Age | Commit message (Collapse) | Author | Files | Lines |
|
With the lack of cpumask_any_andnot_but(), cpumask_any_housekeeping()
has to abuse cpumask_nth() functions.
Update cpumask_any_housekeeping() to use the new cpumask_any_but()
and cpumask_any_andnot_but(). These two functions understand
RESCTRL_PICK_ANY_CPU, which simplifies cpumask_any_housekeeping()
significantly.
Signed-off-by: Yury Norov [NVIDIA] <yury.norov@gmail.com>
Signed-off-by: James Morse <james.morse@arm.com>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Reviewed-by: James Morse <james.morse@arm.com>
Reviewed-by: Reinette Chatre <reinette.chatre@intel.com>
Reviewed-by: Shaopeng Tan <tan.shaopeng@jp.fujitsu.com>
Reviewed-by: Fenghua Yu <fenghuay@nvidia.com>
Tested-by: Fenghua Yu <fenghuay@nvidia.com>
Tested-by: James Morse <james.morse@arm.com>
Tested-by: Shaopeng Tan <tan.shaopeng@jp.fujitsu.com>
Tested-by: Tony Luck <tony.luck@intel.com>
Link: https://lore.kernel.org/20250515165855.31452-5-james.morse@arm.com
|
|
TL;DR: SGX page reclaim touches the page to copy its contents to
secondary storage. SGX instructions do not gracefully handle machine
checks. Despite this, the existing SGX code will try to reclaim pages
that it _knows_ are poisoned. Avoid even trying to reclaim poisoned pages.
The longer story:
Pages used by an enclave only get epc_page->poison set in
arch_memory_failure() but they currently stay on sgx_active_page_list until
sgx_encl_release(), with the SGX_EPC_PAGE_RECLAIMER_TRACKED flag untouched.
epc_page->poison is not checked in the reclaimer logic meaning that, if other
conditions are met, an attempt will be made to reclaim an EPC page that was
poisoned. This is bad because 1. we don't want that page to end up added
to another enclave and 2. it is likely to cause one core to shut down
and the kernel to panic.
Specifically, reclaiming uses microcode operations including "EWB" which
accesses the EPC page contents to encrypt and write them out to non-SGX
memory. Those operations cannot handle MCEs in their accesses other than
by putting the executing core into a special shutdown state (affecting
both threads with HT.) The kernel will subsequently panic on the
remaining cores seeing the core didn't enter MCE handler(s) in time.
Call sgx_unmark_page_reclaimable() to remove the affected EPC page from
sgx_active_page_list on memory error to stop it being considered for
reclaiming.
Testing epc_page->poison in sgx_reclaim_pages() would also work but I assume
it's better to add code in the less likely paths.
The affected EPC page is not added to &node->sgx_poison_page_list until
later in sgx_encl_release()->sgx_free_epc_page() when it is EREMOVEd.
Membership on other lists doesn't change to avoid changing any of the
lists' semantics except for sgx_active_page_list. There's a "TBD" comment
in arch_memory_failure() about pre-emptive actions, the goal here is not
to address everything that it may imply.
This also doesn't completely close the time window when a memory error
notification will be fatal (for a not previously poisoned EPC page) --
the MCE can happen after sgx_reclaim_pages() has selected its candidates
or even *inside* a microcode operation (actually easy to trigger due to
the amount of time spent in them.)
The spinlock in sgx_unmark_page_reclaimable() is safe because
memory_failure() runs in process context and no spinlocks are held,
explicitly noted in a mm/memory-failure.c comment.
Signed-off-by: Andrew Zaborowski <andrew.zaborowski@intel.com>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Acked-by: Dave Hansen <dave.hansen@linux.intel.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Tony Luck <tony.luck@intel.com>
Cc: balrogg@gmail.com
Cc: linux-sgx@vger.kernel.org
Link: https://lore.kernel.org/r/20250508230429.456271-1-andrew.zaborowski@intel.com
|
|
In order to let all the APIs under <cpuid/api.h> have a shared "cpuid_"
namespace, rename have_cpuid_p() to cpuid_feature().
Adjust all call-sites accordingly.
Suggested-by: Ingo Molnar <mingo@kernel.org>
Signed-off-by: Ahmed S. Darwish <darwi@linutronix.de>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Andrew Cooper <andrew.cooper3@citrix.com>
Cc: John Ogness <john.ogness@linutronix.de>
Cc: x86-cpuid@lists.linux.dev
Link: https://lore.kernel.org/r/20250508150240.172915-4-darwi@linutronix.de
|
|
The main CPUID header <asm/cpuid.h> was originally a storefront for the
headers:
<asm/cpuid/api.h>
<asm/cpuid/leaf_0x2_api.h>
Now that the latter CPUID(0x2) header has been merged into the former,
there is no practical difference between <asm/cpuid.h> and
<asm/cpuid/api.h>.
Migrate all users to the <asm/cpuid/api.h> header, in preparation of
the removal of <asm/cpuid.h>.
Don't remove <asm/cpuid.h> just yet, in case some new code in -next
started using it.
Suggested-by: Ingo Molnar <mingo@kernel.org>
Signed-off-by: Ahmed S. Darwish <darwi@linutronix.de>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Cc: Andrew Cooper <andrew.cooper3@citrix.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: John Ogness <john.ogness@linutronix.de>
Cc: x86-cpuid@lists.linux.dev
Link: https://lore.kernel.org/r/20250508150240.172915-3-darwi@linutronix.de
|
|
Move all of the CPUID(0x2) APIs at <cpuid/leaf_0x2_api.h> into
<cpuid/api.h>, in order centralize all CPUID APIs into the latter.
While at it, separate the different CPUID leaf parsing APIs using
header comments like "CPUID(0xN) parsing: ".
Suggested-by: Ingo Molnar <mingo@kernel.org>
Signed-off-by: Ahmed S. Darwish <darwi@linutronix.de>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Andrew Cooper <andrew.cooper3@citrix.com>
Cc: John Ogness <john.ogness@linutronix.de>
Cc: x86-cpuid@lists.linux.dev
Link: https://lore.kernel.org/r/20250508150240.172915-2-darwi@linutronix.de
|
|
Currently, using PEBS-via-PT with a sample frequency instead of a sample
period, causes a segfault. For example:
BUG: kernel NULL pointer dereference, address: 0000000000000195
<NMI>
? __die_body.cold+0x19/0x27
? page_fault_oops+0xca/0x290
? exc_page_fault+0x7e/0x1b0
? asm_exc_page_fault+0x26/0x30
? intel_pmu_pebs_event_update_no_drain+0x40/0x60
? intel_pmu_pebs_event_update_no_drain+0x32/0x60
intel_pmu_drain_pebs_icl+0x333/0x350
handle_pmi_common+0x272/0x3c0
intel_pmu_handle_irq+0x10a/0x2e0
perf_event_nmi_handler+0x2a/0x50
That happens because intel_pmu_pebs_event_update_no_drain() assumes all the
pebs_enabled bits represent counter indexes, which is not always the case.
In this particular case, bits 60 and 61 are set for PEBS-via-PT purposes.
The behaviour of PEBS-via-PT with sample frequency is questionable because
although a PMI is generated (PEBS_PMI_AFTER_EACH_RECORD), the period is not
adjusted anyway.
Putting that aside, fix intel_pmu_pebs_event_update_no_drain() by passing
the mask of counter bits instead of 'size'. Note, prior to the Fixes
commit, 'size' would be limited to the maximum counter index, so the issue
was not hit.
Fixes: 722e42e45c2f1 ("perf/x86: Support counter mask")
Signed-off-by: Adrian Hunter <adrian.hunter@intel.com>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Reviewed-by: Kan Liang <kan.liang@linux.intel.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Cc: Arnaldo Carvalho de Melo <acme@kernel.org>
Cc: Jiri Olsa <jolsa@kernel.org>
Cc: Namhyung Kim <namhyung@kernel.org>
Cc: Ian Rogers <irogers@google.com>
Cc: linux-perf-users@vger.kernel.org
Link: https://lore.kernel.org/r/20250508134452.73960-1-adrian.hunter@intel.com
|
|
perf always allocates contiguous AUX pages based on aux_watermark.
However, this contiguous allocation doesn't benefit all PMUs. For
instance, ARM SPE and TRBE operate with virtual pages, and Coresight
ETR allocates a separate buffer. For these PMUs, allocating contiguous
AUX pages unnecessarily exacerbates memory fragmentation. This
fragmentation can prevent their use on long-running devices.
This patch modifies the perf driver to be memory-friendly by default,
by allocating non-contiguous AUX pages. For PMUs requiring contiguous
pages (Intel BTS and some Intel PT), the existing
PERF_PMU_CAP_AUX_NO_SG capability can be used. For PMUs that don't
require but can benefit from contiguous pages (some Intel PT), a new
capability, PERF_PMU_CAP_AUX_PREFER_LARGE, is added to maintain their
existing behavior.
Signed-off-by: Yabin Cui <yabinc@google.com>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Reviewed-by: James Clark <james.clark@linaro.org>
Reviewed-by: Anshuman Khandual <anshuman.khandual@arm.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Jiri Olsa <jolsa@redhat.com>
Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Namhyung Kim <namhyung@kernel.org>
Link: https://lore.kernel.org/r/20250508232642.148767-1-yabinc@google.com
|
|
Add a simple rdmsrl_on_cpu() compatibility wrapper for
rdmsrq_on_cpu(), to make life in -next easier, where
the PM tree recently grew more uses of the old API.
Reported-by: Stephen Rothwell <sfr@canb.auug.org.au>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Acked-by: Mario Limonciello <mario.limonciello@amd.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Juergen Gross <jgross@suse.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Xin Li <xin@zytor.com>
Link: https://lore.kernel.org/r/20250512145517.6e0666e3@canb.auug.org.au
|
|
So 'make W=1' complains about a couple of kernel-doc descriptions
in our MM primitives in pgtable.c:
arch/x86/mm/pgtable.c:623: warning: Function parameter or struct member 'reserve' not described in 'reserve_top_address'
arch/x86/mm/pgtable.c:672: warning: Function parameter or struct member 'p4d' not described in 'p4d_set_huge'
arch/x86/mm/pgtable.c:672: warning: Function parameter or struct member 'addr' not described in 'p4d_set_huge'
... so on
Fix them all up, add missing parameter documentation, and fix various spelling
inconsistencies while at it.
[ mingo: Harmonize kernel-doc annotations some more. ]
Signed-off-by: Shivank Garg <shivankg@amd.com>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Andrew Cooper <andrew.cooper3@citrix.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Juergen Gross <jgross@suse.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Rik van Riel <riel@surriel.com>
Link: https://lore.kernel.org/r/20250514062637.3287779-1-shivankg@amd.com
|
|
Expose certain 'struct cpuinfo_x86' fields via asm-offsets for x86_64
too, so that it will be possible to set CPU capabilities from 64-bit
asm code.
32-bit already used these fields, so simply move those offset exports into
the unified asm-offsets.c file.
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Link: https://lore.kernel.org/r/20250514104242.1275040-12-ardb+git@google.com
|
|
The global pseudo-constants 'page_offset_base', 'vmalloc_base' and
'vmemmap_base' are not used extremely early during the boot, and cannot be
used safely until after the KASLR memory randomization code in
kernel_randomize_memory() executes, which may update their values.
So there is no point in setting these variables extremely early, and it
can wait until after the kernel itself is mapped and running from its
permanent virtual mapping.
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Link: https://lore.kernel.org/r/20250513111157.717727-9-ardb+git@google.com
|
|
Warnings generated with 'make W=1':
arch/x86/power/hibernate.c:47: warning: Function parameter or struct member 'pfn' not described in 'pfn_is_nosave'
arch/x86/power/hibernate.c:92: warning: Function parameter or struct member 'max_size' not described in 'arch_hibernation_header_save'
Add missing parameter documentation in hibernate functions to
fix kernel-doc warnings.
Signed-off-by: Shivank Garg <shivankg@amd.com>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Acked-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Link: https://lore.kernel.org/r/20250514062637.3287779-2-shivankg@amd.com
|
|
Building the kernel with W=1 generates the following warning:
arch/x86/mm/pat/memtype.c:692: warning: Function parameter or struct member 'pfn' not described in 'pat_pfn_immune_to_uc_mtrr'
Add missing parameter documentation to fix the kernel-doc warning.
Signed-off-by: Shivank Garg <shivankg@amd.com>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Link: https://lore.kernel.org/r/20250514062637.3287779-3-shivankg@amd.com
|
|
Fix several build errors when CONFIG_MODULES=n, including the following:
../arch/x86/kernel/alternative.c:195:25: error: incomplete definition of type 'struct module'
195 | for (int i = 0; i < mod->its_num_pages; i++) {
Fixes: 872df34d7c51 ("x86/its: Use dynamic thunks for indirect branches")
Cc: stable@vger.kernel.org
Signed-off-by: Eric Biggers <ebiggers@google.com>
Acked-by: Dave Hansen <dave.hansen@intel.com>
Tested-by: Steven Rostedt (Google) <rostedt@goodmis.org>
Reviewed-by: Alexandre Chartre <alexandre.chartre@oracle.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Add a synthetic feature flag for Zen6.
[ bp: Move the feature flag to a free slot and avoid future merge
conflicts from incoming stuff. ]
Signed-off-by: Yazen Ghannam <yazen.ghannam@amd.com>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Link: https://lore.kernel.org/20250513204857.3376577-1-yazen.ghannam@amd.com
|
|
1f4bb068b498 ("x86/bugs: Restructure SRSO mitigation") does this:
if (boot_cpu_data.x86 < 0x19 && !cpu_smt_possible()) {
setup_force_cpu_cap(X86_FEATURE_SRSO_NO);
srso_mitigation = SRSO_MITIGATION_NONE;
return;
}
and, in particular, sets srso_mitigation to NONE. This leads to
reporting
Speculative Return Stack Overflow: Vulnerable
on Zen2 machines.
There's a far bigger confusion with what SRSO_NO means and how it is
used in the code but this will be a matter of future fixes and
restructuring to how the SRSO mitigation gets determined.
Fix the reporting issue for now.
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Reviewed-by: David Kaplan <david.kaplan@amd.com>
Link: https://lore.kernel.org/20250513110405.15872-1-bp@kernel.org
|
|
When shared pages are being converted to private during kdump, additional
checks are performed. They include handling the case of a GHCB page being
contained within a huge page.
Currently, this check incorrectly skips a page just below the GHCB page from
being transitioned back to private during kdump preparation.
This skipped page causes a 0x404 #VC exception when it is accessed later while
dumping guest memory for vmcore generation.
Correct the range to be checked for GHCB contained in a huge page. Also,
ensure that the skipped huge page containing the GHCB page is transitioned
back to private by applying the correct address mask later when changing GHCBs
to private at end of kdump preparation.
[ bp: Massage commit message. ]
Fixes: 3074152e56c9 ("x86/sev: Convert shared memory back to private on kexec")
Signed-off-by: Ashish Kalra <ashish.kalra@amd.com>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Reviewed-by: Tom Lendacky <thomas.lendacky@amd.com>
Tested-by: Srikanth Aithal <sraithal@amd.com>
Cc: stable@vger.kernel.org
Link: https://lore.kernel.org/20250506183529.289549-1-Ashish.Kalra@amd.com
|
|
When kdump is running makedumpfile to generate vmcore and dump SNP guest
memory it touches the VMSA page of the vCPU executing kdump.
It then results in unrecoverable #NPF/RMP faults as the VMSA page is
marked busy/in-use when the vCPU is running and subsequently a causes
guest softlockup/hang.
Additionally, other APs may be halted in guest mode and their VMSA pages
are marked busy and touching these VMSA pages during guest memory dump
will also cause #NPF.
Issue AP_DESTROY GHCB calls on other APs to ensure they are kicked out
of guest mode and then clear the VMSA bit on their VMSA pages.
If the vCPU running kdump is an AP, mark it's VMSA page as offline to
ensure that makedumpfile excludes that page while dumping guest memory.
Fixes: 3074152e56c9 ("x86/sev: Convert shared memory back to private on kexec")
Signed-off-by: Ashish Kalra <ashish.kalra@amd.com>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Reviewed-by: Pankaj Gupta <pankaj.gupta@amd.com>
Reviewed-by: Tom Lendacky <thomas.lendacky@amd.com>
Tested-by: Srikanth Aithal <sraithal@amd.com>
Cc: stable@vger.kernel.org
Link: https://lore.kernel.org/20250428214151.155464-1-Ashish.Kalra@amd.com
|
|
Introduce pm_suspend_in_progress() to be used for checking if a system-
wide suspend or resume transition is in progress, instead of comparing
pm_suspend_target_state directly to PM_SUSPEND_ON, and use it where
applicable.
No intentional functional impact.
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Reviewed-by: Rodrigo Vivi <rodrigo.vivi@intel.com>
Acked-by: Rodrigo Vivi <rodrigo.vivi@intel.com>
Reviewed-by: Raag Jadav <raag.jadav@intel.com>
Reviewed-by: Mario Limonciello <mario.limonciello@amd.com>
Link: https://patch.msgid.link/2020901.PYKUYFuaPT@rjwysocki.net
|
|
Conflicts:
Documentation/admin-guide/hw-vuln/index.rst
arch/x86/include/asm/cpufeatures.h
arch/x86/kernel/alternative.c
arch/x86/kernel/cpu/bugs.c
arch/x86/kernel/cpu/common.c
drivers/base/cpu.c
include/linux/cpu.h
Signed-off-by: Ingo Molnar <mingo@kernel.org>
|
|
Prepare to resolve conflicts with an upstream series of fixes that conflict
with pending x86 changes:
6f5bf947bab0 Merge tag 'its-for-linus-20250509' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Signed-off-by: Ingo Molnar <mingo@kernel.org>
|
|
Prepare to resolve conflicts with an upstream series of fixes that conflict
with pending x86 changes:
6f5bf947bab0 Merge tag 'its-for-linus-20250509' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Signed-off-by: Ingo Molnar <mingo@kernel.org>
|
|
Conflicts:
arch/x86/boot/startup/sme.c
arch/x86/coco/sev/core.c
arch/x86/kernel/fpu/core.c
arch/x86/kernel/fpu/xstate.c
Semantic conflict:
arch/x86/include/asm/sev-internal.h
Signed-off-by: Ingo Molnar <mingo@kernel.org>
|
|
Conflicts:
arch/x86/mm/numa.c
arch/x86/mm/pgtable.c
Signed-off-by: Ingo Molnar <mingo@kernel.org>
|
|
Prepare to resolve conflicts with an upstream series of fixes that conflict
with pending x86 changes:
6f5bf947bab0 Merge tag 'its-for-linus-20250509' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Signed-off-by: Ingo Molnar <mingo@kernel.org>
|
|
Prepare to resolve conflicts with an upstream series of fixes that conflict
with pending x86 changes:
6f5bf947bab0 Merge tag 'its-for-linus-20250509' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Signed-off-by: Ingo Molnar <mingo@kernel.org>
|
|
Conflicts:
arch/x86/kernel/cpu/bugs.c
Signed-off-by: Ingo Molnar <mingo@kernel.org>
|
|
Prepare to resolve conflicts with an upstream series of fixes that conflict
with pending x86 changes:
6f5bf947bab0 Merge tag 'its-for-linus-20250509' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Signed-off-by: Ingo Molnar <mingo@kernel.org>
|
|
Prepare to resolve conflicts with an upstream series of fixes that conflict
with pending x86 changes:
6f5bf947bab0 Merge tag 'its-for-linus-20250509' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Signed-off-by: Ingo Molnar <mingo@kernel.org>
|
|
Prepare to resolve conflicts with an upstream series of fixes that conflict
with pending x86 changes:
6f5bf947bab0 Merge tag 'its-for-linus-20250509' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Signed-off-by: Ingo Molnar <mingo@kernel.org>
|
|
Prepare to resolve conflicts with an upstream series of fixes that conflict
with pending x86 changes:
6f5bf947bab0 Merge tag 'its-for-linus-20250509' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Signed-off-by: Ingo Molnar <mingo@kernel.org>
|
|
Instead of calling pfn_valid() separately for every single PFN in the
range, use for_each_valid_pfn() and only look at the ones which are.
Link: https://lkml.kernel.org/r/20250423133821.789413-6-dwmw2@infradead.org
Signed-off-by: David Woodhouse <dwmw@amazon.co.uk>
Acked-by: Mike Rapoport (Microsoft) <rppt@kernel.org>
Cc: Anshuman Khandual <anshuman.khandual@arm.com>
Cc: Ard Biesheuvel <ardb@kernel.org>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: Marc Rutland <mark.rutland@arm.com>
Cc: Marc Zyngier <maz@kernel.org>
Cc: Ruihan Li <lrh2000@pku.edu.cn>
Cc: Will Deacon <will@kernel.org>
Cc: Lorenzo Stoakes <lorenzo.stoakes@oracle.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
Add ARCH_SUPPORTS_KEXEC_HANDOVER for 64 bits to allow enabling of
KEXEC_HANDOVER configuration option.
Link: https://lkml.kernel.org/r/20250509074635.3187114-15-changyuanl@google.com
Signed-off-by: Alexander Graf <graf@amazon.com>
Co-developed-by: Mike Rapoport (Microsoft) <rppt@kernel.org>
Signed-off-by: Mike Rapoport (Microsoft) <rppt@kernel.org>
Co-developed-by: Changyuan Lyu <changyuanl@google.com>
Signed-off-by: Changyuan Lyu <changyuanl@google.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Anthony Yznaga <anthony.yznaga@oracle.com>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Ashish Kalra <ashish.kalra@amd.com>
Cc: Ben Herrenschmidt <benh@kernel.crashing.org>
Cc: Borislav Betkov <bp@alien8.de>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: David Woodhouse <dwmw2@infradead.org>
Cc: Eric Biederman <ebiederm@xmission.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: James Gowans <jgowans@amazon.com>
Cc: Jason Gunthorpe <jgg@nvidia.com>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Krzysztof Kozlowski <krzk@kernel.org>
Cc: Marc Rutland <mark.rutland@arm.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Pasha Tatashin <pasha.tatashin@soleen.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Pratyush Yadav <ptyadav@amazon.de>
Cc: Rob Herring <robh@kernel.org>
Cc: Saravana Kannan <saravanak@google.com>
Cc: Stanislav Kinsburskii <skinsburskii@linux.microsoft.com>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Thomas Gleinxer <tglx@linutronix.de>
Cc: Thomas Lendacky <thomas.lendacky@amd.com>
Cc: Will Deacon <will@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
During kexec handover (KHO) memory contains data that should be preserved
and this data would be consumed by kexec'ed kernel.
To make sure that the preserved memory is not overwritten, KHO uses
"scratch regions" to bootstrap kexec'ed kernel. These regions are
guaranteed to not have any memory that KHO would preserve and are used as
the only memory the kernel sees during the early boot.
The scratch regions are passed in the setup_data by the first kernel with
other KHO parameters. If the setup_data contains the KHO parameters,
limit randomization to scratch areas only to make sure preserved memory
won't get overwritten.
Since all the pointers in setup_data are represented by u64, they require
double casting (first to unsigned long and then to the actual pointer
type) to compile on 32-bits. This looks goofy out of context, but it is
unfortunately the way that this is handled across the tree. There are at
least a dozen instances of casting like this.
Link: https://lkml.kernel.org/r/20250509074635.3187114-14-changyuanl@google.com
Signed-off-by: Alexander Graf <graf@amazon.com>
Co-developed-by: Mike Rapoport (Microsoft) <rppt@kernel.org>
Signed-off-by: Mike Rapoport (Microsoft) <rppt@kernel.org>
Co-developed-by: Changyuan Lyu <changyuanl@google.com>
Signed-off-by: Changyuan Lyu <changyuanl@google.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Anthony Yznaga <anthony.yznaga@oracle.com>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Ashish Kalra <ashish.kalra@amd.com>
Cc: Ben Herrenschmidt <benh@kernel.crashing.org>
Cc: Borislav Betkov <bp@alien8.de>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: David Woodhouse <dwmw2@infradead.org>
Cc: Eric Biederman <ebiederm@xmission.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: James Gowans <jgowans@amazon.com>
Cc: Jason Gunthorpe <jgg@nvidia.com>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Krzysztof Kozlowski <krzk@kernel.org>
Cc: Marc Rutland <mark.rutland@arm.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Pasha Tatashin <pasha.tatashin@soleen.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Pratyush Yadav <ptyadav@amazon.de>
Cc: Rob Herring <robh@kernel.org>
Cc: Saravana Kannan <saravanak@google.com>
Cc: Stanislav Kinsburskii <skinsburskii@linux.microsoft.com>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Thomas Gleinxer <tglx@linutronix.de>
Cc: Thomas Lendacky <thomas.lendacky@amd.com>
Cc: Will Deacon <will@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
KHO kernels are special and use only scratch memory for memblock
allocations, but memory below 1M is ignored by kernel after early boot and
cannot be naturally marked as scratch.
To allow allocation of the real-mode trampoline and a few (if any) other
very early allocations from below 1M forcibly mark the memory below 1M as
scratch.
After real mode trampoline is allocated, clear that scratch marking.
Link: https://lkml.kernel.org/r/20250509074635.3187114-13-changyuanl@google.com
Signed-off-by: Alexander Graf <graf@amazon.com>
Co-developed-by: Mike Rapoport (Microsoft) <rppt@kernel.org>
Signed-off-by: Mike Rapoport (Microsoft) <rppt@kernel.org>
Co-developed-by: Changyuan Lyu <changyuanl@google.com>
Signed-off-by: Changyuan Lyu <changyuanl@google.com>
Acked-by: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Anthony Yznaga <anthony.yznaga@oracle.com>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Ashish Kalra <ashish.kalra@amd.com>
Cc: Ben Herrenschmidt <benh@kernel.crashing.org>
Cc: Borislav Betkov <bp@alien8.de>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: David Woodhouse <dwmw2@infradead.org>
Cc: Eric Biederman <ebiederm@xmission.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: James Gowans <jgowans@amazon.com>
Cc: Jason Gunthorpe <jgg@nvidia.com>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Krzysztof Kozlowski <krzk@kernel.org>
Cc: Marc Rutland <mark.rutland@arm.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Pasha Tatashin <pasha.tatashin@soleen.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Pratyush Yadav <ptyadav@amazon.de>
Cc: Rob Herring <robh@kernel.org>
Cc: Saravana Kannan <saravanak@google.com>
Cc: Stanislav Kinsburskii <skinsburskii@linux.microsoft.com>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Thomas Gleinxer <tglx@linutronix.de>
Cc: Thomas Lendacky <thomas.lendacky@amd.com>
Cc: Will Deacon <will@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
kexec handover (KHO) creates a metadata that the kernels pass between each
other during kexec. This metadata is stored in memory and kexec image
contains a (physical) pointer to that memory.
In addition, KHO keeps "scratch regions" available for kexec: physically
contiguous memory regions that are guaranteed to not have any memory that
KHO would preserve. The new kernel bootstraps itself using the scratch
regions and sets all handed over memory as in use. When subsystems that
support KHO initialize, they introspect the KHO metadata, restore
preserved memory regions, and retrieve their state stored in the preserved
memory.
Enlighten x86 kexec-file and boot path about the KHO metadata and make
sure it gets passed along to the next kernel.
Link: https://lkml.kernel.org/r/20250509074635.3187114-12-changyuanl@google.com
Signed-off-by: Alexander Graf <graf@amazon.com>
Co-developed-by: Mike Rapoport (Microsoft) <rppt@kernel.org>
Signed-off-by: Mike Rapoport (Microsoft) <rppt@kernel.org>
Co-developed-by: Changyuan Lyu <changyuanl@google.com>
Signed-off-by: Changyuan Lyu <changyuanl@google.com>
Acked-by: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Anthony Yznaga <anthony.yznaga@oracle.com>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Ashish Kalra <ashish.kalra@amd.com>
Cc: Ben Herrenschmidt <benh@kernel.crashing.org>
Cc: Borislav Betkov <bp@alien8.de>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: David Woodhouse <dwmw2@infradead.org>
Cc: Eric Biederman <ebiederm@xmission.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: James Gowans <jgowans@amazon.com>
Cc: Jason Gunthorpe <jgg@nvidia.com>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Krzysztof Kozlowski <krzk@kernel.org>
Cc: Marc Rutland <mark.rutland@arm.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Pasha Tatashin <pasha.tatashin@soleen.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Pratyush Yadav <ptyadav@amazon.de>
Cc: Rob Herring <robh@kernel.org>
Cc: Saravana Kannan <saravanak@google.com>
Cc: Stanislav Kinsburskii <skinsburskii@linux.microsoft.com>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Thomas Gleinxer <tglx@linutronix.de>
Cc: Thomas Lendacky <thomas.lendacky@amd.com>
Cc: Will Deacon <will@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
memblock_reserve() does not distinguish memory used by firmware from
memory used by kernel.
The distinction is nice to have for accounting of early memory allocations
and reservations, but it is essential for kexec handover (kho) to know how
much memory kernel consumes during boot.
Use memblock_reserve_kern() to reserve kernel memory, such as kernel
image, initrd and setup data.
Link: https://lkml.kernel.org/r/20250509074635.3187114-11-changyuanl@google.com
Signed-off-by: Mike Rapoport (Microsoft) <rppt@kernel.org>
Signed-off-by: Changyuan Lyu <changyuanl@google.com>
Acked-by: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Alexander Graf <graf@amazon.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Anthony Yznaga <anthony.yznaga@oracle.com>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Ashish Kalra <ashish.kalra@amd.com>
Cc: Ben Herrenschmidt <benh@kernel.crashing.org>
Cc: Borislav Betkov <bp@alien8.de>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: David Woodhouse <dwmw2@infradead.org>
Cc: Eric Biederman <ebiederm@xmission.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: James Gowans <jgowans@amazon.com>
Cc: Jason Gunthorpe <jgg@nvidia.com>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Krzysztof Kozlowski <krzk@kernel.org>
Cc: Marc Rutland <mark.rutland@arm.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Pasha Tatashin <pasha.tatashin@soleen.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Pratyush Yadav <ptyadav@amazon.de>
Cc: Rob Herring <robh@kernel.org>
Cc: Saravana Kannan <saravanak@google.com>
Cc: Stanislav Kinsburskii <skinsburskii@linux.microsoft.com>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Thomas Gleinxer <tglx@linutronix.de>
Cc: Thomas Lendacky <thomas.lendacky@amd.com>
Cc: Will Deacon <will@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
The resctrl file system code needs to know how many region tags
are supported. Parse the ACPI MRRM table and save the max_mem_region
value.
Provide a function for resctrl to collect that value.
Signed-off-by: Tony Luck <tony.luck@intel.com>
Link: https://patch.msgid.link/20250505173819.419271-2-tony.luck@intel.com
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
|
|
When suspending, save_processor_state() calls mtrr_save_fixed_ranges()
to save fixed-range MTRRs.
On platforms without fixed-range MTRRs like the ACRN hypervisor which
has removed fixed-range MTRR emulation, accessing these MSRs will
trigger an unchecked MSR access error. Make sure fixed-range MTRRs are
supported before access to prevent such error.
Since mtrr_state.have_fixed is only set when MTRRs are present and
enabled, checking the CPU feature flag in mtrr_save_fixed_ranges() is
unnecessary.
Fixes: 3ebad5905609 ("[PATCH] x86: Save and restore the fixed-range MTRRs of the BSP when suspending")
Signed-off-by: Jiaqing Zhao <jiaqing.zhao@linux.intel.com>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Link: https://lore.kernel.org/20250509170633.3411169-2-jiaqing.zhao@linux.intel.com
|
|
Add explicit array bounds to the function prototypes for the parameters
that didn't already get handled by the conversion to use chacha_state:
- chacha_block_*():
Change 'u8 *out' or 'u8 *stream' to u8 out[CHACHA_BLOCK_SIZE].
- hchacha_block_*():
Change 'u32 *out' or 'u32 *stream' to u32 out[HCHACHA_OUT_WORDS].
- chacha_init():
Change 'const u32 *key' to 'const u32 key[CHACHA_KEY_WORDS]'.
Change 'const u8 *iv' to 'const u8 iv[CHACHA_IV_SIZE]'.
No functional changes. This just makes it clear when fixed-size arrays
are expected.
Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
|
|
The ChaCha state matrix is 16 32-bit words. Currently it is represented
in the code as a raw u32 array, or even just a pointer to u32. This
weak typing is error-prone. Instead, introduce struct chacha_state:
struct chacha_state {
u32 x[16];
};
Convert all ChaCha and HChaCha functions to use struct chacha_state.
No functional changes.
Signed-off-by: Eric Biggers <ebiggers@google.com>
Acked-by: Kent Overstreet <kent.overstreet@linux.dev>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
|
|
Page table pages are normally freed using the appropriate helper for the
given page table level. On x86, pud_free_pmd_page() and
pmd_free_pte_page() are an exception to the rule: they call free_page()
directly.
Constructor/destructor calls are about to be introduced for kernel PTEs.
To avoid missing dtor calls in those helpers, free the PTE pages using
pte_free_kernel() instead of free_page().
While at it also use pmd_free() instead of calling pagetable_dtor()
explicitly at the PMD level.
Link: https://lkml.kernel.org/r/20250408095222.860601-3-kevin.brodsky@arm.com
Signed-off-by: Kevin Brodsky <kevin.brodsky@arm.com>
Acked-by: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Albert Ou <aou@eecs.berkeley.edu>
Cc: Andreas Larsson <andreas@gaisler.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: David S. Miller <davem@davemloft.net>
Cc: Geert Uytterhoeven <geert@linux-m68k.org>
Cc: Linus Waleij <linus.walleij@linaro.org>
Cc: Madhavan Srinivasan <maddy@linux.ibm.com>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Mike Rapoport <rppt@kernel.org>
Cc: Palmer Dabbelt <palmer@dabbelt.com>
Cc: Paul Walmsley <paul.walmsley@sifive.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Qi Zheng <zhengqi.arch@bytedance.com>
Cc: Ryan Roberts <ryan.roberts@arm.com>
Cc: Will Deacon <will@kernel.org>
Cc: <x86@kernel.org>
Cc: Yang Shi <yang@os.amperecomputing.com>
Cc: Alexander Gordeev <agordeev@linux.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
Patch series "Always call constructor for kernel page tables", v2.
There has been much confusion around exactly when page table
constructors/destructors (pagetable_*_[cd]tor) are supposed to be called.
They were initially introduced for user PTEs only (to support split page
table locks), then at the PMD level for the same purpose. Accounting was
added later on, starting at the PTE level and then moving to higher levels
(PMD, PUD). Finally, with my earlier series "Account page tables at all
levels" [1], the ctor/dtor is run for all levels, all the way to PGD.
I thought this was the end of the story, and it hopefully is for user
pgtables, but I was wrong for what concerns kernel pgtables. The current
situation there makes very little sense:
* At the PTE level, the ctor/dtor is not called (at least in the generic
implementation). Specific helpers are used for kernel pgtables at this
level (pte_{alloc,free}_kernel()) and those have never called the
ctor/dtor, most likely because they were initially irrelevant in the
kernel case.
* At all other levels, the ctor/dtor is normally called. This is
potentially wasteful at the PMD level (more on that later).
This series aims to ensure that the ctor/dtor is always called for kernel
pgtables, as it already is for user pgtables. Besides consistency, the
main motivation is to guarantee that ctor/dtor hooks are systematically
called; this makes it possible to insert hooks to protect page tables [2],
for instance. There is however an extra challenge: split locks are not
used for kernel pgtables, and it would therefore be wasteful to initialise
them (ptlock_init()).
It is worth clarifying exactly when split locks are used. They clearly
are for user pgtables, but as illustrated in commit 61444cde9170 ("ARM:
8591/1: mm: use fully constructed struct pages for EFI pgd allocations"),
they also are for special page tables like efi_mm. The one case where
split locks are definitely unused is pgtables owned by init_mm; this is
consistent with the behaviour of apply_to_pte_range().
The approach chosen in this series is therefore to pass the mm associated
to the pgtables being constructed to pagetable_{pte,pmd}_ctor() (patch 1),
and skip ptlock_init() if mm == &init_mm (patch 3 and 7). This makes it
possible to call the PTE ctor/dtor from pte_{alloc,free}_kernel() without
unintended consequences (patch 3). As a result the accounting functions
are now called at all levels for kernel pgtables, and split locks are
never initialised.
In configurations where ptlocks are dynamically allocated (32-bit,
PREEMPT_RT, etc.) and ARCH_ENABLE_SPLIT_PMD_PTLOCK is selected, this
series results in the removal of a kmem_cache allocation for every kernel
PMD. Additionally, for certain architectures that do not use
<asm-generic/pgalloc.h> such as s390, the same optimisation occurs at the
PTE level.
===
Things get more complicated when it comes to special pgtable allocators
(patch 8-12). All architectures need such allocators to create initial
kernel pgtables; we are not concerned with those as the ctor cannot be
called so early in the boot sequence. However, those allocators may also
be used later in the boot sequence or during normal operations. There are
two main use-cases:
1. Mapping EFI memory: efi_mm (arm, arm64, riscv)
2. arch_add_memory(): init_mm
The ctor is already explicitly run (at the PTE/PMD level) in the first
case, as required for pgtables that are not associated with init_mm.
However the same allocators may also be used for the second use-case (or
others), and this is where it gets messy. Patch 1 calls the ctor with
NULL as mm in those situations, as the actual mm isn't available.
Practically this means that ptlocks will be unconditionally initialised.
This is fine on arm - create_mapping_late() is only used for the EFI
mapping. On arm64, __create_pgd_mapping() is also used by
arch_add_memory(); patch 8/9/11 ensure that ctors are called at all levels
with the appropriate mm. The situation is similar on riscv, but
propagating the mm down to the ctor would require significant refactoring.
Since they are already called unconditionally, this series leaves riscv
no worse off - patch 10 adds comments to clarify the situation.
From a cursory look at other architectures implementing arch_add_memory(),
s390 and x86 may also need a similar treatment to add constructor calls.
This is to be taken care of in a future version or as a follow-up.
===
The complications in those special pgtable allocators beg the question:
does it really make sense to treat efi_mm and init_mm differently in e.g.
apply_to_pte_range()? Maybe what we really need is a way to tell if an mm
corresponds to user memory or not, and never use split locks for non-user
mm's. Feedback and suggestions welcome!
This patch (of 12):
In preparation for calling constructors for all kernel page tables while
eliding unnecessary ptlock initialisation, let's pass down the associated
mm to the PTE/PMD level ctors. (These are the two levels where ptlocks
are used.)
In most cases the mm is already around at the point of calling the ctor so
we simply pass it down. This is however not the case for special page
table allocators:
* arch/arm/mm/mmu.c
* arch/arm64/mm/mmu.c
* arch/riscv/mm/init.c
In those cases, the page tables being allocated are either for standard
kernel memory (init_mm) or special page directories, which may not be
associated to any mm. For now let's pass NULL as mm; this will be refined
where possible in future patches.
No functional change in this patch.
Link: https://lore.kernel.org/linux-mm/20250103184415.2744423-1-kevin.brodsky@arm.com/ [1]
Link: https://lore.kernel.org/linux-hardening/20250203101839.1223008-1-kevin.brodsky@arm.com/ [2]
Link: https://lkml.kernel.org/r/20250408095222.860601-1-kevin.brodsky@arm.com
Link: https://lkml.kernel.org/r/20250408095222.860601-2-kevin.brodsky@arm.com
Signed-off-by: Kevin Brodsky <kevin.brodsky@arm.com>
Reviewed-by: Alexander Gordeev <agordeev@linux.ibm.com> [s390]
Cc: Albert Ou <aou@eecs.berkeley.edu>
Cc: Andreas Larsson <andreas@gaisler.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: David S. Miller <davem@davemloft.net>
Cc: Geert Uytterhoeven <geert@linux-m68k.org>
Cc: Kevin Brodsky <kevin.brodsky@arm.com>
Cc: Linus Waleij <linus.walleij@linaro.org>
Cc: Madhavan Srinivasan <maddy@linux.ibm.com>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Mike Rapoport <rppt@kernel.org>
Cc: Palmer Dabbelt <palmer@dabbelt.com>
Cc: Paul Walmsley <paul.walmsley@sifive.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Qi Zheng <zhengqi.arch@bytedance.com>
Cc: Ryan Roberts <ryan.roberts@arm.com>
Cc: Will Deacon <will@kernel.org>
Cc: Yang Shi <yang@os.amperecomputing.com>
Cc: <x86@kernel.org>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
Last argument in effective_prot() is u64 assuming pxd_val() returned value
(all page table levels) is 64 bit. pxd_val() is very platform specific
and its type should not be assumed in generic MM.
Split effective_prot() into individual page table level specific callbacks
which accepts corresponding pxd_t argument instead and then the
subscribing platform (only x86) just derive pxd_val() from the entries as
required and proceed as earlier.
Link: https://lkml.kernel.org/r/20250407053113.746295-3-anshuman.khandual@arm.com
Signed-off-by: Anshuman Khandual <anshuman.khandual@arm.com>
Cc: Paul Walmsley <paul.walmsley@sifive.com>
Cc: Palmer Dabbelt <palmer@dabbelt.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Ard Biesheuvel <ardb@kernel.org>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Gerald Schaefer <gerald.schaefer@linux.ibm.com>
Cc: Heiko Carstens <hca@linux.ibm.com>
Cc: Madhavan Srinivasan <maddy@linux.ibm.com>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Nicholas Piggin <npiggin@gmail.com>
Cc: Ryan Roberts <ryan.roberts@arm.com>
Cc: Will Deacon <will@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
Patch series "mm/ptdump: Drop assumption that pxd_val() is u64", v2.
Last argument passed down in note_page() is u64 assuming pxd_val()
returned value (all page table levels) is 64 bit - which might not be the
case going ahead when D128 page tables is enabled on arm64 platform.
Besides pxd_val() is very platform specific and its type should not be
assumed in generic MM. A similar problem exists for effective_prot(),
although it is restricted to x86 platform.
This series splits note_page() and effective_prot() into individual page
table level specific callbacks which accepts corresponding pxd_t page
table entry as an argument instead and later on all subscribing platforms
could derive pxd_val() from the table entries as required and proceed as
before.
Define ptdesc_t type which describes the basic page table descriptor
layout on arm64 platform. Subsequently all level specific pxxval_t
descriptors are derived from ptdesc_t thus establishing a common original
format, which can also be appropriate for page table entries, masks and
protection values etc which are used at all page table levels.
This patch (of 3):
Last argument passed down in note_page() is u64 assuming pxd_val()
returned value (all page table levels) is 64 bit - which might not be the
case going ahead when D128 page tables is enabled on arm64 platform.
Besides pxd_val() is very platform specific and its type should not be
assumed in generic MM.
Split note_page() into individual page table level specific callbacks
which accepts corresponding pxd_t argument instead and then subscribing
platforms just derive pxd_val() from the entries as required and proceed
as earlier.
Also add a note_page_flush() callback for flushing the last page table
page that was being handled earlier via level = -1.
Link: https://lkml.kernel.org/r/20250407053113.746295-1-anshuman.khandual@arm.com
Link: https://lkml.kernel.org/r/20250407053113.746295-2-anshuman.khandual@arm.com
Signed-off-by: Anshuman Khandual <anshuman.khandual@arm.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Will Deacon <will@kernel.org>
Cc: Madhavan Srinivasan <maddy@linux.ibm.com>
Cc: Nicholas Piggin <npiggin@gmail.com>
Cc: Paul Walmsley <paul.walmsley@sifive.com>
Cc: Palmer Dabbelt <palmer@dabbelt.com>
Cc: Gerald Schaefer <gerald.schaefer@linux.ibm.com>
Cc: Heiko Carstens <hca@linux.ibm.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Ard Biesheuvel <ardb@kernel.org>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Ryan Roberts <ryan.roberts@arm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
Similar to syscall_set_arguments() that complements
syscall_get_arguments(), introduce syscall_set_nr() that complements
syscall_get_nr().
syscall_set_nr() is going to be needed along with syscall_set_arguments()
on all HAVE_ARCH_TRACEHOOK architectures to implement
PTRACE_SET_SYSCALL_INFO API.
Link: https://lkml.kernel.org/r/20250303112020.GD24170@strace.io
Signed-off-by: Dmitry V. Levin <ldv@strace.io>
Tested-by: Charlie Jenkins <charlie@rivosinc.com>
Reviewed-by: Charlie Jenkins <charlie@rivosinc.com>
Acked-by: Helge Deller <deller@gmx.de> # parisc
Reviewed-by: Maciej W. Rozycki <macro@orcam.me.uk> # mips
Cc: Alexander Gordeev <agordeev@linux.ibm.com>
Cc: Alexey Gladkov (Intel) <legion@kernel.org>
Cc: Andreas Larsson <andreas@gaisler.com>
Cc: anton ivanov <anton.ivanov@cambridgegreys.com>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Borislav Betkov <bp@alien8.de>
Cc: Brian Cain <bcain@quicinc.com>
Cc: Christian Borntraeger <borntraeger@linux.ibm.com>
Cc: Christian Zankel <chris@zankel.net>
Cc: Christophe Leroy <christophe.leroy@csgroup.eu>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Davide Berardi <berardi.dav@gmail.com>
Cc: David S. Miller <davem@davemloft.net>
Cc: Dinh Nguyen <dinguyen@kernel.org>
Cc: Eugene Syromiatnikov <esyr@redhat.com>
Cc: Eugene Syromyatnikov <evgsyr@gmail.com>
Cc: Geert Uytterhoeven <geert@linux-m68k.org>
Cc: Guo Ren <guoren@kernel.org>
Cc: Heiko Carstens <hca@linux.ibm.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Huacai Chen <chenhuacai@kernel.org>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Johannes Berg <johannes@sipsolutions.net>
Cc: John Paul Adrian Glaubitz <glaubitz@physik.fu-berlin.de>
Cc: Jonas Bonn <jonas@southpole.se>
Cc: Madhavan Srinivasan <maddy@linux.ibm.com>
Cc: Max Filippov <jcmvbkbc@gmail.com>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Michal Simek <monstr@monstr.eu>
Cc: Mike Frysinger <vapier@gentoo.org>
Cc: Naveen N Rao <naveen@kernel.org>
Cc: Nicholas Piggin <npiggin@gmail.com>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Renzo Davoi <renzo@cs.unibo.it>
Cc: Richard Weinberger <richard@nod.at>
Cc: Rich Felker <dalias@libc.org>
Cc: Russel King <linux@armlinux.org.uk>
Cc: Shuah Khan <shuah@kernel.org>
Cc: Stafford Horne <shorne@gmail.com>
Cc: Stefan Kristiansson <stefan.kristiansson@saunalahti.fi>
Cc: Sven Schnelle <svens@linux.ibm.com>
Cc: Thomas Gleinxer <tglx@linutronix.de>
Cc: Vasily Gorbik <gor@linux.ibm.com>
Cc: Vineet Gupta <vgupta@kernel.org>
Cc: WANG Xuerui <kernel@xen0n.name>
Cc: Will Deacon <will@kernel.org>
Cc: Yoshinori Sato <ysato@users.sourceforge.jp>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
This function is going to be needed on all HAVE_ARCH_TRACEHOOK
architectures to implement PTRACE_SET_SYSCALL_INFO API.
This partially reverts commit 7962c2eddbfe ("arch: remove unused function
syscall_set_arguments()") by reusing some of old syscall_set_arguments()
implementations.
[nathan@kernel.org: fix compile time fortify checks]
Link: https://lkml.kernel.org/r/20250408213131.GA2872426@ax162
Link: https://lkml.kernel.org/r/20250303112009.GC24170@strace.io
Signed-off-by: Dmitry V. Levin <ldv@strace.io>
Signed-off-by: Nathan Chancellor <nathan@kernel.org>
Tested-by: Charlie Jenkins <charlie@rivosinc.com>
Reviewed-by: Charlie Jenkins <charlie@rivosinc.com>
Acked-by: Helge Deller <deller@gmx.de> # parisc
Reviewed-by: Maciej W. Rozycki <macro@orcam.me.uk> [mips]
Cc: Alexander Gordeev <agordeev@linux.ibm.com>
Cc: Alexey Gladkov (Intel) <legion@kernel.org>
Cc: Andreas Larsson <andreas@gaisler.com>
Cc: anton ivanov <anton.ivanov@cambridgegreys.com>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Borislav Betkov <bp@alien8.de>
Cc: Brian Cain <bcain@quicinc.com>
Cc: Christian Borntraeger <borntraeger@linux.ibm.com>
Cc: Christian Zankel <chris@zankel.net>
Cc: Christophe Leroy <christophe.leroy@csgroup.eu>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Davide Berardi <berardi.dav@gmail.com>
Cc: David S. Miller <davem@davemloft.net>
Cc: Dinh Nguyen <dinguyen@kernel.org>
Cc: Eugene Syromiatnikov <esyr@redhat.com>
Cc: Eugene Syromyatnikov <evgsyr@gmail.com>
Cc: Geert Uytterhoeven <geert@linux-m68k.org>
Cc: Guo Ren <guoren@kernel.org>
Cc: Heiko Carstens <hca@linux.ibm.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Huacai Chen <chenhuacai@kernel.org>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Johannes Berg <johannes@sipsolutions.net>
Cc: John Paul Adrian Glaubitz <glaubitz@physik.fu-berlin.de>
Cc: Jonas Bonn <jonas@southpole.se>
Cc: Madhavan Srinivasan <maddy@linux.ibm.com>
Cc: Max Filippov <jcmvbkbc@gmail.com>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Michal Simek <monstr@monstr.eu>
Cc: Mike Frysinger <vapier@gentoo.org>
Cc: Naveen N Rao <naveen@kernel.org>
Cc: Nicholas Piggin <npiggin@gmail.com>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Renzo Davoi <renzo@cs.unibo.it>
Cc: Richard Weinberger <richard@nod.at>
Cc: Rich Felker <dalias@libc.org>
Cc: Russel King <linux@armlinux.org.uk>
Cc: Shuah Khan <shuah@kernel.org>
Cc: Stafford Horne <shorne@gmail.com>
Cc: Stefan Kristiansson <stefan.kristiansson@saunalahti.fi>
Cc: Sven Schnelle <svens@linux.ibm.com>
Cc: Thomas Gleinxer <tglx@linutronix.de>
Cc: Vasily Gorbik <gor@linux.ibm.com>
Cc: Vineet Gupta <vgupta@kernel.org>
Cc: WANG Xuerui <kernel@xen0n.name>
Cc: Will Deacon <will@kernel.org>
Cc: Yoshinori Sato <ysato@users.sourceforge.jp>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
Systems with hotplug may provide an advisement value on what the memblock
size should be. Probe this value when the rest of the configuration
values are considered.
The new heuristic is as follows
1) set_memory_block_size_order value if already set (cmdline param)
2) minimum block size if memory is less than large block limit
3) if no hotplug advice: Max block size if system is bare-metal,
otherwise use end of memory alignment.
4) if hotplug advice: lesser of advice and end of memory alignment.
Convert to cpu_feature_enabled() while at it.[1]
[1] https://lore.kernel.org/all/20241031103401.GBZyNdGQ-ZyXKyzC_z@fat_crate.local/
Link: https://lkml.kernel.org/r/20250127153405.3379117-3-gourry@gourry.net
Signed-off-by: Gregory Price <gourry@gourry.net>
Suggested-by: Borislav Petkov <bp@alien8.de>
Suggested-by: David Hildenbrand <david@redhat.com>
Acked-by: David Hildenbrand <david@redhat.com>
Acked-by: Dave Hansen <dave.hansen@linux.intel.com>
Acked-by: Mike Rapoport (Microsoft) <rppt@kernel.org>
Acked-by: Dan Williams <dan.j.williams@intel.com>
Tested-by: Fan Ni <fan.ni@samsung.com>
Reviewed-by: Ira Weiny <ira.weiny@intel.com>
Acked-by: Oscar Salvador <osalvador@suse.de>
Cc: Alison Schofield <alison.schofield@intel.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Bruno Faccini <bfaccini@nvidia.com>
Cc: Dave Jiang <dave.jiang@intel.com>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Haibo Xu <haibo1.xu@intel.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Joanthan Cameron <Jonathan.Cameron@huawei.com>
Cc: Len Brown <lenb@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Cc: Robert Richter <rrichter@amd.com>
Cc: Thomas Gleinxer <tglx@linutronix.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
There are now no callers of mk_huge_pmd() and mk_pmd(). Remove them.
Link: https://lkml.kernel.org/r/20250402181709.2386022-12-willy@infradead.org
Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Zi Yan <ziy@nvidia.com>
Cc: Alexander Gordeev <agordeev@linux.ibm.com>
Cc: Andreas Larsson <andreas@gaisler.com>
Cc: Anton Ivanov <anton.ivanov@cambridgegreys.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: "David S. Miller" <davem@davemloft.net>
Cc: Geert Uytterhoeven <geert@linux-m68k.org>
Cc: Johannes Berg <johannes@sipsolutions.net>
Cc: Muchun Song <muchun.song@linux.dev>
Cc: Richard Weinberger <richard@nod.at>
Cc: <x86@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
Move the shadow stack check to pfn_pte() which lets us use the common
definition of mk_pte().
Link: https://lkml.kernel.org/r/20250402181709.2386022-5-willy@infradead.org
Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Acked-by: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Zi Yan <ziy@nvidia.com>
Cc: Alexander Gordeev <agordeev@linux.ibm.com>
Cc: Andreas Larsson <andreas@gaisler.com>
Cc: Anton Ivanov <anton.ivanov@cambridgegreys.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: "David S. Miller" <davem@davemloft.net>
Cc: Geert Uytterhoeven <geert@linux-m68k.org>
Cc: Johannes Berg <johannes@sipsolutions.net>
Cc: Muchun Song <muchun.song@linux.dev>
Cc: Richard Weinberger <richard@nod.at>
Cc: <x86@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|