aboutsummaryrefslogtreecommitdiffstatshomepage
path: root/arch/x86/mm/tlb.c (follow)
AgeCommit message (Collapse)AuthorFilesLines
2025-05-09x86/mm: Eliminate window where TLB flushes may be inadvertently skippedDave Hansen1-3/+19
tl;dr: There is a window in the mm switching code where the new CR3 is set and the CPU should be getting TLB flushes for the new mm. But should_flush_tlb() has a bug and suppresses the flush. Fix it by widening the window where should_flush_tlb() sends an IPI. Long Version: === History === There were a few things leading up to this. First, updating mm_cpumask() was observed to be too expensive, so it was made lazier. But being lazy caused too many unnecessary IPIs to CPUs due to the now-lazy mm_cpumask(). So code was added to cull mm_cpumask() periodically[2]. But that culling was a bit too aggressive and skipped sending TLB flushes to CPUs that need them. So here we are again. === Problem === The too-aggressive code in should_flush_tlb() strikes in this window: // Turn on IPIs for this CPU/mm combination, but only // if should_flush_tlb() agrees: cpumask_set_cpu(cpu, mm_cpumask(next)); next_tlb_gen = atomic64_read(&next->context.tlb_gen); choose_new_asid(next, next_tlb_gen, &new_asid, &need_flush); load_new_mm_cr3(need_flush); // ^ After 'need_flush' is set to false, IPIs *MUST* // be sent to this CPU and not be ignored. this_cpu_write(cpu_tlbstate.loaded_mm, next); // ^ Not until this point does should_flush_tlb() // become true! should_flush_tlb() will suppress TLB flushes between load_new_mm_cr3() and writing to 'loaded_mm', which is a window where they should not be suppressed. Whoops. === Solution === Thankfully, the fuzzy "just about to write CR3" window is already marked with loaded_mm==LOADED_MM_SWITCHING. Simply checking for that state in should_flush_tlb() is sufficient to ensure that the CPU is targeted with an IPI. This will cause more TLB flush IPIs. But the window is relatively small and I do not expect this to cause any kind of measurable performance impact. Update the comment where LOADED_MM_SWITCHING is written since it grew yet another user. Peter Z also raised a concern that should_flush_tlb() might not observe 'loaded_mm' and 'is_lazy' in the same order that switch_mm_irqs_off() writes them. Add a barrier to ensure that they are observed in the order they are written. Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com> Acked-by: Rik van Riel <riel@surriel.com> Link: https://lore.kernel.org/oe-lkp/202411282207.6bd28eae-lkp@intel.com/ [1] Fixes: 6db2526c1d69 ("x86/mm/tlb: Only trim the mm_cpumask once a second") [2] Reported-by: Stephen Dolan <sdolan@janestreet.com> Cc: stable@vger.kernel.org Acked-by: Ingo Molnar <mingo@kernel.org> Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2025-04-09x86/bugs: Don't fill RSB on context switch with eIBRSJosh Poimboeuf1-3/+3
User->user Spectre v2 attacks (including RSB) across context switches are already mitigated by IBPB in cond_mitigation(), if enabled globally or if either the prev or the next task has opted in to protection. RSB filling without IBPB serves no purpose for protecting user space, as indirect branches are still vulnerable. User->kernel RSB attacks are mitigated by eIBRS. In which case the RSB filling on context switch isn't needed, so remove it. Suggested-by: Pawan Gupta <pawan.kumar.gupta@linux.intel.com> Signed-off-by: Josh Poimboeuf <jpoimboe@kernel.org> Signed-off-by: Ingo Molnar <mingo@kernel.org> Reviewed-by: Pawan Gupta <pawan.kumar.gupta@linux.intel.com> Reviewed-by: Amit Shah <amit.shah@amd.com> Reviewed-by: Nikolay Borisov <nik.borisov@suse.com> Link: https://lore.kernel.org/r/98cdefe42180358efebf78e3b80752850c7a3e1b.1744148254.git.jpoimboe@kernel.org
2025-03-25Merge tag 'x86_bugs_for_v6.15' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tipLinus Torvalds1-2/+1
Pull x86 speculation mitigation updates from Borislav Petkov: - Some preparatory work to convert the mitigations machinery to mitigating attack vectors instead of single vulnerabilities - Untangle and remove a now unneeded X86_FEATURE_USE_IBPB flag - Add support for a Zen5-specific SRSO mitigation - Cleanups and minor improvements * tag 'x86_bugs_for_v6.15' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: x86/bugs: Make spectre user default depend on MITIGATION_SPECTRE_V2 x86/bugs: Use the cpu_smt_possible() helper instead of open-coded code x86/bugs: Add AUTO mitigations for mds/taa/mmio/rfds x86/bugs: Relocate mds/taa/mmio/rfds defines x86/bugs: Add X86_BUG_SPECTRE_V2_USER x86/bugs: Remove X86_FEATURE_USE_IBPB KVM: nVMX: Always use IBPB to properly virtualize IBRS x86/bugs: Use a static branch to guard IBPB on vCPU switch x86/bugs: Remove the X86_FEATURE_USE_IBPB check in ib_prctl_set() x86/mm: Remove X86_FEATURE_USE_IBPB checks in cond_mitigation() x86/bugs: Move the X86_FEATURE_USE_IBPB check into callers x86/bugs: KVM: Add support for SRSO_MSR_FIX
2025-03-19x86/mm: Only do broadcast flush from reclaim if pages were unmappedRik van Riel1-1/+2
Track whether pages were unmapped from any MM (even ones with a currently empty mm_cpumask) by the reclaim code, to figure out whether or not broadcast TLB flush should be done when reclaim finishes. The reason any MM must be tracked, and not only ones contributing to the tlbbatch cpumask, is that broadcast ASIDs are expected to be kept up to date even on CPUs where the MM is not currently active. This change allows reclaim to avoid doing TLB flushes when only clean page cache pages and/or slab memory were reclaimed, which is fairly common. ( This is a simpler alternative to the code that was in my INVLPGB series before, and it seems to capture most of the benefit due to how common it is to reclaim only page cache. ) Signed-off-by: Rik van Riel <riel@surriel.com> Signed-off-by: Ingo Molnar <mingo@kernel.org> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: Andy Lutomirski <luto@kernel.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Link: https://lore.kernel.org/r/20250319132520.6b10ad90@fangorn
2025-03-19x86/mm: Enable broadcast TLB invalidation for multi-threaded processesRik van Riel1-1/+103
There is not enough room in the 12-bit ASID address space to hand out broadcast ASIDs to every process. Only hand out broadcast ASIDs to processes when they are observed to be simultaneously running on 4 or more CPUs. This also allows single threaded process to continue using the cheaper, local TLB invalidation instructions like INVLPGB. Due to the structure of flush_tlb_mm_range(), the INVLPGB flushing is done in a generically named broadcast_tlb_flush() function which can later also be used for Intel RAR. Combined with the removal of unnecessary lru_add_drain calls() (see https://lore.kernel.org/r/20241219153253.3da9e8aa@fangorn) this results in a nice performance boost for the will-it-scale tlb_flush2_threads test on an AMD Milan system with 36 cores: - vanilla kernel: 527k loops/second - lru_add_drain removal: 731k loops/second - only INVLPGB: 527k loops/second - lru_add_drain + INVLPGB: 1157k loops/second Profiling with only the INVLPGB changes showed while TLB invalidation went down from 40% of the total CPU time to only around 4% of CPU time, the contention simply moved to the LRU lock. Fixing both at the same time about doubles the number of iterations per second from this case. Comparing will-it-scale tlb_flush2_threads with several different numbers of threads on a 72 CPU AMD Milan shows similar results. The number represents the total number of loops per second across all the threads: threads tip INVLPGB 1 315k 304k 2 423k 424k 4 644k 1032k 8 652k 1267k 16 737k 1368k 32 759k 1199k 64 636k 1094k 72 609k 993k 1 and 2 thread performance is similar with and without INVLPGB, because INVLPGB is only used on processes using 4 or more CPUs simultaneously. The number is the median across 5 runs. Some numbers closer to real world performance can be found at Phoronix, thanks to Michael: https://www.phoronix.com/news/AMD-INVLPGB-Linux-Benefits [ bp: - Massage - :%s/\<static_cpu_has\>/cpu_feature_enabled/cgi - :%s/\<clear_asid_transition\>/mm_clear_asid_transition/cgi - Fold in a 0day bot fix: https://lore.kernel.org/oe-kbuild-all/202503040000.GtiWUsBm-lkp@intel.com ] Signed-off-by: Rik van Riel <riel@surriel.com> Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de> Signed-off-by: Ingo Molnar <mingo@kernel.org> Reviewed-by: Nadav Amit <nadav.amit@gmail.com> Link: https://lore.kernel.org/r/20250226030129.530345-11-riel@surriel.com
2025-03-19x86/mm: Handle global ASID context switch and TLB flushRik van Riel1-7/+70
Do context switch and TLB flush support for processes that use a global ASID and PCID across all CPUs. At both context switch time and TLB flush time, it needs to be checked whether a task is switching to a global ASID, and, if so, reload the TLB with the new ASID as appropriate. In both code paths, the TLB flush is avoided if a global ASID is used, because the global ASIDs are always kept up to date across CPUs, even when the process is not running on a CPU. [ bp: - Massage - :%s/\<static_cpu_has\>/cpu_feature_enabled/cgi ] Signed-off-by: Rik van Riel <riel@surriel.com> Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de> Signed-off-by: Ingo Molnar <mingo@kernel.org> Link: https://lore.kernel.org/r/20250226030129.530345-9-riel@surriel.com
2025-03-19x86/mm: Add global ASID allocation helper functionsRik van Riel1-3/+151
Add functions to manage global ASID space. Multithreaded processes that are simultaneously active on 4 or more CPUs can get a global ASID, resulting in the same PCID being used for that process on every CPU. This in turn will allow the kernel to use hardware-assisted TLB flushing through AMD INVLPGB or Intel RAR for these processes. [ bp: - Extend use_global_asid() comment - s/X86_BROADCAST_TLB_FLUSH/BROADCAST_TLB_FLUSH/g - other touchups ] Signed-off-by: Rik van Riel <riel@surriel.com> Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de> Signed-off-by: Ingo Molnar <mingo@kernel.org> Link: https://lore.kernel.org/r/20250226030129.530345-8-riel@surriel.com
2025-03-19x86/mm: Use broadcast TLB flushing in page reclaimRik van Riel1-1/+3
Page reclaim tracks only the CPU(s) where the TLB needs to be flushed, rather than all the individual mappings that may be getting invalidated. Use broadcast TLB flushing when that is available. [ bp: Massage commit message. ] Signed-off-by: Rik van Riel <riel@surriel.com> Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de> Signed-off-by: Ingo Molnar <mingo@kernel.org> Link: https://lore.kernel.org/r/20250226030129.530345-7-riel@surriel.com
2025-03-19x86/mm: Use INVLPGB for kernel TLB flushesRik van Riel1-4/+44
Use broadcast TLB invalidation for kernel addresses when available. Remove the need to send IPIs for kernel TLB flushes. [ bp: Integrate dhansen's comments additions, merge the flush_tlb_all() change into this one too. ] Signed-off-by: Rik van Riel <riel@surriel.com> Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de> Signed-off-by: Ingo Molnar <mingo@kernel.org> Link: https://lore.kernel.org/r/20250226030129.530345-5-riel@surriel.com
2025-03-19x86/mm: Consolidate full flush threshold decisionRik van Riel1-22/+19
Reduce code duplication by consolidating the decision point for whether to do individual invalidations or a full flush inside get_flush_tlb_info(). Suggested-by: Dave Hansen <dave.hansen@intel.com> Signed-off-by: Rik van Riel <riel@surriel.com> Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de> Signed-off-by: Ingo Molnar <mingo@kernel.org> Reviewed-by: Borislav Petkov (AMD) <bp@alien8.de> Acked-by: Dave Hansen <dave.hansen@intel.com> Link: https://lore.kernel.org/r/20250226030129.530345-2-riel@surriel.com
2025-02-27x86/mm: Remove X86_FEATURE_USE_IBPB checks in cond_mitigation()Yosry Ahmed1-4/+2
The check is performed when either switch_mm_cond_ibpb or switch_mm_always_ibpb is set. In both cases, X86_FEATURE_USE_IBPB is always set. Remove the redundant check. Signed-off-by: Yosry Ahmed <yosry.ahmed@linux.dev> Signed-off-by: Ingo Molnar <mingo@kernel.org> Acked-by: Josh Poimboeuf <jpoimboe@kernel.org> Link: https://lore.kernel.org/r/20250227012712.3193063-3-yosry.ahmed@linux.dev
2025-02-27x86/bugs: Move the X86_FEATURE_USE_IBPB check into callersYosry Ahmed1-3/+4
indirect_branch_prediction_barrier() only performs the MSR write if X86_FEATURE_USE_IBPB is set, using alternative_msr_write(). In preparation for removing X86_FEATURE_USE_IBPB, move the feature check into the callers so that they can be addressed one-by-one, and use X86_FEATURE_IBPB instead to guard the MSR write. Signed-off-by: Yosry Ahmed <yosry.ahmed@linux.dev> Signed-off-by: Ingo Molnar <mingo@kernel.org> Acked-by: Josh Poimboeuf <jpoimboe@kernel.org> Acked-by: Sean Christopherson <seanjc@google.com> Link: https://lore.kernel.org/r/20250227012712.3193063-2-yosry.ahmed@linux.dev
2025-02-05x86: Compare physical instead of virtual PGD addressesMaciej Wieczor-Retman1-1/+1
This is a preparatory patch for when pointers have tags in their upper address bits. But it's a harmless change on its own. The mm->pgd virtual address may be tagged because it came out of the allocator at some point. The __va(read_cr3_pa()) address will never be tagged (the tag bits are all 1's). A direct pointer value comparison would fail if one is tagged and the other is not. To fix this, just compare the physical addresses which are never affected by tagging. [ dhansen: subject and changelog munging ] Signed-off-by: Maciej Wieczor-Retman <maciej.wieczor-retman@intel.com> Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com> Link: https://lore.kernel.org/all/fde443d0e67f76a51e7ab4e96647705840f53ddb.1738686764.git.maciej.wieczor-retman%40intel.com
2024-12-20Merge branch 'linus' into x86/mm, to pick up fixesIngo Molnar1-1/+2
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2024-12-06x86/mm/tlb: Only trim the mm_cpumask once a secondRik van Riel1-3/+32
Setting and clearing CPU bits in the mm_cpumask is only ever done by the CPU itself, from the context switch code or the TLB flush code. Synchronization is handled by switch_mm_irqs_off() blocking interrupts. Sending TLB flush IPIs to CPUs that are in the mm_cpumask, but no longer running the program causes a regression in the will-it-scale tlbflush2 test. This test is contrived, but a large regression here might cause a small regression in some real world workload. Instead of always sending IPIs to CPUs that are in the mm_cpumask, but no longer running the program, send these IPIs only once a second. The rest of the time we can skip over CPUs where the loaded_mm is different from the target mm. Reported-by: kernel test roboto <oliver.sang@intel.com> Signed-off-by: Rik van Riel <riel@surriel.com> Signed-off-by: Ingo Molnar <mingo@kernel.org> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: Andy Lutomirski <luto@kernel.org> Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Link: https://lore.kernel.org/r/20241204210316.612ee573@fangorn Closes: https://lore.kernel.org/oe-lkp/202411282207.6bd28eae-lkp@intel.com/
2024-12-06x86/mm/tlb: Also remove local CPU from mm_cpumask if staleRik van Riel1-6/+6
The code in flush_tlb_func() that removes a remote CPU from the cpumask if it is no longer running the target mm is also needed on the originating CPU of a TLB flush, now that CPUs are no longer cleared from the mm_cpumask at context switch time. Flushing the TLB when we are not running the target mm is harmless, because the CPU's tlb_gen only gets updated to match the mm_tlb_gen, but it does hit this warning: WARN_ON_ONCE(local_tlb_gen > mm_tlb_gen); [ 210.343902][ T4668] WARNING: CPU: 38 PID: 4668 at arch/x86/mm/tlb.c:815 flush_tlb_func (arch/x86/mm/tlb.c:815) Removing both local and remote CPUs from the mm_cpumask when doing a flush for a not currently loaded mm avoids that warning. Reported-by: kernel test robot <oliver.sang@intel.com> Tested-by: kernel test robot <oliver.sang@intel.com> Signed-off-by: Rik van Riel <riel@surriel.com> Signed-off-by: Ingo Molnar <mingo@kernel.org> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com> Cc: Andy Lutomirski <luto@kernel.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Link: https://lore.kernel.org/r/20241205104630.755706ca@fangorn Closes: https://lore.kernel.org/oe-lkp/202412051551.690e9656-lkp@intel.com
2024-11-25x86/mm: Carve out INVLPG inline asm for use by othersBorislav Petkov (AMD)1-1/+2
No functional changes. Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de> Link: https://lore.kernel.org/r/ZyulbYuvrkshfsd2@antipodes
2024-11-19x86/mm/tlb: Add tracepoint for TLB flush IPI to stale CPURik van Riel1-0/+1
Add a tracepoint when we send a TLB flush IPI to a CPU that used to be in the mm_cpumask, but isn't any more. Suggested-by: Dave Hansen <dave.hansen@intel.com> Signed-off-by: Rik van Riel <riel@surriel.com> Signed-off-by: Ingo Molnar <mingo@kernel.org> Link: https://lore.kernel.org/r/20241114152723.1294686-3-riel@surriel.com
2024-11-19x86/mm/tlb: Update mm_cpumask lazilyRik van Riel1-10/+9
On busy multi-threaded workloads, there can be significant contention on the mm_cpumask at context switch time. Reduce that contention by updating mm_cpumask lazily, setting the CPU bit at context switch time (if not already set), and clearing the CPU bit at the first TLB flush sent to a CPU where the process isn't running. When a flurry of TLB flushes for a process happen, only the first one will be sent to CPUs where the process isn't running. The others will be sent to CPUs where the process is currently running. On an AMD Milan system with 36 cores, there is a noticeable difference: $ hackbench --groups 20 --loops 10000 Before: ~4.5s +/- 0.1s After: ~4.2s +/- 0.1s Signed-off-by: Rik van Riel <riel@surriel.com> Signed-off-by: Ingo Molnar <mingo@kernel.org> Cc: Dave Hansen <dave.hansen@intel.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Mel Gorman <mgorman@suse.de> Link: https://lore.kernel.org/r/20241114152723.1294686-2-riel@surriel.com
2024-11-13x86/mm/tlb: Put cpumask_test_cpu() check in switch_mm_irqs_off() under CONFIG_DEBUG_VMRik van Riel1-1/+1
On a web server workload, the cpumask_test_cpu() inside the WARN_ON_ONCE() in the 'prev == next branch' takes about 17% of all the CPU time of switch_mm_irqs_off(). On a large fleet, this WARN_ON_ONCE() has not fired in at least a month, possibly never. Move this test under CONFIG_DEBUG_VM so it does not get compiled in production kernels. Signed-off-by: Rik van Riel <riel@surriel.com> Signed-off-by: Ingo Molnar <mingo@kernel.org> Cc: Andy Lutomirski <luto@kernel.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Link: https://lore.kernel.org/r/20241109003727.3958374-4-riel@surriel.com
2024-08-14x86/mm: Remove duplicate check from build_cr3()Yuntao Wang1-1/+0
There is already a check for 'asid > MAX_ASID_AVAILABLE' in kern_pcid(), so it is unnecessary to perform this check in build_cr3() right before calling kern_pcid(). Remove it. Signed-off-by: Yuntao Wang <yuntao.wang@linux.dev> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Link: https://lore.kernel.org/all/20240814124645.51019-1-yuntao.wang@linux.dev
2024-08-10x86/mm: Remove unused CR3_HW_ASID_BITSYosry Ahmed1-3/+0
Commit 6fd166aae78c ("x86/mm: Use/Fix PCID to optimize user/kernel switches") removed the last usage of CR3_HW_ASID_BITS and opted to use X86_CR3_PCID_BITS instead. Remove CR3_HW_ASID_BITS. Signed-off-by: Yosry Ahmed <yosryahmed@google.com> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Link: https://lore.kernel.org/all/20240425215951.2310105-1-yosryahmed@google.com
2024-07-02x86/mm: Fix LAM inconsistency during context switchYosry Ahmed1-3/+5
LAM can only be enabled when a process is single-threaded. But _kernel_ threads can temporarily use a single-threaded process's mm. That means that a context-switching kernel thread can race and observe the mm's LAM metadata (mm->context.lam_cr3_mask) change. The context switch code does two logical things with that metadata: populate CR3 and populate 'cpu_tlbstate.lam'. If it hits this race, 'cpu_tlbstate.lam' and CR3 can end up out of sync. This de-synchronization is currently harmless. But it is confusing and might lead to warnings or real bugs. Update set_tlbstate_lam_mode() to take in the LAM mask and untag mask instead of an mm_struct pointer, and while we are at it, rename it to cpu_tlbstate_update_lam(). This should also make it clearer that we are updating cpu_tlbstate. In switch_mm_irqs_off(), read the LAM mask once and use it for both the cpu_tlbstate update and the CR3 update. Signed-off-by: Yosry Ahmed <yosryahmed@google.com> Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com> Reviewed-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Link: https://lore.kernel.org/all/20240702132139.3332013-3-yosryahmed%40google.com
2024-07-02x86/mm: Use IPIs to synchronize LAM enablementYosry Ahmed1-4/+3
LAM can only be enabled when a process is single-threaded. But _kernel_ threads can temporarily use a single-threaded process's mm. If LAM is enabled by a userspace process while a kthread is using its mm, the kthread will not observe LAM enablement (i.e. LAM will be disabled in CR3). This could be fine for the kthread itself, as LAM only affects userspace addresses. However, if the kthread context switches to a thread in the same userspace process, CR3 may or may not be updated because the mm_struct doesn't change (based on pending TLB flushes). If CR3 is not updated, the userspace thread will run incorrectly with LAM disabled, which may cause page faults when using tagged addresses. Example scenario: CPU 1 CPU 2 /* kthread */ kthread_use_mm() /* user thread */ prctl_enable_tagged_addr() /* LAM enabled on CPU 2 */ /* LAM disabled on CPU 1 */ context_switch() /* to CPU 1 */ /* Switching to user thread */ switch_mm_irqs_off() /* CR3 not updated */ /* LAM is still disabled on CPU 1 */ Synchronize LAM enablement by sending an IPI to all CPUs running with the mm_struct to enable LAM. This makes sure LAM is enabled on CPU 1 in the above scenario before prctl_enable_tagged_addr() returns and userspace starts using tagged addresses, and before it's possible to run the userspace process on CPU 1. In switch_mm_irqs_off(), move reading the LAM mask until after mm_cpumask() is updated. This ensures that if an outdated LAM mask is written to CR3, an IPI is received to update it right after IRQs are re-enabled. [ dhansen: Add a LAM enabling helper and comment it ] Fixes: 82721d8b25d7 ("x86/mm: Handle LAM on context switch") Suggested-by: Andy Lutomirski <luto@kernel.org> Signed-off-by: Yosry Ahmed <yosryahmed@google.com> Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com> Reviewed-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Link: https://lore.kernel.org/all/20240702132139.3332013-2-yosryahmed%40google.com
2024-03-14Merge tag 'mm-stable-2024-03-13-20-04' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mmLinus Torvalds1-21/+18
Pull MM updates from Andrew Morton: - Sumanth Korikkar has taught s390 to allocate hotplug-time page frames from hotplugged memory rather than only from main memory. Series "implement "memmap on memory" feature on s390". - More folio conversions from Matthew Wilcox in the series "Convert memcontrol charge moving to use folios" "mm: convert mm counter to take a folio" - Chengming Zhou has optimized zswap's rbtree locking, providing significant reductions in system time and modest but measurable reductions in overall runtimes. The series is "mm/zswap: optimize the scalability of zswap rb-tree". - Chengming Zhou has also provided the series "mm/zswap: optimize zswap lru list" which provides measurable runtime benefits in some swap-intensive situations. - And Chengming Zhou further optimizes zswap in the series "mm/zswap: optimize for dynamic zswap_pools". Measured improvements are modest. - zswap cleanups and simplifications from Yosry Ahmed in the series "mm: zswap: simplify zswap_swapoff()". - In the series "Add DAX ABI for memmap_on_memory", Vishal Verma has contributed several DAX cleanups as well as adding a sysfs tunable to control the memmap_on_memory setting when the dax device is hotplugged as system memory. - Johannes Weiner has added the large series "mm: zswap: cleanups", which does that. - More DAMON work from SeongJae Park in the series "mm/damon: make DAMON debugfs interface deprecation unignorable" "selftests/damon: add more tests for core functionalities and corner cases" "Docs/mm/damon: misc readability improvements" "mm/damon: let DAMOS feeds and tame/auto-tune itself" - In the series "mm/mempolicy: weighted interleave mempolicy and sysfs extension" Rakie Kim has developed a new mempolicy interleaving policy wherein we allocate memory across nodes in a weighted fashion rather than uniformly. This is beneficial in heterogeneous memory environments appearing with CXL. - Christophe Leroy has contributed some cleanup and consolidation work against the ARM pagetable dumping code in the series "mm: ptdump: Refactor CONFIG_DEBUG_WX and check_wx_pages debugfs attribute". - Luis Chamberlain has added some additional xarray selftesting in the series "test_xarray: advanced API multi-index tests". - Muhammad Usama Anjum has reworked the selftest code to make its human-readable output conform to the TAP ("Test Anything Protocol") format. Amongst other things, this opens up the use of third-party tools to parse and process out selftesting results. - Ryan Roberts has added fork()-time PTE batching of THP ptes in the series "mm/memory: optimize fork() with PTE-mapped THP". Mainly targeted at arm64, this significantly speeds up fork() when the process has a large number of pte-mapped folios. - David Hildenbrand also gets in on the THP pte batching game in his series "mm/memory: optimize unmap/zap with PTE-mapped THP". It implements batching during munmap() and other pte teardown situations. The microbenchmark improvements are nice. - And in the series "Transparent Contiguous PTEs for User Mappings" Ryan Roberts further utilizes arm's pte's contiguous bit ("contpte mappings"). Kernel build times on arm64 improved nicely. Ryan's series "Address some contpte nits" provides some followup work. - In the series "mm/hugetlb: Restore the reservation" Breno Leitao has fixed an obscure hugetlb race which was causing unnecessary page faults. He has also added a reproducer under the selftest code. - In the series "selftests/mm: Output cleanups for the compaction test", Mark Brown did what the title claims. - Kinsey Ho has added the series "mm/mglru: code cleanup and refactoring". - Even more zswap material from Nhat Pham. The series "fix and extend zswap kselftests" does as claimed. - In the series "Introduce cpu_dcache_is_aliasing() to fix DAX regression" Mathieu Desnoyers has cleaned up and fixed rather a mess in our handling of DAX on archiecctures which have virtually aliasing data caches. The arm architecture is the main beneficiary. - Lokesh Gidra's series "per-vma locks in userfaultfd" provides dramatic improvements in worst-case mmap_lock hold times during certain userfaultfd operations. - Some page_owner enhancements and maintenance work from Oscar Salvador in his series "page_owner: print stacks and their outstanding allocations" "page_owner: Fixup and cleanup" - Uladzislau Rezki has contributed some vmalloc scalability improvements in his series "Mitigate a vmap lock contention". It realizes a 12x improvement for a certain microbenchmark. - Some kexec/crash cleanup work from Baoquan He in the series "Split crash out from kexec and clean up related config items". - Some zsmalloc maintenance work from Chengming Zhou in the series "mm/zsmalloc: fix and optimize objects/page migration" "mm/zsmalloc: some cleanup for get/set_zspage_mapping()" - Zi Yan has taught the MM to perform compaction on folios larger than order=0. This a step along the path to implementaton of the merging of large anonymous folios. The series is named "Enable >0 order folio memory compaction". - Christoph Hellwig has done quite a lot of cleanup work in the pagecache writeback code in his series "convert write_cache_pages() to an iterator". - Some modest hugetlb cleanups and speedups in Vishal Moola's series "Handle hugetlb faults under the VMA lock". - Zi Yan has changed the page splitting code so we can split huge pages into sizes other than order-0 to better utilize large folios. The series is named "Split a folio to any lower order folios". - David Hildenbrand has contributed the series "mm: remove total_mapcount()", a cleanup. - Matthew Wilcox has sought to improve the performance of bulk memory freeing in his series "Rearrange batched folio freeing". - Gang Li's series "hugetlb: parallelize hugetlb page init on boot" provides large improvements in bootup times on large machines which are configured to use large numbers of hugetlb pages. - Matthew Wilcox's series "PageFlags cleanups" does that. - Qi Zheng's series "minor fixes and supplement for ptdesc" does that also. S390 is affected. - Cleanups to our pagemap utility functions from Peter Xu in his series "mm/treewide: Replace pXd_large() with pXd_leaf()". - Nico Pache has fixed a few things with our hugepage selftests in his series "selftests/mm: Improve Hugepage Test Handling in MM Selftests". - Also, of course, many singleton patches to many things. Please see the individual changelogs for details. * tag 'mm-stable-2024-03-13-20-04' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm: (435 commits) mm/zswap: remove the memcpy if acomp is not sleepable crypto: introduce: acomp_is_async to expose if comp drivers might sleep memtest: use {READ,WRITE}_ONCE in memory scanning mm: prohibit the last subpage from reusing the entire large folio mm: recover pud_leaf() definitions in nopmd case selftests/mm: skip the hugetlb-madvise tests on unmet hugepage requirements selftests/mm: skip uffd hugetlb tests with insufficient hugepages selftests/mm: dont fail testsuite due to a lack of hugepages mm/huge_memory: skip invalid debugfs new_order input for folio split mm/huge_memory: check new folio order when split a folio mm, vmscan: retry kswapd's priority loop with cache_trim_mode off on failure mm: add an explicit smp_wmb() to UFFDIO_CONTINUE mm: fix list corruption in put_pages_list mm: remove folio from deferred split list before uncharging it filemap: avoid unnecessary major faults in filemap_fault() mm,page_owner: drop unnecessary check mm,page_owner: check for null stack_record before bumping its refcount mm: swap: fix race between free_swap_and_cache() and swapoff() mm/treewide: align up pXd_leaf() retval across archs mm/treewide: drop pXd_large() ...
2024-03-04x86/mm: always pass NULL as the first argument of switch_mm_irqs_off()Yosry Ahmed1-1/+1
The first argument of switch_mm_irqs_off() is unused by the x86 implementation. Make sure that x86 code never passes a non-NULL value to make this clear. Update the only non violating caller, switch_mm(). Link: https://lkml.kernel.org/r/20240222190911.1903054-2-yosryahmed@google.com Signed-off-by: Yosry Ahmed <yosryahmed@google.com> Suggested-by: Dave Hansen <dave.hansen@intel.com> Acked-by: Dave Hansen <dave.hansen@intel.com> Cc: Andy Lutomirski <luto@kernel.org> Cc: Borislav Petkov (AMD) <bp@alien8.de> Cc: Ingo Molnar <mingo@redhat.com> Cc: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2024-03-04x86/mm: further clarify switch_mm_irqs_off() documentationYosry Ahmed1-4/+4
Commit accf6b23d1e5a ("x86/mm: clarify "prev" usage in switch_mm_irqs_off()") attempted to clarify x86's usage of the arguments passed by generic code, specifically the "prev" argument the is unused by x86. However, it could have done a better job with the comment above switch_mm_irqs_off(). Rewrite this comment according to Dave Hansen's suggestion. Link: https://lkml.kernel.org/r/20240222190911.1903054-1-yosryahmed@google.com Fixes: 3cfd6625a6cf ("x86/mm: clarify "prev" usage in switch_mm_irqs_off()") Signed-off-by: Yosry Ahmed <yosryahmed@google.com> Suggested-by: Dave Hansen <dave.hansen@intel.com> Acked-by: Dave Hansen <dave.hansen@intel.com> Cc: Andy Lutomirski <luto@kernel.org> Cc: Borislav Petkov (AMD) <bp@alien8.de> Cc: Ingo Molnar <mingo@redhat.com> Cc: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2024-02-22x86/mm: clarify "prev" usage in switch_mm_irqs_off()Yosry Ahmed1-19/+16
In the x86 implementation of switch_mm_irqs_off(), we do not use the "prev" argument passed in by the caller, we use exclusively use "real_prev", which is cpu_tlbstate.loaded_mm. This is not obvious at the first sight. Furthermore, a comment describes a condition that happens when called with prev == next, but this should not affect the function in any way since prev is unused. Apparently, the comment is intended to clarify why we don't rely on prev == next to decide whether we need to update CR3, but again, it is not obvious. The comment also references the fact that leave_mm() calls with prev == NULL and tsk == NULL, but this also shouldn't matter because prev is unused and tsk is only used in one function which has a NULL check. Clarify things by renaming (prev -> unused) and (real_prev -> prev), also move and rewrite the comment as an explanation for why we don't rely on "prev" supplied by the caller in x86 code and use our own. Hopefully this makes reading the code easier. Link: https://lkml.kernel.org/r/20240126080644.1714297-2-yosryahmed@google.com Signed-off-by: Yosry Ahmed <yosryahmed@google.com> Cc: Andy Lutomirski <luto@kernel.org> Cc: Borislav Petkov (AMD) <bp@alien8.de> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2024-02-22x86/mm: delete unused cpu argument to leave_mm()Yosry Ahmed1-1/+1
The argument is unused since commit 3d28ebceaffa ("x86/mm: Rework lazy TLB to track the actual loaded mm"), delete it. Link: https://lkml.kernel.org/r/20240126080644.1714297-1-yosryahmed@google.com Signed-off-by: Yosry Ahmed <yosryahmed@google.com> Cc: Andy Lutomirski <luto@kernel.org> Cc: Borislav Petkov (AMD) <bp@alien8.de> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2024-01-10x86/bugs: Rename CONFIG_PAGE_TABLE_ISOLATION => CONFIG_MITIGATION_PAGE_TABLE_ISOLATIONBreno Leitao1-5/+5
Step 4/10 of the namespace unification of CPU mitigations related Kconfig options. [ mingo: Converted new uses that got added since the series was posted. ] Suggested-by: Josh Poimboeuf <jpoimboe@kernel.org> Signed-off-by: Breno Leitao <leitao@debian.org> Signed-off-by: Ingo Molnar <mingo@kernel.org> Acked-by: Josh Poimboeuf <jpoimboe@kernel.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Link: https://lore.kernel.org/r/20231121160740.1249350-5-leitao@debian.org
2024-01-03arch/x86: Fix typosBjorn Helgaas1-1/+1
Fix typos, most reported by "codespell arch/x86". Only touches comments, no code changes. Signed-off-by: Bjorn Helgaas <bhelgaas@google.com> Signed-off-by: Ingo Molnar <mingo@kernel.org> Reviewed-by: Randy Dunlap <rdunlap@infradead.org> Link: https://lore.kernel.org/r/20240103004011.1758650-1-helgaas@kernel.org
2023-08-30Merge tag 'x86_mm_for_6.6-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tipLinus Torvalds1-6/+13
Pull x86 mm updates from Dave Hansen: "A pair of small x86/mm updates. The INVPCID one is purely a cleanup. The PAT one fixes a real issue, albeit a relatively obscure one (graphics device passthrough under Xen). The fix also makes the code much more readable. Summary: - Remove unnecessary "INVPCID single" feature tracking - Include PAT in page protection modify mask" * tag 'x86_mm_for_6.6-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: x86/mm: Remove "INVPCID single" feature tracking x86/mm: Fix PAT bit missing from page protection modify mask
2023-08-18mmu_notifiers: rename invalidate_range notifierAlistair Popple1-1/+1
There are two main use cases for mmu notifiers. One is by KVM which uses mmu_notifier_invalidate_range_start()/end() to manage a software TLB. The other is to manage hardware TLBs which need to use the invalidate_range() callback because HW can establish new TLB entries at any time. Hence using start/end() can lead to memory corruption as these callbacks happen too soon/late during page unmap. mmu notifier users should therefore either use the start()/end() callbacks or the invalidate_range() callbacks. To make this usage clearer rename the invalidate_range() callback to arch_invalidate_secondary_tlbs() and update documention. Link: https://lkml.kernel.org/r/6f77248cd25545c8020a54b4e567e8b72be4dca1.1690292440.git-series.apopple@nvidia.com Signed-off-by: Alistair Popple <apopple@nvidia.com> Suggested-by: Jason Gunthorpe <jgg@nvidia.com> Acked-by: Catalin Marinas <catalin.marinas@arm.com> Reviewed-by: Jason Gunthorpe <jgg@nvidia.com> Cc: Andrew Donnellan <ajd@linux.ibm.com> Cc: Chaitanya Kumar Borah <chaitanya.kumar.borah@intel.com> Cc: Frederic Barrat <fbarrat@linux.ibm.com> Cc: Jason Gunthorpe <jgg@ziepe.ca> Cc: John Hubbard <jhubbard@nvidia.com> Cc: Kevin Tian <kevin.tian@intel.com> Cc: Michael Ellerman <mpe@ellerman.id.au> Cc: Nicholas Piggin <npiggin@gmail.com> Cc: Nicolin Chen <nicolinc@nvidia.com> Cc: Robin Murphy <robin.murphy@arm.com> Cc: Sean Christopherson <seanjc@google.com> Cc: SeongJae Park <sj@kernel.org> Cc: Tvrtko Ursulin <tvrtko.ursulin@linux.intel.com> Cc: Will Deacon <will@kernel.org> Cc: Zhi Wang <zhi.wang.linux@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-08-18mmu_notifiers: call invalidate_range() when invalidating TLBsAlistair Popple1-0/+2
The invalidate_range() is going to become an architecture specific mmu notifier used to keep the TLB of secondary MMUs such as an IOMMU in sync with the CPU page tables. Currently it is called from separate code paths to the main CPU TLB invalidations. This can lead to a secondary TLB not getting invalidated when required and makes it hard to reason about when exactly the secondary TLB is invalidated. To fix this move the notifier call to the architecture specific TLB maintenance functions for architectures that have secondary MMUs requiring explicit software invalidations. This fixes a SMMU bug on ARM64. On ARM64 PTE permission upgrades require a TLB invalidation. This invalidation is done by the architecture specific ptep_set_access_flags() which calls flush_tlb_page() if required. However this doesn't call the notifier resulting in infinite faults being generated by devices using the SMMU if it has previously cached a read-only PTE in it's TLB. Moving the invalidations into the TLB invalidation functions ensures all invalidations happen at the same time as the CPU invalidation. The architecture specific flush_tlb_all() routines do not call the notifier as none of the IOMMUs require this. Link: https://lkml.kernel.org/r/0287ae32d91393a582897d6c4db6f7456b1001f2.1690292440.git-series.apopple@nvidia.com Signed-off-by: Alistair Popple <apopple@nvidia.com> Suggested-by: Jason Gunthorpe <jgg@ziepe.ca> Tested-by: SeongJae Park <sj@kernel.org> Acked-by: Catalin Marinas <catalin.marinas@arm.com> Reviewed-by: Jason Gunthorpe <jgg@nvidia.com> Tested-by: Luis Chamberlain <mcgrof@kernel.org> Cc: Andrew Donnellan <ajd@linux.ibm.com> Cc: Chaitanya Kumar Borah <chaitanya.kumar.borah@intel.com> Cc: Frederic Barrat <fbarrat@linux.ibm.com> Cc: John Hubbard <jhubbard@nvidia.com> Cc: Kevin Tian <kevin.tian@intel.com> Cc: Michael Ellerman <mpe@ellerman.id.au> Cc: Nicholas Piggin <npiggin@gmail.com> Cc: Nicolin Chen <nicolinc@nvidia.com> Cc: Robin Murphy <robin.murphy@arm.com> Cc: Sean Christopherson <seanjc@google.com> Cc: Tvrtko Ursulin <tvrtko.ursulin@linux.intel.com> Cc: Will Deacon <will@kernel.org> Cc: Zhi Wang <zhi.wang.linux@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-08-03x86/mm: Remove "INVPCID single" feature trackingDave Hansen1-6/+13
From: Dave Hansen <dave.hansen@linux.intel.com> tl;dr: Replace a synthetic X86_FEATURE with a hardware X86_FEATURE and check of existing per-cpu state. == Background == There are three features in play here: 1. Good old Page Table Isolation (PTI) 2. Process Context IDentifiers (PCIDs) which allow entries from multiple address spaces to be in the TLB at once. 3. Support for the "Invalidate PCID" (INVPCID) instruction, specifically the "individual address" mode (aka. mode 0). When all *three* of these are in place, INVPCID can and should be used to flush out individual addresses in the PTI user address space. But there's a wrinkle or two: First, this INVPCID mode is dependent on CR4.PCIDE. Even if X86_FEATURE_INVPCID==1, the instruction may #GP without setting up CR4. Second, TLB flushing is done very early, even before CR4 is fully set up. That means even if PTI, PCID and INVPCID are supported, there is *still* a window where INVPCID can #GP. == Problem == The current code seems to work, but mostly by chance and there are a bunch of ways it can go wrong. It's also somewhat hard to follow since X86_FEATURE_INVPCID_SINGLE is set far away from its lone user. == Solution == Make "INVPCID single" more robust and easier to follow by placing all the logic in one place. Remove X86_FEATURE_INVPCID_SINGLE. Make two explicit checks before using INVPCID: 1. Check that the system supports INVPCID itself (boot_cpu_has()) 2. Then check the CR4.PCIDE shadow to ensures that the CPU can safely use INVPCID for individual address invalidation. The CR4 check *always* works and is not affected by any X86_FEATURE_* twiddling or inconsistencies between the boot and secondary CPUs. This has been tested on non-Meltdown hardware by using pti=on and then flipping PCID and INVPCID support with qemu. == Aside == How does this code even work today? By chance, I think. First, PTI is initialized around the same time that the boot CPU sets CR4.PCIDE=1. There are currently no TLB invalidations when PTI=1 but CR4.PCIDE=0. That means that the X86_FEATURE_INVPCID_SINGLE check is never even reached. this_cpu_has() is also very nasty to use in this context because the boot CPU reaches here before cpu_data(0) has been initialized. It happens to work for X86_FEATURE_INVPCID_SINGLE since it's a software-defined feature but it would fall over for a hardware- derived X86_FEATURE. Reported-by: Jann Horn <jannh@google.com> Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com> Link: https://lore.kernel.org/all/20230718170630.7922E235%40davehans-spike.ostc.intel.com
2023-04-28Merge tag 'x86_mm_for_6.4' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tipLinus Torvalds1-16/+37
Pull x86 LAM (Linear Address Masking) support from Dave Hansen: "Add support for the new Linear Address Masking CPU feature. This is similar to ARM's Top Byte Ignore and allows userspace to store metadata in some bits of pointers without masking it out before use" * tag 'x86_mm_for_6.4' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: x86/mm/iommu/sva: Do not allow to set FORCE_TAGGED_SVA bit from outside x86/mm/iommu/sva: Fix error code for LAM enabling failure due to SVA selftests/x86/lam: Add test cases for LAM vs thread creation selftests/x86/lam: Add ARCH_FORCE_TAGGED_SVA test cases for linear-address masking selftests/x86/lam: Add inherit test cases for linear-address masking selftests/x86/lam: Add io_uring test cases for linear-address masking selftests/x86/lam: Add mmap and SYSCALL test cases for linear-address masking selftests/x86/lam: Add malloc and tag-bits test cases for linear-address masking x86/mm/iommu/sva: Make LAM and SVA mutually exclusive iommu/sva: Replace pasid_valid() helper with mm_valid_pasid() mm: Expose untagging mask in /proc/$PID/status x86/mm: Provide arch_prctl() interface for LAM x86/mm: Reduce untagged_addr() overhead for systems without LAM x86/uaccess: Provide untagged_addr() and remove tags before address check mm: Introduce untagged_addr_remote() x86/mm: Handle LAM on context switch x86: CPUID and CR3/CR4 flags for Linear Address Masking x86: Allow atomic MM_CONTEXT flags setting x86/mm: Rework address range check in get_user() and put_user()
2023-03-30docs: move x86 documentation into Documentation/arch/Jonathan Corbet1-1/+1
Move the x86 documentation under Documentation/arch/ as a way of cleaning up the top-level directory and making the structure of our docs more closely match the structure of the source directories it describes. All in-kernel references to the old paths have been updated. Acked-by: Dave Hansen <dave.hansen@linux.intel.com> Cc: linux-arch@vger.kernel.org Cc: x86@kernel.org Cc: Borislav Petkov <bp@alien8.de> Cc: Thomas Gleixner <tglx@linutronix.de> Link: https://lore.kernel.org/lkml/20230315211523.108836-1-corbet@lwn.net/ Signed-off-by: Jonathan Corbet <corbet@lwn.net>
2023-03-16x86/mm: Handle LAM on context switchKirill A. Shutemov1-16/+37
Linear Address Masking mode for userspace pointers encoded in CR3 bits. The mode is selected per-process and stored in mm_context_t. switch_mm_irqs_off() now respects selected LAM mode and constructs CR3 accordingly. The active LAM mode gets recorded in the tlb_state. Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com> Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org> Tested-by: Alexander Potapenko <glider@google.com> Link: https://lore.kernel.org/all/20230312112612.31869-5-kirill.shutemov%40linux.intel.com
2023-01-25x86/cpu: Use cpu_feature_enabled() when checking global pages supportBorislav Petkov (AMD)1-1/+1
X86_FEATURE_PGE determines whether the CPU has enabled global page translations support. Use the faster cpu_feature_enabled() check to shave off some more cycles when flushing all TLB entries, including the global ones. What this practically saves is: mov 0x82eb308(%rip),%rax # 0xffffffff8935bec8 <boot_cpu_data+40> test $0x20,%ah ... which test the bit. Not a lot, but TLB flushing is a timing-sensitive path, so anything to make it even faster. No functional changes. Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de> Signed-off-by: Ingo Molnar <mingo@kernel.org> Link: https://lore.kernel.org/r/20230125075013.9292-1-bp@alien8.de
2022-07-19x86/mm/tlb: Ignore f->new_tlb_gen when zeroNadav Amit1-3/+12
Commit aa44284960d5 ("x86/mm/tlb: Avoid reading mm_tlb_gen when possible") introduced an optimization to skip superfluous TLB flushes based on the generation provided in flush_tlb_info. However, arch_tlbbatch_flush() does not provide any generation in flush_tlb_info and populates the flush_tlb_info generation with 0. This 0 is causes the flush_tlb_info to be interpreted as a superfluous, old flush. As a result, try_to_unmap_one() would not perform any TLB flushes. Fix it by checking whether f->new_tlb_gen is nonzero. Zero value is anyhow is an invalid generation value. To avoid future confusion, introduce TLB_GENERATION_INVALID constant and use it properly. Add warnings to ensure no partial flushes are done with TLB_GENERATION_INVALID or when f->mm is NULL, since this does not make any sense. In addition, add the missing unlikely(). [ dhansen: change VM_BUG_ON() -> VM_WARN_ON(), clarify changelog ] Fixes: aa44284960d5 ("x86/mm/tlb: Avoid reading mm_tlb_gen when possible") Reported-by: Hugh Dickins <hughd@google.com> Signed-off-by: Nadav Amit <namit@vmware.com> Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com> Tested-by: Hugh Dickins <hughd@google.com> Link: https://lkml.kernel.org/r/20220710232837.3618-1-namit@vmware.com
2022-06-07x86/mm/tlb: Avoid reading mm_tlb_gen when possibleNadav Amit1-1/+17
On extreme TLB shootdown storms, the mm's tlb_gen cacheline is highly contended and reading it should (arguably) be avoided as much as possible. Currently, flush_tlb_func() reads the mm's tlb_gen unconditionally, even when it is not necessary (e.g., the mm was already switched). This is wasteful. Moreover, one of the existing optimizations is to read mm's tlb_gen to see if there are additional in-flight TLB invalidations and flush the entire TLB in such a case. However, if the request's tlb_gen was already flushed, the benefit of checking the mm's tlb_gen is likely to be offset by the overhead of the check itself. Running will-it-scale with tlb_flush1_threads show a considerable benefit on 56-core Skylake (up to +24%): threads Baseline (v5.17+) +Patch 1 159960 160202 5 310808 308378 (-0.7%) 10 479110 490728 15 526771 562528 20 534495 587316 25 547462 628296 30 579616 666313 35 594134 701814 40 612288 732967 45 617517 749727 50 637476 735497 55 614363 778913 (+24%) Signed-off-by: Nadav Amit <namit@vmware.com> Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com> Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org> Acked-by: Andy Lutomirski <luto@kernel.org> Link: https://lkml.kernel.org/r/20220606180123.2485171-1-namit@vmware.com
2022-04-04x86/mm/tlb: Revert retpoline avoidance approachDave Hansen1-32/+5
0day reported a regression on a microbenchmark which is intended to stress the TLB flushing path: https://lore.kernel.org/all/20220317090415.GE735@xsang-OptiPlex-9020/ It pointed at a commit from Nadav which intended to remove retpoline overhead in the TLB flushing path by taking the 'cond'-ition in on_each_cpu_cond_mask(), pre-calculating it, and incorporating it into 'cpumask'. That allowed the code to use a bunch of earlier direct calls instead of later indirect calls that need a retpoline. But, in practice, threads can go idle (and into lazy TLB mode where they don't need to flush their TLB) between the early and late calls. It works in this direction and not in the other because TLB-flushing threads tend to hold mmap_lock for write. Contention on that lock causes threads to _go_ idle right in this early/late window. There was not any performance data in the original commit specific to the retpoline overhead. I did a few tests on a system with retpolines: https://lore.kernel.org/all/dd8be93c-ded6-b962-50d4-96b1c3afb2b7@intel.com/ which showed a possible small win. But, that small win pales in comparison with the bigger loss induced on non-retpoline systems. Revert the patch that removed the retpolines. This was not a clean revert, but it was self-contained enough not to be too painful. Fixes: 6035152d8eeb ("x86/mm/tlb: Open-code on_each_cpu_cond_mask() for tlb_is_not_lazy()") Reported-by: kernel test robot <oliver.sang@intel.com> Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com> Signed-off-by: Borislav Petkov <bp@suse.de> Acked-by: Nadav Amit <namit@vmware.com> Cc: <stable@vger.kernel.org> Link: https://lkml.kernel.org/r/164874672286.389.7021457716635788197.tip-bot2@tip-bot2
2022-03-10task_work: Remove unnecessary include from posix_timers.hEric W. Biederman1-0/+1
Break a header file circular dependency by removing the unnecessary include of task_work.h from posix_timers.h. sched.h -> posix-timers.h posix-timers.h -> task_work.h task_work.h -> sched.h Add missing includes of task_work.h to: arch/x86/mm/tlb.c kernel/time/posix-cpu-timers.c Reviewed-by: Kees Cook <keescook@chromium.org> Link: https://lkml.kernel.org/r/20220309162454.123006-6-ebiederm@xmission.com Signed-off-by: "Eric W. Biederman" <ebiederm@xmission.com>
2022-01-10Merge tag 'core_entry_for_v5.17_rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tipLinus Torvalds1-1/+1
Pull thread_info flag accessor helper updates from Borislav Petkov: "Add a set of thread_info.flags accessors which snapshot it before accesing it in order to prevent any potential data races, and convert all users to those new accessors" * tag 'core_entry_for_v5.17_rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: powerpc: Snapshot thread flags powerpc: Avoid discarding flags in system_call_exception() openrisc: Snapshot thread flags microblaze: Snapshot thread flags arm64: Snapshot thread flags ARM: Snapshot thread flags alpha: Snapshot thread flags sched: Snapshot thread flags entry: Snapshot thread flags x86: Snapshot thread flags thread_info: Add helpers to snapshot thread flags
2021-12-06x86/mm/64: Flush global TLB on boot and AP bringupJoerg Roedel1-6/+2
The AP bringup code uses the trampoline_pgd page-table which establishes global mappings in the user range of the address space. Flush the global TLB entries after the indentity mappings are removed so no stale entries remain in the TLB. Signed-off-by: Joerg Roedel <jroedel@suse.de> Signed-off-by: Borislav Petkov <bp@suse.de> Link: https://lore.kernel.org/r/20211202153226.22946-3-joro@8bytes.org
2021-12-01x86: Snapshot thread flagsMark Rutland1-1/+1
Some thread flags can be set remotely, and so even when IRQs are disabled, the flags can change under our feet. Generally this is unlikely to cause a problem in practice, but it is somewhat unsound, and KCSAN will legitimately warn that there is a data race. To avoid such issues, a snapshot of the flags has to be taken prior to using them. Some places already use READ_ONCE() for that, others do not. Convert them all to the new flag accessor helpers. Signed-off-by: Mark Rutland <mark.rutland@arm.com> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Reviewed-by: Thomas Gleixner <tglx@linutronix.de> Acked-by: Paul E. McKenney <paulmck@kernel.org> Link: https://lore.kernel.org/r/20211129130653.2037928-12-mark.rutland@arm.com
2021-07-28x86/mm: Prepare for opt-in based L1D flush in switch_mm()Balbir Singh1-2/+56
The goal of this is to allow tasks that want to protect sensitive information, against e.g. the recently found snoop assisted data sampling vulnerabilites, to flush their L1D on being switched out. This protects their data from being snooped or leaked via side channels after the task has context switched out. This could also be used to wipe L1D when an untrusted task is switched in, but that's not a really well defined scenario while the opt-in variant is clearly defined. The mechanism is default disabled and can be enabled on the kernel command line. Prepare for the actual prctl based opt-in: 1) Provide the necessary setup functionality similar to the other mitigations and enable the static branch when the command line option is set and the CPU provides support for hardware assisted L1D flushing. Software based L1D flush is not supported because it's CPU model specific and not really well defined. This does not come with a sysfs file like the other mitigations because it is not bound to any specific vulnerability. Support has to be queried via the prctl(2) interface. 2) Add TIF_SPEC_L1D_FLUSH next to L1D_SPEC_IB so the two bits can be mangled into the mm pointer in one go which allows to reuse the existing mechanism in switch_mm() for the conditional IBPB speculation barrier efficiently. 3) Add the L1D flush specific functionality which flushes L1D when the outgoing task opted in. Also check whether the incoming task has requested L1D flush and if so validate that it is not accidentaly running on an SMT sibling as this makes the whole excercise moot because SMT siblings share L1D which opens tons of other attack vectors. If that happens schedule task work which signals the incoming task on return to user/guest with SIGBUS as this is part of the paranoid L1D flush contract. Suggested-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Balbir Singh <sblbir@amazon.com> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Link: https://lore.kernel.org/r/20210108121056.21940-1-sblbir@amazon.com
2021-07-28x86/mm: Refactor cond_ibpb() to support other use casesBalbir Singh1-24/+29
cond_ibpb() has the necessary bits required to track the previous mm in switch_mm_irqs_off(). This can be reused for other use cases like L1D flushing on context switch. Suggested-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Balbir Singh <sblbir@amazon.com> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Link: https://lore.kernel.org/r/20210108121056.21940-3-sblbir@amazon.com
2021-06-17perf/x86: Reset the dirty counter to prevent the leak for an RDPMC taskKan Liang1-2/+8
The counter value of a perf task may leak to another RDPMC task. For example, a perf stat task as below is running on CPU 0. perf stat -e 'branches,cycles' -- taskset -c 0 ./workload In the meantime, an RDPMC task, which is also running on CPU 0, may read the GP counters periodically. (The RDPMC task creates a fixed event, but read four GP counters.) $./rdpmc_read_all_counters index 0x0 value 0x8001e5970f99 index 0x1 value 0x8005d750edb6 index 0x2 value 0x0 index 0x3 value 0x0 index 0x0 value 0x8002358e48a5 index 0x1 value 0x8006bd1e3bc9 index 0x2 value 0x0 index 0x3 value 0x0 It is a potential security issue. Once the attacker knows what the other thread is counting. The PerfMon counter can be used as a side-channel to attack cryptosystems. The counter value of the perf stat task leaks to the RDPMC task because perf never clears the counter when it's stopped. Three methods were considered to address the issue. - Unconditionally reset the counter in x86_pmu_del(). It can bring extra overhead even when there is no RDPMC task running. - Only reset the un-assigned dirty counters when the RDPMC task is scheduled in via sched_task(). It fails for the below case. Thread A Thread B clone(CLONE_THREAD) ---> set_affine(0) set_affine(1) while (!event-enabled) ; event = perf_event_open() mmap(event) ioctl(event, IOC_ENABLE); ---> RDPMC Counters are still leaked to the thread B. - Only reset the un-assigned dirty counters before updating the CR4.PCE bit. The method is implemented here. The dirty counter is a counter, on which the assigned event has been deleted, but the counter is not reset. To track the dirty counters, add a 'dirty' variable in the struct cpu_hw_events. The security issue can only be found with an RDPMC task. To enable the RDMPC, the CR4.PCE bit has to be updated. Add a perf_clear_dirty_counters() right before updating the CR4.PCE bit to clear the existing dirty counters. Only the current un-assigned dirty counters are reset, because the RDPMC assigned dirty counters will be updated soon. After applying the patch, $ ./rdpmc_read_all_counters index 0x0 value 0x0 index 0x1 value 0x0 index 0x2 value 0x0 index 0x3 value 0x0 index 0x0 value 0x0 index 0x1 value 0x0 index 0x2 value 0x0 index 0x3 value 0x0 Performance The performance of a context switch only be impacted when there are two or more perf users and one of the users must be an RDPMC user. In other cases, there is no performance impact. The worst-case occurs when there are two users: the RDPMC user only uses one counter; while the other user uses all available counters. When the RDPMC task is scheduled in, all the counters, other than the RDPMC assigned one, have to be reset. Test results for the worst-case, using a modified lat_ctx as measured on an Ice Lake platform, which has 8 GP and 3 FP counters (ignoring SLOTS). lat_ctx -s 128K -N 1000 processes 2 Without the patch: The context switch time is 4.97 us With the patch: The context switch time is 5.16 us There is ~4% performance drop for the context switching time in the worst-case. Suggested-by: Peter Zijlstra (Intel) <peterz@infradead.org> Signed-off-by: Kan Liang <kan.liang@linux.intel.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Link: https://lkml.kernel.org/r/1623693582-187370-1-git-send-email-kan.liang@linux.intel.com
2021-04-29Merge tag 'x86-mm-2021-04-29' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tipLinus Torvalds1-71/+105
Pull x86 tlb updates from Ingo Molnar: "The x86 MM changes in this cycle were: - Implement concurrent TLB flushes, which overlaps the local TLB flush with the remote TLB flush. In testing this improved sysbench performance measurably by a couple of percentage points, especially if TLB-heavy security mitigations are active. - Further micro-optimizations to improve the performance of TLB flushes" * tag 'x86-mm-2021-04-29' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: smp: Micro-optimize smp_call_function_many_cond() smp: Inline on_each_cpu_cond() and on_each_cpu() x86/mm/tlb: Remove unnecessary uses of the inline keyword cpumask: Mark functions as pure x86/mm/tlb: Do not make is_lazy dirty for no reason x86/mm/tlb: Privatize cpu_tlbstate x86/mm/tlb: Flush remote and local TLBs concurrently x86/mm/tlb: Open-code on_each_cpu_cond_mask() for tlb_is_not_lazy() x86/mm/tlb: Unify flush_tlb_func_local() and flush_tlb_func_remote() smp: Run functions concurrently in smp_call_function_many_cond()