415104135.318169-2-dapeng1.mi@linux.intel.com
2025-03-01Merge branch 'perf/urgent' into perf/core, to pick up dependent patches and fixesIngo Molnar1-1/+1
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2025-02-21Merge branch 'perf/urgent' into perf/core, to pick up fixes before merging new patchesIngo Molnar1-1/+9
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2025-02-20perf/x86/intel: Fix event constraints for LNCKan Liang1-1/+1
According to the latest event list, update the event constraint tables for Lion Cove core. The general rule (the event codes < 0x90 are restricted to counters 0-3.) has been removed. There is no restriction for most of the performance monitoring events. Fixes: a932aa0e868f ("perf/x86: Add Lunar Lake and Arrow Lake support") Reported-by: Amiri Khalil <amiri.khalil@intel.com> Signed-off-by: Kan Liang <kan.liang@linux.intel.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: stable@vger.kernel.org Link: https://lkml.kernel.org/r/20250219141005.2446823-1-kan.liang@linux.intel.com
2025-02-08perf/x86/intel: Clean up PEBS-via-PT on hybridKan Liang1-1/+9
The PEBS-via-PT feature is exposed for the e-core of some hybrid platforms, e.g., ADL and MTL. But it never works. $ dmesg | grep PEBS [ 1.793888] core: cpu_atom PMU driver: PEBS-via-PT $ perf record -c 1000 -e '{intel_pt/branch=0/, cpu_atom/cpu-cycles,aux-output/pp}' -C8 Error: The sys_perf_event_open() syscall returned with 22 (Invalid argument) for event (cpu_atom/cpu-cycles,aux-output/pp). "dmesg | grep -i perf" may provide additional information. The "PEBS-via-PT" is printed if the corresponding bit of per-PMU capabilities is set. Since the feature is supported by the e-core HW, perf sets the bit for e-core. However, for Intel PT, if a feature is not supported on all CPUs, it is not supported at all. The PEBS-via-PT event cannot be created successfully. The PEBS-via-PT is no longer enumerated on the latest hybrid platform. It will be deprecated on future platforms with Arch PEBS. Let's remove it from the existing hybrid platforms. Fixes: d9977c43bff8 ("perf/x86: Register hybrid PMUs") Signed-off-by: Kan Liang <kan.liang@linux.intel.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Link: https://lkml.kernel.org/r/20250129154820.3755948-2-kan.liang@linux.intel.com
2025-02-05perf/x86/intel: Support PEBS counters snapshottingKan Liang1-9/+182
The counters snapshotting is a new adaptive PEBS extension, which can capture programmable counters, fixed-function counters, and performance metrics in a PEBS record. The feature is available in the PEBS format V6. The target counters can be configured in the new fields of MSR_PEBS_CFG. Then the PEBS HW will generate the bit mask of counters (Counters Group Header) followed by the content of all the requested counters into a PEBS record. The current Linux perf sample read feature can read all events in the group when any event in the group is overflowed. But the rdpmc in the NMI/overflow handler has a small gap from overflow. Also, there is some overhead for each rdpmc read. The counters snapshotting feature can be used as an accurate and low-overhead replacement. Extend intel_update_topdown_event() to accept the value from PEBS records. Add a new PEBS_CNTR flag to indicate a sample read group that utilizes the counters snapshotting feature. When the group is scheduled, the PEBS configure can be updated accordingly. To prevent the case that a PEBS record value might be in the past relative to what is already in the event, perf always stops the PMU and drains the PEBS buffer before updating the corresponding event->count. Suggested-by: Peter Zijlstra (Intel) <peterz@infradead.org> Signed-off-by: Kan Liang <kan.liang@linux.intel.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Link: https://lkml.kernel.org/r/20250121152303.3128733-4-kan.liang@linux.intel.com
2025-02-05perf/x86/intel: Avoid disable PMU if !cpuc->enabled in sample readKan Liang1-10/+1
The WARN_ON(this_cpu_read(cpu_hw_events.enabled)) in the intel_pmu_save_and_restart_reload() is triggered, when sampling read topdown events. In a NMI handler, the cpu_hw_events.enabled is set and used to indicate the status of core PMU. The generic pmu->pmu_disable_count, updated in the perf_pmu_disable/enable pair, is not touched. However, the perf_pmu_disable/enable pair is invoked when sampling read in a NMI handler. The cpuc->enabled is mistakenly set by the perf_pmu_enable(). Avoid disabling PMU if the core PMU is already disabled. Merge the logic together. Fixes: 7b2c05a15d29 ("perf/x86/intel: Generic support for hardware TopDown metrics") Suggested-by: Peter Zijlstra (Intel) <peterz@infradead.org> Signed-off-by: Kan Liang <kan.liang@linux.intel.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: stable@vger.kernel.org Link: https://lkml.kernel.org/r/20250121152303.3128733-2-kan.liang@linux.intel.com
2025-02-05perf/x86/intel: Apply static call for drain_pebsPeter Zijlstra (Intel)1-1/+1
The x86_pmu_drain_pebs static call was introduced in commit 7c9903c9bf71 ("x86/perf, static_call: Optimize x86_pmu methods"), but it's not really used to replace the old method. Apply the static call for drain_pebs. Fixes: 7c9903c9bf71 ("x86/perf, static_call: Optimize x86_pmu methods") Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Signed-off-by: Kan Liang <kan.liang@linux.intel.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: stable@vger.kernel.org Link: https://lkml.kernel.org/r/20250121152303.3128733-1-kan.liang@linux.intel.com
2025-01-21Merge tag 'perf-core-2025-01-20' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tipLinus Torvalds1-82/+116
Pull performance events updates from Ingo Molnar: "Seqlock optimizations that arose in a perf context and were merged into the perf tree: - seqlock: Add raw_seqcount_try_begin (Suren Baghdasaryan) - mm: Convert mm_lock_seq to a proper seqcount (Suren Baghdasaryan) - mm: Introduce mmap_lock_speculate_{try_begin|retry} (Suren Baghdasaryan) - mm/gup: Use raw_seqcount_try_begin() (Peter Zijlstra) Core perf enhancements: - Reduce 'struct page' footprint of perf by mapping pages in advance (Lorenzo Stoakes) - Save raw sample data conditionally based on sample type (Yabin Cui) - Reduce sampling overhead by checking sample_type in perf_sample_save_callchain() and perf_sample_save_brstack() (Yabin Cui) - Export perf_exclude_event() (Namhyung Kim) Uprobes scalability enhancements: (Andrii Nakryiko) - Simplify find_active_uprobe_rcu() VMA checks - Add speculative lockless VMA-to-inode-to-uprobe resolution - Simplify session consumer tracking - Decouple return_instance list traversal and freeing - Ensure return_instance is detached from the list before freeing - Reuse return_instances between multiple uretprobes within task - Guard against kmemdup() failing in dup_return_instance() AMD core PMU driver enhancements: - Relax privilege filter restriction on AMD IBS (Namhyung Kim) AMD RAPL energy counters support: (Dhananjay Ugwekar) - Introduce topology_logical_core_id() (K Prateek Nayak) - Remove the unused get_rapl_pmu_cpumask() function - Remove the cpu_to_rapl_pmu() function - Rename rapl_pmu variables - Make rapl_model struct global - Add arguments to the init and cleanup functions - Modify the generic variable names to *_pkg* - Remove the global variable rapl_msrs - Move the cntr_mask to rapl_pmus struct - Add core energy counter support for AMD CPUs Intel core PMU driver enhancements: - Support RDPMC 'metrics clear mode' feature (Kan Liang) - Clarify adaptive PEBS processing (Kan Liang) - Factor out functions for PEBS records processing (Kan Liang) - Simplify the PEBS records processing for adaptive PEBS (Kan Liang) Intel uncore driver enhancements: (Kan Liang) - Convert buggy pmu->func_id use to pmu->registered - Support more units on Granite Rapids" * tag 'perf-core-2025-01-20' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (33 commits) perf: map pages in advance perf/x86/intel/uncore: Support more units on Granite Rapids perf/x86/intel/uncore: Clean up func_id perf/x86/intel: Support RDPMC metrics clear mode uprobes: Guard against kmemdup() failing in dup_return_instance() perf/x86: Relax privilege filter restriction on AMD IBS perf/core: Export perf_exclude_event() uprobes: Reuse return_instances between multiple uretprobes within task uprobes: Ensure return_instance is detached from the list before freeing uprobes: Decouple return_instance list traversal and freeing uprobes: Simplify session consumer tracking uprobes: add speculative lockless VMA-to-inode-to-uprobe resolution uprobes: simplify find_active_uprobe_rcu() VMA checks mm: introduce mmap_lock_speculate_{try_begin|retry} mm: convert mm_lock_seq to a proper seqcount mm/gup: Use raw_seqcount_try_begin() seqlock: add raw_seqcount_try_begin perf/x86/rapl: Add core energy counter support for AMD CPUs perf/x86/rapl: Move the cntr_mask to rapl_pmus struct perf/x86/rapl: Remove the global variable rapl_msrs ...
2024-12-17perf/x86/intel/ds: Add PEBS format 6Kan Liang1-0/+1
The only difference between 5 and 6 is the new counters snapshotting group, without the following counters snapshotting enabling patches, it's impossible to utilize the feature in a PEBS record. It's safe to share the same code path with format 5. Add format 6, so the end user can at least utilize the legacy PEBS features. Fixes: a932aa0e868f ("perf/x86: Add Lunar Lake and Arrow Lake support") Signed-off-by: Kan Liang <kan.liang@linux.intel.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: stable@vger.kernel.org Link: https://lore.kernel.org/r/20241216204505.748363-1-kan.liang@linux.intel.com
2024-12-02perf/x86/intel/ds: Simplify the PEBS records processing for adaptive PEBSKan Liang1-14/+29
The current code may iterate all the PEBS records in the DS area several times. The first loop is to find all active events and calculate the available records for each event. Then iterate the whole buffer again and again to process available records until all active events are processed. The algorithm is inherited from the old generations. The old PEBS hardware does not deal well with the situation when events happen near each other. SW has to drop the error records. Multiple iterations are required. The hardware limit has been addressed on newer platforms with adaptive PEBS. A simple one-iteration algorithm is introduced. The samples are output by record order with the patch, rather than the event order. It doesn't impact the post-processing. The perf tool always sorts the records by time before presenting them to the end user. In an NMI, the last record has to be specially handled. Add a last[] variable to track the last unprocessed record of each event. Test: 11 PEBS events are used in the perf test. Only the basic information is collected. perf record -e instructions:up,...,instructions:up -c 2000003 benchmark The ftrace is used to record the duration of the intel_pmu_drain_pebs_icl(). The average duration reduced from 62.04us to 57.94us. A small improvement can be observed with the new algorithm. Also, the implementation becomes simpler and more straightforward. Suggested-by: Stephane Eranian <eranian@google.com> Signed-off-by: Kan Liang <kan.liang@linux.intel.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Reviewed-by: Dapeng Mi <dapeng1.mi@linux.intel.com> Link: https://lore.kernel.org/r/20241119135504.1463839-5-kan.liang@linux.intel.com
2024-12-02perf/x86/intel/ds: Factor out functions for PEBS records processingKan Liang1-42/+67
Factor out functions to process normal and the last PEBS records, which can be shared with the later patch. Move the event updating related codes (intel_pmu_save_and_restart()) to the end, where all samples have been processed. For the current usage, it doesn't matter when perf updates event counts and reset the counter. Because all counters are stopped when the PEBS buffer is drained. Drop the return of the !intel_pmu_save_and_restart(event) check. Because it never happen. The intel_pmu_save_and_restart(event) only returns 0, when !hwc->event_base or the period_left > 0. - The !hwc->event_base is impossible for the PEBS event, since the PEBS event is only available on GP and fixed counters, which always have a valid hwc->event_base. - The check only happens for the case of non-AUTO_RELOAD and single PEBS, which implies that the event must be overflowed. The period_left must be always <= 0 for an overflowed event after the x86_pmu_update(). Co-developed-by: "Peter Zijlstra (Intel)" <peterz@infradead.org> Signed-off-by: "Peter Zijlstra (Intel)" <peterz@infradead.org> Signed-off-by: Kan Liang <kan.liang@linux.intel.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Link: https://lore.kernel.org/r/20241119135504.1463839-4-kan.liang@linux.intel.com
2024-12-02perf/x86/intel/ds: Clarify adaptive PEBS processingKan Liang1-23/+20
Modify the pebs_basic and pebs_meminfo structs to make the bitfields more explicit to ease readability of the code. Co-developed-by: Stephane Eranian <eranian@google.com> Signed-off-by: Stephane Eranian <eranian@google.com> Signed-off-by: Kan Liang <kan.liang@linux.intel.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Link: https://lore.kernel.org/r/20241119135504.1463839-3-kan.liang@linux.intel.com
2024-12-02perf/x86/intel/ds: Unconditionally drain PEBS DS when changing PEBS_DATA_CFGKan Liang1-1/+1
The PEBS kernel warnings can still be observed with the below case. when the below commands are running in parallel for a while. while true; do perf record --no-buildid -a --intr-regs=AX \ -e cpu/event=0xd0,umask=0x81/pp \ -c 10003 -o /dev/null ./triad; done & while true; do perf record -e 'cpu/mem-loads,ldlat=3/uP' -W -d -- ./dtlb done The commit b752ea0c28e3 ("perf/x86/intel/ds: Flush PEBS DS when changing PEBS_DATA_CFG") intends to flush the entire PEBS buffer before the hardware is reprogrammed. However, it fails in the above case. The first perf command utilizes the large PEBS, while the second perf command only utilizes a single PEBS. When the second perf event is added, only the n_pebs++. The intel_pmu_pebs_enable() is invoked after intel_pmu_pebs_add(). So the cpuc->n_pebs == cpuc->n_large_pebs check in the intel_pmu_drain_large_pebs() fails. The PEBS DS is not flushed. The new PEBS event should not be taken into account when flushing the existing PEBS DS. The check is unnecessary here. Before the hardware is reprogrammed, all the stale records must be drained unconditionally. For single PEBS or PEBS-vi-pt, the DS must be empty. The drain_pebs() can handle the empty case. There is no harm to unconditionally drain the PEBS DS. Fixes: b752ea0c28e3 ("perf/x86/intel/ds: Flush PEBS DS when changing PEBS_DATA_CFG") Signed-off-by: Kan Liang <kan.liang@linux.intel.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: stable@vger.kernel.org Link: https://lore.kernel.org/r/20241119135504.1463839-2-kan.liang@linux.intel.com
2024-12-02Merge branch 'perf/urgent'Peter Zijlstra1-1/+1
Keep in sync with the urgent bits. Signed-off-by: Peter Zijlstra <peterz@infradead.org>
2024-11-19perf/core: Check sample_type in perf_sample_save_brstackYabin Cui1-2/+1
Check sample_type in perf_sample_save_brstack() to prevent saving branch stack data when it isn't required. Suggested-by: Namhyung Kim <namhyung@kernel.org> Signed-off-by: Yabin Cui <yabinc@google.com> Signed-off-by: Ingo Molnar <mingo@kernel.org> Reviewed-by: Ian Rogers <irogers@google.com> Acked-by: Namhyung Kim <namhyung@kernel.org> Link: https://lore.kernel.org/r/20240515193610.2350456-4-yabinc@google.com
2024-11-19perf/core: Check sample_type in perf_sample_save_callchainYabin Cui1-4/+2
Check sample_type in perf_sample_save_callchain() to prevent saving callchain data when it isn't required. Suggested-by: Namhyung Kim <namhyung@kernel.org> Signed-off-by: Yabin Cui <yabinc@google.com> Signed-off-by: Ingo Molnar <mingo@kernel.org> Reviewed-by: Ian Rogers <irogers@google.com> Acked-by: Namhyung Kim <namhyung@kernel.org> Link: https://lore.kernel.org/r/20240515193610.2350456-3-yabinc@google.com
2024-10-07perf/x86/intel: Add PMU support for ArrowLake-HDapeng Mi1-0/+21
ArrowLake-H contains 3 different uarchs, LionCove, Skymont and Crestmont. It is different with previous hybrid processors which only contains two kinds of uarchs. This patch adds PMU support for ArrowLake-H processor, adds ARL-H specific events which supports the 3 kinds of uarchs, such as td_retiring_arl_h, and extends some existed format attributes like offcore_rsp to make them be available to support ARL-H as well. Althrough these format attributes like offcore_rsp have been extended to support ARL-H, they can still support the regular hybrid platforms with 2 kinds of uarchs since the helper hybrid_format_is_visible() would filter PMU types and only show the format attribute for available PMUs. Signed-off-by: Dapeng Mi <dapeng1.mi@linux.intel.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Reviewed-by: Kan Liang <kan.liang@linux.intel.com> Tested-by: Yongwei Ma <yongwei.ma@intel.com> Link: https://lkml.kernel.org/r/20240820073853.1974746-5-dapeng1.mi@linux.intel.com
2024-07-09perf/x86/intel/ds: Fix non 0 retire latency on RaptorlakeKan Liang1-2/+6
A non-0 retire latency can be observed on a Raptorlake which doesn't support the retire latency feature. By design, the retire latency shares the PERF_SAMPLE_WEIGHT_STRUCT sample type with other types of latency. That could avoid adding too many different sample types to support all kinds of latency. For the machine which doesn't support some kind of latency, 0 should be returned. Perf doesn’t clear/init all the fields of a sample data for the sake of performance. It expects the later perf_{prepare,output}_sample() to update the uninitialized field. However, the current implementation doesn't touch the field of the retire latency if the feature is not supported. The memory garbage is dumped into the perf data. Clear the retire latency if the feature is not supported. Fixes: c87a31093c70 ("perf/x86: Support Retire Latency") Reported-by: "Bayduraev, Alexey V" <alexey.v.bayduraev@intel.com> Signed-off-by: Kan Liang <kan.liang@linux.intel.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Tested-by: "Bayduraev, Alexey V" <alexey.v.bayduraev@intel.com> Cc: stable@vger.kernel.org Link: https://lkml.kernel.org/r/20240708193336.1192217-4-kan.liang@linux.intel.com
2024-07-04perf/x86/intel: Support new data source for Lunar LakeKan Liang1-2/+92
A new PEBS data source format is introduced for the p-core of Lunar Lake. The data source field is extended to 8 bits with new encodings. A new layout is introduced into the union intel_x86_pebs_dse. Introduce the lnl_latency_data() to parse the new format. Enlarge the pebs_data_source[] accordingly to include new encodings. Only the mem load and the mem store events can generate the data source. Introduce INTEL_HYBRID_LDLAT_CONSTRAINT and INTEL_HYBRID_STLAT_CONSTRAINT to mark them. Add two new bits for the new cache-related data src, L2_MHB and MSC. The L2_MHB is short for L2 Miss Handling Buffer, which is similar to LFB (Line Fill Buffer), but to track the L2 Cache misses. The MSC stands for the memory-side cache. Signed-off-by: Kan Liang <kan.liang@linux.intel.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Reviewed-by: Andi Kleen <ak@linux.intel.com> Reviewed-by: Ian Rogers <irogers@google.com> Link: https://lkml.kernel.org/r/20240626143545.480761-6-kan.liang@linux.intel.com
2024-07-04perf/x86/intel: Rename model-specific pebs_latency_data functionsKan Liang1-10/+10
The model-specific pebs_latency_data functions of ADL and MTL use the "small" as a postfix to indicate the e-core. The postfix is too generic for a model-specific function. It cannot provide useful information that can directly map it to a specific uarch, which can facilitate the development and maintenance. Use the abbr of the uarch to rename the model-specific functions. Suggested-by: Peter Zijlstra (Intel) <peterz@infradead.org> Signed-off-by: Kan Liang <kan.liang@linux.intel.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Reviewed-by: Ian Rogers <irogers@google.com> Link: https://lkml.kernel.org/r/20240626143545.480761-5-kan.liang@linux.intel.com
2024-07-04perf/x86: Add Lunar Lake and Arrow Lake supportKan Liang1-0/+24
From PMU's perspective, Lunar Lake and Arrow Lake are similar to the previous generation Meteor Lake. Both are hybrid platforms, with e-core and p-core. The key differences include: - The e-core supports 3 new fixed counters - The p-core supports an updated PEBS Data Source format - More GP counters (Updated event constraint table) - New Architectural performance monitoring V6 (New Perfmon MSRs aliasing, umask2, eq). - New PEBS format V6 (Counters Snapshotting group) - New RDPMC metrics clear mode The legacy features, the 3 new fixed counters and updated event constraint table are enabled in this patch. The new PEBS data source format, the architectural performance monitoring V6, the PEBS format V6, and the new RDPMC metrics clear mode are supported in the following patches. Signed-off-by: Kan Liang <kan.liang@linux.intel.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Reviewed-by: Andi Kleen <ak@linux.intel.com> Reviewed-by: Ian Rogers <irogers@google.com> Link: https://lkml.kernel.org/r/20240626143545.480761-4-kan.liang@linux.intel.com
2024-07-04perf/x86: Support counter maskKan Liang1-11/+8
The current perf assumes that both GP and fixed counters are contiguous. But it's not guaranteed on newer Intel platforms or in a virtualization environment. Use the counter mask to replace the number of counters for both GP and the fixed counters. For the other ARCHs or old platforms which don't support a counter mask, using GENMASK_ULL(num_counter - 1, 0) to replace. There is no functional change for them. The interface to KVM is not changed. The number of counters still be passed to KVM. It can be updated later separately. Signed-off-by: Kan Liang <kan.liang@linux.intel.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Reviewed-by: Andi Kleen <ak@linux.intel.com> Reviewed-by: Ian Rogers <irogers@google.com> Link: https://lkml.kernel.org/r/20240626143545.480761-3-kan.liang@linux.intel.com
2024-07-04perf/x86/intel: Support the PEBS event maskKan Liang1-7/+8
The current perf assumes that the counters that support PEBS are contiguous. But it's not guaranteed with the new leaf 0x23 introduced. The counters are enumerated with a counter mask. There may be holes in the counter mask for future platforms or in a virtualization environment. Store the PEBS event mask rather than the maximum number of PEBS counters in the x86 PMU structures. Signed-off-by: Kan Liang <kan.liang@linux.intel.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Reviewed-by: Andi Kleen <ak@linux.intel.com> Reviewed-by: Ian Rogers <irogers@google.com> Link: https://lkml.kernel.org/r/20240626143545.480761-2-kan.liang@linux.intel.com
2024-04-03perf/x86/intel/ds: Don't clear ->pebs_data_cfg for the last PEBS eventKan Liang1-4/+4
The MSR_PEBS_DATA_CFG MSR register is used to configure which data groups should be generated into a PEBS record, and it's shared among all counters. If there are different configurations among counters, perf combines all the configurations. The first perf command as below requires a complete PEBS record (including memory info, GPRs, XMMs, and LBRs). The second perf command only requires a basic group. However, after the second perf command is running, the MSR_PEBS_DATA_CFG register is cleared. Only a basic group is generated in a PEBS record, which is wrong. The required information for the first perf command is missed. $ perf record --intr-regs=AX,SP,XMM0 -a -C 8 -b -W -d -c 100000003 -o /dev/null -e cpu/event=0xd0,umask=0x81/upp & $ sleep 5 $ perf record --per-thread -c 1 -e cycles:pp --no-timestamp --no-tid taskset -c 8 ./noploop 1000 The first PEBS event is a system-wide PEBS event. The second PEBS event is a per-thread event. When the thread is scheduled out, the intel_pmu_pebs_del() function is invoked to update the PEBS state. Since the system-wide event is still available, the cpuc->n_pebs is 1. The cpuc->pebs_data_cfg is cleared. The data configuration for the system-wide PEBS event is lost. The (cpuc->n_pebs == 1) check was introduced in commit: b6a32f023fcc ("perf/x86: Fix PEBS threshold initialization") At that time, it indeed didn't hurt whether the state was updated during the removal, because only the threshold is updated. The calculation of the threshold takes the last PEBS event into account. However, since commit: b752ea0c28e3 ("perf/x86/intel/ds: Flush PEBS DS when changing PEBS_DATA_CFG") we delay the threshold update, and clear the PEBS data config, which triggers the bug. The PEBS data config update scope should not be shrunk during removal. [ mingo: Improved the changelog & comments. ] Fixes: b752ea0c28e3 ("perf/x86/intel/ds: Flush PEBS DS when changing PEBS_DATA_CFG") Reported-by: Stephane Eranian <eranian@google.com> Signed-off-by: Kan Liang <kan.liang@linux.intel.com> Signed-off-by: Ingo Molnar <mingo@kernel.org> Cc: stable@vger.kernel.org Link: https://lore.kernel.org/r/20240401133320.703971-1-kan.liang@linux.intel.com
2024-03-04x86/msr: Prepare for including <linux/percpu.h> into <asm/msr.h>Thomas Gleixner1-0/+1
To clean up the per CPU insanity of UP which causes sparse to be rightfully unhappy and prevents the usage of the generic per CPU accessors on cpu_info it is necessary to include <linux/percpu.h> into <asm/msr.h>. Including <linux/percpu.h> into <asm/msr.h> is impossible because it ends up in header dependency hell. The problem is that <asm/processor.h> includes <asm/msr.h>. The inclusion of <linux/percpu.h> results in a compile fail where the compiler cannot longer handle an include in <asm/cpufeature.h> which references boot_cpu_data which is defined in <asm/processor.h>. The only reason why <asm/msr.h> is included in <asm/processor.h> are the set/get_debugctlmsr() inlines. They are defined there because <asm/processor.h> is such a nice dump ground for everything. In fact they belong obviously into <asm/debugreg.h>. Move them to <asm/debugreg.h> and fix up the resulting damage which is just exposing the reliance on random include chains. Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Ingo Molnar <mingo@kernel.org> Link: https://lore.kernel.org/r/20240304005104.454678686@linutronix.de
2023-10-27perf/x86/intel: Support branch counters loggingKan Liang1-1/+1
The branch counters logging (A.K.A LBR event logging) introduces a per-counter indication of precise event occurrences in LBRs. It can provide a means to attribute exposed retirement latency to combinations of events across a block of instructions. It also provides a means of attributing Timed LBR latencies to events. The feature is first introduced on SRF/GRR. It is an enhancement of the ARCH LBR. It adds new fields in the LBR_INFO MSRs to log the occurrences of events on the GP counters. The information is displayed by the order of counters. The design proposed in this patch requires that the events which are logged must be in a group with the event that has LBR. If there are more than one LBR group, the counters logging information only from the current group (overflowed) are stored for the perf tool, otherwise the perf tool cannot know which and when other groups are scheduled especially when multiplexing is triggered. The user can ensure it uses the maximum number of counters that support LBR info (4 by now) by making the group large enough. The HW only logs events by the order of counters. The order may be different from the order of enabling which the perf tool can understand. When parsing the information of each branch entry, convert the counter order to the enabled order, and store the enabled order in the extension space. Unconditionally reset LBRs for an LBR event group when it's deleted. The logged counter information is only valid for the current LBR group. If another LBR group is scheduled later, the information from the stale LBRs would be otherwise wrongly interpreted. Add a sanity check in intel_pmu_hw_config(). Disable the feature if other counter filters (inv, cmask, edge, in_tx) are set or LBR call stack mode is enabled. (For the LBR call stack mode, we cannot simply flush the LBR, since it will break the call stack. Also, there is no obvious usage with the call stack mode for now.) Only applying the PERF_SAMPLE_BRANCH_COUNTERS doesn't require any branch stack setup. Expose the maximum number of supported counters and the width of the counters into the sysfs. The perf tool can use the information to parse the logged counters in each branch. Signed-off-by: Kan Liang <kan.liang@linux.intel.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Link: https://lkml.kernel.org/r/20231025201626.3000228-5-kan.liang@linux.intel.com
2023-10-27perf: Add branch stack countersKan Liang1-2/+2
Currently, the additional information of a branch entry is stored in a u64 space. With more and more information added, the space is running out. For example, the information of occurrences of events will be added for each branch. Two places were suggested to append the counters. https://lore.kernel.org/lkml/20230802215814.GH231007@hirez.programming.kicks-ass.net/ One place is right after the flags of each branch entry. It changes the existing struct perf_branch_entry. The later ARCH specific implementation has to be really careful to consistently pick the right struct. The other place is right after the entire struct perf_branch_stack. The disadvantage is that the pointer of the extra space has to be recorded. The common interface perf_sample_save_brstack() has to be updated. The latter is much straightforward, and should be easily understood and maintained. It is implemented in the patch. Add a new branch sample type, PERF_SAMPLE_BRANCH_COUNTERS, to indicate the event which is recorded in the branch info. The "u64 counters" may store the occurrences of several events. The information regarding the number of events/counters and the width of each counter should be exposed via sysfs as a reference for the perf tool. Define the branch_counter_nr and branch_counter_width ABI here. The support will be implemented later in the Intel-specific patch. Suggested-by: Peter Zijlstra (Intel) <peterz@infradead.org> Signed-off-by: Kan Liang <kan.liang@linux.intel.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Link: https://lkml.kernel.org/r/20231025201626.3000228-1-kan.liang@linux.intel.com
2023-08-29perf/x86/intel: Clean up the hybrid CPU type handling codeKan Liang1-1/+1
There is a fairly long list of grievances about the current code. The main beefs: 1. hybrid_big_small assumes that the *HARDWARE* (CPUID) provided core types are a bitmap. They are not. If Intel happened to make a core type of 0xff, hilarity would ensue. 2. adl_get_hybrid_cpu_type() utterly inscrutable. There are precisely zero comments and zero changelog about what it is attempting to do. According to Kan, the adl_get_hybrid_cpu_type() is there because some Alder Lake (ADL) CPUs can do some silly things. Some ADL models are *supposed* to be hybrid CPUs with big and little cores, but there are some SKUs that only have big cores. CPUID(0x1a) on those CPUs does not say that the CPUs are big cores. It apparently just returns 0x0. It confuses perf because it expects to see either 0x40 (Core) or 0x20 (Atom). The perf workaround for this is to watch for a CPU core saying it is type 0x0. If that happens on an Alder Lake, it calls x86_pmu.get_hybrid_cpu_type() and just assumes that the core is a Core (0x40) CPU. To fix up the mess, separate out the CPU types and the 'pmu' types. This allows 'hybrid_pmu_type' bitmaps without worrying that some future CPU type will set multiple bits. Since the types are now separate, add a function to glue them back together again. Actual comment on the situation in the glue function (find_hybrid_pmu_for_cpu()). Also, give ->get_hybrid_cpu_type() a real return type and make it clear that it is overriding the *CPU* type, not the PMU type. Rename cpu_type to pmu_type in the struct x86_hybrid_pmu to reflect the change. Originally-by: Dave Hansen <dave.hansen@linux.intel.com> Signed-off-by: Kan Liang <kan.liang@linux.intel.com> Signed-off-by: Ingo Molnar <mingo@kernel.org> Link: https://lore.kernel.org/r/20230829125806.3016082-6-kan.liang@linux.intel.com
2023-08-29perf/x86/intel: Use the common uarch name for the shared functionsKan Liang1-1/+1
From PMU's perspective, the SPR/GNR server has a similar uarch to the ADL/MTL client p-core. Many functions are shared. However, the shared function name uses the abbreviation of the server product code name, rather than the common uarch code name. Rename these internal shared functions by the common uarch name. Signed-off-by: Kan Liang <kan.liang@linux.intel.com> Signed-off-by: Ingo Molnar <mingo@kernel.org> Link: https://lore.kernel.org/r/20230829125806.3016082-2-kan.liang@linux.intel.com
2023-08-09perf/x86/intel: Add Crestmont PMUKan Liang1-2/+7
The Grand Ridge and Sierra Forest are successors to Snow Ridge. They both have Crestmont core. From the core PMU's perspective, they are similar to the e-core of MTL. The only difference is the LBR event logging feature, which will be implemented in the following patches. Create a non-hybrid PMU setup for Grand Ridge and Sierra Forest. Signed-off-by: Kan Liang <kan.liang@linux.intel.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Reviewed-by: Andi Kleen <ak@linux.intel.com> Link: https://lore.kernel.org/r/20230522113040.2329924-1-kan.liang@linux.intel.com
2023-05-08perf/x86/intel/ds: Flush PEBS DS when changing PEBS_DATA_CFGKan Liang1-24/+32
Several similar kernel warnings can be triggered, [56605.607840] CPU0 PEBS record size 0, expected 32, config 0 cpuc->record_size=208 when the below commands are running in parallel for a while on SPR. while true; do perf record --no-buildid -a --intr-regs=AX \ -e cpu/event=0xd0,umask=0x81/pp \ -c 10003 -o /dev/null ./triad; done & while true; do perf record -o /tmp/out -W -d \ -e '{ld_blocks.store_forward:period=1000000, \ MEM_TRANS_RETIRED.LOAD_LATENCY:u:precise=2:ldlat=4}' \ -c 1037 ./triad; done The triad program is just the generation of loads/stores. The warnings are triggered when an unexpected PEBS record (with a different config and size) is found. A system-wide PEBS event with the large PEBS config may be enabled during a context switch. Some PEBS records for the system-wide PEBS may be generated while the old task is sched out but the new one hasn't been sched in yet. When the new task is sched in, the cpuc->pebs_record_size may be updated for the per-task PEBS events. So the existing system-wide PEBS records have a different size from the later PEBS records. The PEBS buffer should be flushed right before the hardware is reprogrammed. The new size and threshold should be updated after the old buffer has been flushed. Reported-by: Stephane Eranian <eranian@google.com> Suggested-by: Peter Zijlstra (Intel) <peterz@infradead.org> Signed-off-by: Kan Liang <kan.liang@linux.intel.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Link: https://lkml.kernel.org/r/20230421184529.3320912-1-kan.liang@linux.intel.com
2023-02-25Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvmLinus Torvalds1-1/+3
Pull kvm updates from Paolo Bonzini: "ARM: - Provide a virtual cache topology to the guest to avoid inconsistencies with migration on heterogenous systems. Non secure software has no practical need to traverse the caches by set/way in the first place - Add support for taking stage-2 access faults in parallel. This was an accidental omission in the original parallel faults implementation, but should provide a marginal improvement to machines w/o FEAT_HAFDBS (such as hardware from the fruit company) - A preamble to adding support for nested virtualization to KVM, including vEL2 register state, rudimentary nested exception handling and masking unsupported features for nested guests - Fixes to the PSCI relay that avoid an unexpected host SVE trap when resuming a CPU when running pKVM - VGIC maintenance interrupt support for the AIC - Improvements to the arch timer emulation, primarily aimed at reducing the trap overhead of running nested - Add CONFIG_USERFAULTFD to the KVM selftests config fragment in the interest of CI systems - Avoid VM-wide stop-the-world operations when a vCPU accesses its own redistributor - Serialize when toggling CPACR_EL1.SMEN to avoid unexpected exceptions in the host - Aesthetic and comment/kerneldoc fixes - Drop the vestiges of the old Columbia mailing list and add [Oliver] as co-maintainer RISC-V: - Fix wrong usage of PGDIR_SIZE instead of PUD_SIZE - Correctly place the guest in S-mode after redirecting a trap to the guest - Redirect illegal instruction traps to guest - SBI PMU support for guest s390: - Sort out confusion between virtual and physical addresses, which currently are the same on s390 - A new ioctl that performs cmpxchg on guest memory - A few fixes x86: - Change tdp_mmu to a read-only parameter - Separate TDP and shadow MMU page fault paths - Enable Hyper-V invariant TSC control - Fix a variety of APICv and AVIC bugs, some of them real-world, some of them affecting architecurally legal but unlikely to happen in practice - Mark APIC timer as expired if its in one-shot mode and the count underflows while the vCPU task was being migrated - Advertise support for Intel's new fast REP string features - Fix a double-shootdown issue in the emergency reboot code - Ensure GIF=1 and disable SVM during an emergency reboot, i.e. give SVM similar treatment to VMX - Update Xen's TSC info CPUID sub-leaves as appropriate - Add support for Hyper-V's extended hypercalls, where "support" at this point is just forwarding the hypercalls to userspace - Clean up the kvm->lock vs. kvm->srcu sequences when updating the PMU and MSR filters - One-off fixes and cleanups - Fix and cleanup the range-based TLB flushing code, used when KVM is running on Hyper-V - Add support for filtering PMU events using a mask. If userspace wants to restrict heavily what events the guest can use, it can now do so without needing an absurd number of filter entries - Clean up KVM's handling of "PMU MSRs to save", especially when vPMU support is disabled - Add PEBS support for Intel Sapphire Rapids - Fix a mostly benign overflow bug in SEV's send|receive_update_data() - Move several SVM-specific flags into vcpu_svm x86 Intel: - Handle NMI VM-Exits before leaving the noinstr region - A few trivial cleanups in the VM-Enter flows - Stop enabling VMFUNC for L1 purely to document that KVM doesn't support EPTP switching (or any other VM function) for L1 - Fix a crash when using eVMCS's enlighted MSR bitmaps Generic: - Clean up the hardware enable and initialization flow, which was scattered around multiple arch-specific hooks. Instead, just let the arch code call into generic code. Both x86 and ARM should benefit from not having to fight common KVM code's notion of how to do initialization - Account allocations in generic kvm_arch_alloc_vm() - Fix a memory leak if coalesced MMIO unregistration fails selftests: - On x86, cache the CPU vendor (AMD vs. Intel) and use the info to emit the correct hypercall instruction instead of relying on KVM to patch in VMMCALL - Use TAP interface for kvm_binary_stats_test and tsc_msrs_test" * tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (325 commits) KVM: SVM: hyper-v: placate modpost section mismatch error KVM: x86/mmu: Make tdp_mmu_allowed static KVM: arm64: nv: Use reg_to_encoding() to get sysreg ID KVM: arm64: nv: Only toggle cache for virtual EL2 when SCTLR_EL2 changes KVM: arm64: nv: Filter out unsupported features from ID regs KVM: arm64: nv: Emulate EL12 register accesses from the virtual EL2 KVM: arm64: nv: Allow a sysreg to be hidden from userspace only KVM: arm64: nv: Emulate PSTATE.M for a guest hypervisor KVM: arm64: nv: Add accessors for SPSR_EL1, ELR_EL1 and VBAR_EL1 from virtual EL2 KVM: arm64: nv: Handle SMCs taken from virtual EL2 KVM: arm64: nv: Handle trapped ERET from virtual EL2 KVM: arm64: nv: Inject HVC exceptions to the virtual EL2 KVM: arm64: nv: Support virtual EL2 exceptions KVM: arm64: nv: Handle HCR_EL2.NV system register traps KVM: arm64: nv: Add nested virt VCPU primitives for vEL2 VCPU state KVM: arm64: nv: Add EL2 system registers to vcpu context KVM: arm64: nv: Allow userspace to set PSR_MODE_EL2x KVM: arm64: nv: Reset VCPU to EL2 registers if VCPU nested virt is set KVM: arm64: nv: Introduce nested virtualization VCPU feature KVM: arm64: Use the S2 MMU context to iterate over S2 table ...
2023-02-11perf/x86/intel/ds: Fix the conversion from TSC to perf timeKan Liang1-9/+26
The time order is incorrect when the TSC in a PEBS record is used. $perf record -e cycles:upp dd if=/dev/zero of=/dev/null count=10000 $ perf script --show-task-events perf-exec 0 0.000000: PERF_RECORD_COMM: perf-exec:915/915 dd 915 106.479872: PERF_RECORD_COMM exec: dd:915/915 dd 915 106.483270: PERF_RECORD_EXIT(915:915):(914:914) dd 915 106.512429: 1 cycles:upp: ffffffff96c011b7 [unknown] ([unknown]) ... ... The perf time is from sched_clock_cpu(). The current PEBS code unconditionally convert the TSC to native_sched_clock(). There is a shift between the two clocks. If the TSC is stable, the shift is consistent, __sched_clock_offset. If the TSC is unstable, the shift has to be calculated at runtime. This patch doesn't support the conversion when the TSC is unstable. The TSC unstable case is a corner case and very unlikely to happen. If it happens, the TSC in a PEBS record will be dropped and fall back to perf_event_clock(). Fixes: 47a3aeb39e8d ("perf/x86/intel/pebs: Fix PEBS timestamps overwritten") Reported-by: Namhyung Kim <namhyung@kernel.org> Signed-off-by: Kan Liang <kan.liang@linux.intel.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Link: https://lore.kernel.org/all/CAM9d7cgWDVAq8-11RbJ2uGfwkKD6fA-OMwOKDrNUrU_=8MgEjg@mail.gmail.com/
2023-02-01perf/x86/intel: Expose EPT-friendly PEBS for SPR and future modelsLike Xu1-1/+3
According to Intel SDM, the EPT-friendly PEBS is supported by all the platforms after ICX, ADL and the future platforms with PEBS format 5. Currently the only in-kernel user of this capability is KVM, which has very limited support for hybrid core pmu, so ADL and its successors do not currently expose this capability. When both hybrid core and PEBS format 5 are present, KVM will decide on its own merits. Cc: Peter Zijlstra <peterz@infradead.org> Cc: linux-perf-users@vger.kernel.org Suggested-by: Kan Liang <kan.liang@linux.intel.com> Signed-off-by: Like Xu <likexu@tencent.com> Reviewed-by: Kan Liang <kan.liang@linux.intel.com> Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org> Link: https://lore.kernel.org/r/20221109082802.27543-4-likexu@tencent.com Signed-off-by: Sean Christopherson <seanjc@google.com>
2023-01-18perf/core: Introduce perf_prepare_header()Namhyung Kim1-1/+2
Factor out perf_prepare_header() so that it can call perf_prepare_sample() without a header if not needed. Also it checks the filtered_sample_type to avoid duplicate work when perf_prepare_sample() is called twice (or more). Suggested-by: Peter Zijlstr <peterz@infradead.org> Signed-off-by: Namhyung Kim <namhyung@kernel.org> Signed-off-by: Ingo Molnar <mingo@kernel.org> Tested-by: Jiri Olsa <jolsa@kernel.org> Acked-by: Jiri Olsa <jolsa@kernel.org> Acked-by: Song Liu <song@kernel.org> Acked-by: Peter Zijlstra <peterz@infradead.org> Link: https://lore.kernel.org/r/20230118060559.615653-8-namhyung@kernel.org
2023-01-18perf/core: Add perf_sample_save_brstack() helperNamhyung Kim1-6/+3
When we saves the branch stack to the perf sample data, we needs to update the sample flags and the dynamic size. To make sure this is done consistently, add the perf_sample_save_brstack() helper and convert all call sites. Suggested-by: Peter Zijlstra <peterz@infradead.org> Signed-off-by: Namhyung Kim <namhyung@kernel.org> Signed-off-by: Ingo Molnar <mingo@kernel.org> Tested-by: Jiri Olsa <jolsa@kernel.org> Acked-by: Jiri Olsa <jolsa@kernel.org> Acked-by: Athira Rajeev <atrajeev@linux.vnet.ibm.com> Acked-by: Peter Zijlstra <peterz@infradead.org> Link: https://lore.kernel.org/r/20230118060559.615653-5-namhyung@kernel.org
2023-01-18perf/core: Add perf_sample_save_callchain() helperNamhyung Kim1-8/+4
When we save the callchain to the perf sample data, we need to update the sample flags and the dynamic size. To ensure this is done consistently, add the perf_sample_save_callchain() helper and convert all call sites. Suggested-by: Peter Zijlstra <peterz@infradead.org> Signed-off-by: Namhyung Kim <namhyung@kernel.org> Signed-off-by: Ingo Molnar <mingo@kernel.org> Tested-by: Jiri Olsa <jolsa@kernel.org> Acked-by: Jiri Olsa <jolsa@kernel.org> Acked-by: Song Liu <song@kernel.org> Acked-by: Peter Zijlstra <peterz@infradead.org> Link: https://lore.kernel.org/r/20230118060559.615653-3-namhyung@kernel.org
2023-01-09perf/x86: Support Retire LatencyKan Liang1-0/+4
Retire Latency reports the number of elapsed core clocks between the retirement of the instruction indicated by the Instruction Pointer field of the PEBS record and the retirement of the prior instruction. It's enumerated by the IA32_PERF_CAPABILITIES.PEBS_TIMING_INFO[17]. Add flag PMU_FL_RETIRE_LATENCY to indicate the availability of the feature. The Retire Latency is not supported by the fixed counter 0 on p-core of MTL. Signed-off-by: Kan Liang <kan.liang@linux.intel.com> Signed-off-by: Ingo Molnar <mingo@kernel.org> Reviewed-by: Andi Kleen <ak@linux.intel.com> Acked-by: Peter Zijlstra <peterz@infradead.org> Link: https://lore.kernel.org/r/20230104201349.1451191-3-kan.liang@linux.intel.com
2023-01-09perf/x86: Add Meteor Lake supportKan Liang1-11/+59
From PMU's perspective, Meteor Lake is similar to Alder Lake. Both are hybrid platforms, with e-core and p-core. The key differences include: - The e-core supports 2 PDIST GP counters (GP0 & GP1) - New MSRs for the Module Snoop Response Events on the e-core. - New Data Source fields are introduced for the e-core. - There are 8 GP counters for the e-core. - The load latency AUX event is not required for the p-core anymore. - Retire Latency (Support in a separate patch) for both cores. Since most of the code in the intel_pmu_init() should be the same as Alder Lake, to avoid code duplication, share the path with Alder Lake. Add new specific functions of extra_regs, and get_event_constraints to support the OCR events, Module Snoop Response Events and 2 PDIST GP counters on e-core. Add new MTL specific mem_attrs which drops the load latency AUX event. The Data Source field is extended to 4:0, which can contains max 32 sources. The Retire Latency is implemented with a separate patch. Signed-off-by: Kan Liang <kan.liang@linux.intel.com> Signed-off-by: Ingo Molnar <mingo@kernel.org> Reviewed-by: Andi Kleen <ak@linux.intel.com> Acked-by: Peter Zijlstra <peterz@infradead.org> Link: https://lore.kernel.org/r/20230104201349.1451191-2-kan.liang@linux.intel.com
2022-12-12Merge tag 'perf-core-2022-12-12' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tipLinus Torvalds1-2/+2
Pull perf events updates from Ingo Molnar: - Thoroughly rewrite the data structures that implement perf task context handling, with the goal of fixing various quirks and unfeatures both in already merged, and in upcoming proposed code. The old data structure is the per task and per cpu perf_event_contexts: task_struct::perf_events_ctxp[] <-> perf_event_context <-> perf_cpu_context ^ | ^ | ^ `---------------------------------' | `--> pmu ---' v ^ perf_event ------' In this new design this is replaced with a single task context and a single CPU context, plus intermediate data-structures: task_struct::perf_event_ctxp -> perf_event_context <- perf_cpu_context ^ | ^ ^ `---------------------------' | | | | perf_cpu_pmu_context <--. | `----. ^ | | | | | | v v | | ,--> perf_event_pmu_context | | | | | | | v v | perf_event ---> pmu ----------------' [ See commit bd2756811766 for more details. ] This rewrite was developed by Peter Zijlstra and Ravi Bangoria. - Optimize perf_tp_event() - Update the Intel uncore PMU driver, extending it with UPI topology discovery on various hardware models. - Misc fixes & cleanups * tag 'perf-core-2022-12-12' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (25 commits) perf/x86/intel/uncore: Fix reference count leak in __uncore_imc_init_box() perf/x86/intel/uncore: Fix reference count leak in snr_uncore_mmio_map() perf/x86/intel/uncore: Fix reference count leak in hswep_has_limit_sbox() perf/x86/intel/uncore: Fix reference count leak in sad_cfg_iio_topology() perf/x86/intel/uncore: Make set_mapping() procedure void perf/x86/intel/uncore: Update sysfs-devices-mapping file perf/x86/intel/uncore: Enable UPI topology discovery for Sapphire Rapids perf/x86/intel/uncore: Enable UPI topology discovery for Icelake Server perf/x86/intel/uncore: Get UPI NodeID and GroupID perf/x86/intel/uncore: Enable UPI topology discovery for Skylake Server perf/x86/intel/uncore: Generalize get_topology() for SKX PMUs perf/x86/intel/uncore: Disable I/O stacks to PMU mapping on ICX-D perf/x86/intel/uncore: Clear attr_update properly perf/x86/intel/uncore: Introduce UPI topology type perf/x86/intel/uncore: Generalize IIO topology support perf/core: Don't allow grouping events from different hw pmus perf/amd/ibs: Make IBS a core pmu perf: Fix function pointer case perf/x86/amd: Remove the repeated declaration perf: Fix possible memleak in pmu_dev_alloc() ...
2022-11-02perf/x86/intel: Fix pebs event constraints for SPRKan Liang1-2/+7
According to the latest event list, update the MEM_INST_RETIRED events which support the DataLA facility for SPR. Fixes: 61b985e3e775 ("perf/x86/intel: Add perf core PMU support for Sapphire Rapids") Signed-off-by: Kan Liang <kan.liang@linux.intel.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: stable@vger.kernel.org Link: https://lkml.kernel.org/r/20221031154119.571386-2-kan.liang@linux.intel.com
2022-11-02perf/x86/intel: Fix pebs event constraints for ICLKan Liang1-2/+7
According to the latest event list, update the MEM_INST_RETIRED events which support the DataLA facility. Fixes: 6017608936c1 ("perf/x86/intel: Add Icelake support") Reported-by: Jannis Klinkenberg <jannis.klinkenberg@rwth-aachen.de> Signed-off-by: Kan Liang <kan.liang@linux.intel.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: stable@vger.kernel.org Link: https://lkml.kernel.org/r/20221031154119.571386-1-kan.liang@linux.intel.com
2022-10-27perf: Rewrite core context handlingPeter Zijlstra1-2/+2
There have been various issues and limitations with the way perf uses (task) contexts to track events. Most notable is the single hardware PMU task context, which has resulted in a number of yucky things (both proposed and merged). Notably: - HW breakpoint PMU - ARM big.little PMU / Intel ADL PMU - Intel Branch Monitoring PMU - AMD IBS PMU - S390 cpum_cf PMU - PowerPC trace_imc PMU *Current design:* Currently we have a per task and per cpu perf_event_contexts: task_struct::perf_events_ctxp[] <-> perf_event_context <-> perf_cpu_context ^ | ^ | ^ `---------------------------------' | `--> pmu ---' v ^ perf_event ------' Each task has an array of pointers to a perf_event_context. Each perf_event_context has a direct relation to a PMU and a group of events for that PMU. The task related perf_event_context's have a pointer back to that task. Each PMU has a per-cpu pointer to a per-cpu perf_cpu_context, which includes a perf_event_context, which again has a direct relation to that PMU, and a group of events for that PMU. The perf_cpu_context also tracks which task context is currently associated with that CPU and includes a few other things like the hrtimer for rotation etc. Each perf_event is then associated with its PMU and one perf_event_context. *Proposed design:* New design proposed by this patch reduce to a single task context and a single CPU context but adds some intermediate data-structures: task_struct::perf_event_ctxp -> perf_event_context <- perf_cpu_context ^ | ^ ^ `---------------------------' | | | | perf_cpu_pmu_context <--. | `----. ^ | | | | | | v v | | ,--> perf_event_pmu_context | | | | | | | v v | perf_event ---> pmu ----------------' With the new design, perf_event_context will hold all events for all pmus in the (respective pinned/flexible) rbtrees. This can be achieved by adding pmu to rbtree key: {cpu, pmu, cgroup, group_index} Each perf_event_context carries a list of perf_event_pmu_context which is used to hold per-pmu-per-context state. For example, it keeps track of currently active events for that pmu, a pmu specific task_ctx_data, a flag to tell whether rotation is required or not etc. Additionally, perf_cpu_pmu_context is used to hold per-pmu-per-cpu state like hrtimer details to drive the event rotation, a pointer to perf_event_pmu_context of currently running task and some other ancillary information. Each perf_event is associated to it's pmu, perf_event_context and perf_event_pmu_context. Further optimizations to current implementation are possible. For example, ctx_resched() can be optimized to reschedule only single pmu events. Much thanks to Ravi for picking this up and pushing it towards completion. Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Co-developed-by: Ravi Bangoria <ravi.bangoria@amd.com> Signed-off-by: Ravi Bangoria <ravi.bangoria@amd.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Link: https://lkml.kernel.org/r/20221008062424.313-1-ravi.bangoria@amd.com
2022-10-10Merge tag 'perf-core-2022-10-07' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tipLinus Torvalds1-14/+41
Pull perf events updates from Ingo Molnar: "PMU driver updates: - Add AMD Last Branch Record Extension Version 2 (LbrExtV2) feature support for Zen 4 processors. - Extend the perf ABI to provide branch speculation information, if available, and use this on CPUs that have it (eg. LbrExtV2). - Improve Intel PEBS TSC timestamp handling & integration. - Add Intel Raptor Lake S CPU support. - Add 'perf mem' and 'perf c2c' memory profiling support on AMD CPUs by utilizing IBS tagged load/store samples. - Clean up & optimize various x86 PMU details. HW breakpoints: - Big rework to optimize the code for systems with hundreds of CPUs and thousands of breakpoints: - Replace the nr_bp_mutex global mutex with the bp_cpuinfo_sem per-CPU rwsem that is read-locked during most of the key operations. - Improve the O(#cpus * #tasks) logic in toggle_bp_slot() and fetch_bp_busy_slots(). - Apply micro-optimizations & cleanups. - Misc cleanups & enhancements" * tag 'perf-core-2022-10-07' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (75 commits) perf/hw_breakpoint: Annotate tsk->perf_event_mutex vs ctx->mutex perf: Fix pmu_filter_match() perf: Fix lockdep_assert_event_ctx() perf/x86/amd/lbr: Adjust LBR regardless of filtering perf/x86/utils: Fix uninitialized var in get_branch_type() perf/uapi: Define PERF_MEM_SNOOPX_PEER in kernel header file perf/x86/amd: Support PERF_SAMPLE_PHY_ADDR perf/x86/amd: Support PERF_SAMPLE_ADDR perf/x86/amd: Support PERF_SAMPLE_{WEIGHT|WEIGHT_STRUCT} perf/x86/amd: Support PERF_SAMPLE_DATA_SRC perf/x86/amd: Add IBS OP_DATA2 DataSrc bit definitions perf/mem: Introduce PERF_MEM_LVLNUM_{EXTN_MEM|IO} perf/x86/uncore: Add new Raptor Lake S support perf/x86/cstate: Add new Raptor Lake S support perf/x86/msr: Add new Raptor Lake S support perf/x86: Add new Raptor Lake S support bpf: Check flags for branch stack in bpf_read_branch_records helper perf, hw_breakpoint: Fix use-after-free if perf_event_open() fails perf: Use sample_flags for raw_data perf: Use sample_flags for addr ...
2022-09-29Merge branch 'v6.0-rc7'Peter Zijlstra1-2/+11
Merge upstream to get RAPTORLAKE_S Signed-off-by: Peter Zijlstra <peterz@infradead.org>
2022-09-27perf: Use sample_flags for addrNamhyung Kim1-2/+6
Use the new sample_flags to indicate whether the addr field is filled by the PMU driver. As most PMU drivers pass 0, it can set the flag only if it has a non-zero value. And use 0 in perf_sample_output() if it's not filled already. Signed-off-by: Namhyung Kim <namhyung@kernel.org> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Link: https://lkml.kernel.org/r/20220921220032.2858517-1-namhyung@kernel.org
2022-09-13perf: Use sample_flags for callchainNamhyung Kim1-2/+6
So that it can call perf_callchain() only if needed. Historically it used __PERF_SAMPLE_CALLCHAIN_EARLY but we can do that with sample_flags in the struct perf_sample_data. Signed-off-by: Namhyung Kim <namhyung@kernel.org> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Link: https://lore.kernel.org/r/20220908214104.3851807-1-namhyung@kernel.org