Age | Commit message (Collapse) | Author | Files | Lines |
|
The mptcp_options_received structure carries several per
packet flags (mp_capable, mp_join, etc.). Such fields must
be cleared on each packet, even on dropped ones or packet
not carrying any MPTCP options, but the current mptcp
code clears them only on TCP option reset.
On several races/corner cases we end-up with stray bits in
incoming options, leading to WARN_ON splats. e.g.:
[ 171.164906] Bad mapping: ssn=32714 map_seq=1 map_data_len=32713
[ 171.165006] WARNING: CPU: 1 PID: 5026 at net/mptcp/subflow.c:533 warn_bad_map (linux-mptcp/net/mptcp/subflow.c:533 linux-mptcp/net/mptcp/subflow.c:531)
[ 171.167632] Modules linked in: ip6_vti ip_vti ip_gre ipip sit tunnel4 ip_tunnel geneve ip6_udp_tunnel udp_tunnel macsec macvtap tap ipvlan macvlan 8021q garp mrp xfrm_interface veth netdevsim nlmon dummy team bonding vcan bridge stp llc ip6_gre gre ip6_tunnel tunnel6 tun binfmt_misc intel_rapl_msr intel_rapl_common rfkill kvm_intel kvm irqbypass crct10dif_pclmul crc32_pclmul ghash_clmulni_intel joydev virtio_balloon pcspkr i2c_piix4 sunrpc ip_tables xfs libcrc32c crc32c_intel serio_raw virtio_console ata_generic virtio_blk virtio_net net_failover failover ata_piix libata
[ 171.199464] CPU: 1 PID: 5026 Comm: repro Not tainted 5.7.0-rc1.mptcp_f227fdf5d388+ #95
[ 171.200886] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.12.0-2.fc30 04/01/2014
[ 171.202546] RIP: 0010:warn_bad_map (linux-mptcp/net/mptcp/subflow.c:533 linux-mptcp/net/mptcp/subflow.c:531)
[ 171.206537] Code: c1 ea 03 0f b6 14 02 48 89 f8 83 e0 07 83 c0 03 38 d0 7c 04 84 d2 75 1d 8b 55 3c 44 89 e6 48 c7 c7 20 51 13 95 e8 37 8b 22 fe <0f> 0b 48 83 c4 08 5b 5d 41 5c c3 89 4c 24 04 e8 db d6 94 fe 8b 4c
[ 171.220473] RSP: 0018:ffffc90000150560 EFLAGS: 00010282
[ 171.221639] RAX: 0000000000000000 RBX: 0000000000000000 RCX: 0000000000000000
[ 171.223108] RDX: 0000000000000000 RSI: 0000000000000008 RDI: fffff5200002a09e
[ 171.224388] RBP: ffff8880aa6e3c00 R08: 0000000000000001 R09: fffffbfff2ec9955
[ 171.225706] R10: ffffffff9764caa7 R11: fffffbfff2ec9954 R12: 0000000000007fca
[ 171.227211] R13: ffff8881066f4a7f R14: ffff8880aa6e3c00 R15: 0000000000000020
[ 171.228460] FS: 00007f8623719740(0000) GS:ffff88810be00000(0000) knlGS:0000000000000000
[ 171.230065] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
[ 171.231303] CR2: 00007ffdab190a50 CR3: 00000001038ea006 CR4: 0000000000160ee0
[ 171.232586] Call Trace:
[ 171.233109] <IRQ>
[ 171.233531] get_mapping_status (linux-mptcp/net/mptcp/subflow.c:691)
[ 171.234371] mptcp_subflow_data_available (linux-mptcp/net/mptcp/subflow.c:736 linux-mptcp/net/mptcp/subflow.c:832)
[ 171.238181] subflow_state_change (linux-mptcp/net/mptcp/subflow.c:1085 (discriminator 1))
[ 171.239066] tcp_fin (linux-mptcp/net/ipv4/tcp_input.c:4217)
[ 171.240123] tcp_data_queue (linux-mptcp/./include/linux/compiler.h:199 linux-mptcp/net/ipv4/tcp_input.c:4822)
[ 171.245083] tcp_rcv_established (linux-mptcp/./include/linux/skbuff.h:1785 linux-mptcp/./include/net/tcp.h:1774 linux-mptcp/./include/net/tcp.h:1847 linux-mptcp/net/ipv4/tcp_input.c:5238 linux-mptcp/net/ipv4/tcp_input.c:5730)
[ 171.254089] tcp_v4_rcv (linux-mptcp/./include/linux/spinlock.h:393 linux-mptcp/net/ipv4/tcp_ipv4.c:2009)
[ 171.258969] ip_protocol_deliver_rcu (linux-mptcp/net/ipv4/ip_input.c:204 (discriminator 1))
[ 171.260214] ip_local_deliver_finish (linux-mptcp/./include/linux/rcupdate.h:651 linux-mptcp/net/ipv4/ip_input.c:232)
[ 171.261389] ip_local_deliver (linux-mptcp/./include/linux/netfilter.h:307 linux-mptcp/./include/linux/netfilter.h:301 linux-mptcp/net/ipv4/ip_input.c:252)
[ 171.265884] ip_rcv (linux-mptcp/./include/linux/netfilter.h:307 linux-mptcp/./include/linux/netfilter.h:301 linux-mptcp/net/ipv4/ip_input.c:539)
[ 171.273666] process_backlog (linux-mptcp/./include/linux/rcupdate.h:651 linux-mptcp/net/core/dev.c:6135)
[ 171.275328] net_rx_action (linux-mptcp/net/core/dev.c:6572 linux-mptcp/net/core/dev.c:6640)
[ 171.280472] __do_softirq (linux-mptcp/./arch/x86/include/asm/jump_label.h:25 linux-mptcp/./include/linux/jump_label.h:200 linux-mptcp/./include/trace/events/irq.h:142 linux-mptcp/kernel/softirq.c:293)
[ 171.281379] do_softirq_own_stack (linux-mptcp/arch/x86/entry/entry_64.S:1083)
[ 171.282358] </IRQ>
We could address the issue clearing explicitly the relevant fields
in several places - tcp_parse_option, tcp_fast_parse_options,
possibly others.
Instead we move the MPTCP option parsing into the already existing
mptcp ingress hook, so that we need to clear the fields in a single
place.
This allows us dropping an MPTCP hook from the TCP code and
removing the quite large mptcp_options_received from the tcp_sock
struct. On the flip side, the MPTCP sockets will traverse the
option space twice (in tcp_parse_option() and in
mptcp_incoming_options(). That looks acceptable: we already
do that for syn and 3rd ack packets, plain TCP socket will
benefit from it, and even MPTCP sockets will experience better
code locality, reducing the jumps between TCP and MPTCP code.
v1 -> v2:
- rebased on current '-net' tree
Fixes: 648ef4b88673 ("mptcp: Implement MPTCP receive path")
Signed-off-by: Paolo Abeni <pabeni@redhat.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
|
|
In virtio_transport.c, if the virtqueue is full, the transmitting
packet is queued up and it will be sent in the next iteration.
This causes the same packet to be delivered multiple times to
monitoring devices.
We want to continue to deliver packets to monitoring devices before
it is put in the virtqueue, to avoid that replies can appear in the
packet capture before the transmitted packet.
This patch fixes the issue, adding a new flag (tap_delivered) in
struct virtio_vsock_pkt, to check if the packet is already delivered
to monitoring devices.
In vhost/vsock.c, we are splitting packets, so we must set
'tap_delivered' to false when we queue up the same virtio_vsock_pkt
to handle the remaining bytes.
Signed-off-by: Stefano Garzarella <sgarzare@redhat.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
|
|
Pull networking fixes from David Miller:
1) Fix memory leak in netfilter flowtable, from Roi Dayan.
2) Ref-count leaks in netrom and tipc, from Xiyu Yang.
3) Fix warning when mptcp socket is never accepted before close, from
Florian Westphal.
4) Missed locking in ovs_ct_exit(), from Tonghao Zhang.
5) Fix large delays during PTP synchornization in cxgb4, from Rahul
Lakkireddy.
6) team_mode_get() can hang, from Taehee Yoo.
7) Need to use kvzalloc() when allocating fw tracer in mlx5 driver,
from Niklas Schnelle.
8) Fix handling of bpf XADD on BTF memory, from Jann Horn.
9) Fix BPF_STX/BPF_B encoding in x86 bpf jit, from Luke Nelson.
10) Missing queue memory release in iwlwifi pcie code, from Johannes
Berg.
11) Fix NULL deref in macvlan device event, from Taehee Yoo.
12) Initialize lan87xx phy correctly, from Yuiko Oshino.
13) Fix looping between VRF and XFRM lookups, from David Ahern.
14) etf packet scheduler assumes all sockets are full sockets, which is
not necessarily true. From Eric Dumazet.
15) Fix mptcp data_fin handling in RX path, from Paolo Abeni.
16) fib_select_default() needs to handle nexthop objects, from David
Ahern.
17) Use GFP_ATOMIC under spinlock in mac80211_hwsim, from Wei Yongjun.
18) vxlan and geneve use wrong nlattr array, from Sabrina Dubroca.
19) Correct rx/tx stats in bcmgenet driver, from Doug Berger.
20) BPF_LDX zero-extension is encoded improperly in x86_32 bpf jit, fix
from Luke Nelson.
* git://git.kernel.org/pub/scm/linux/kernel/git/netdev/net: (100 commits)
selftests/bpf: Fix a couple of broken test_btf cases
tools/runqslower: Ensure own vmlinux.h is picked up first
bpf: Make bpf_link_fops static
bpftool: Respect the -d option in struct_ops cmd
selftests/bpf: Add test for freplace program with expected_attach_type
bpf: Propagate expected_attach_type when verifying freplace programs
bpf: Fix leak in LINK_UPDATE and enforce empty old_prog_fd
bpf, x86_32: Fix logic error in BPF_LDX zero-extension
bpf, x86_32: Fix clobbering of dst for BPF_JSET
bpf, x86_32: Fix incorrect encoding in BPF_LDX zero-extension
bpf: Fix reStructuredText markup
net: systemport: suppress warnings on failed Rx SKB allocations
net: bcmgenet: suppress warnings on failed Rx SKB allocations
macsec: avoid to set wrong mtu
mac80211: sta_info: Add lockdep condition for RCU list usage
mac80211: populate debugfs only after cfg80211 init
net: bcmgenet: correct per TX/RX ring statistics
net: meth: remove spurious copyright text
net: phy: bcm84881: clear settings on link down
chcr: Fix CPU hard lockup
...
|
|
Pull PNP cleanup from Rafael Wysocki:
"Make the PNP code use list_for_each_entry() in a few places instead of
open-coding it (Jason Gunthorpe)"
* tag 'pnp-5.7-rc3' of git://git.kernel.org/pub/scm/linux/kernel/git/rafael/linux-pm:
pnp: Use list_for_each_entry() instead of open coding
|
|
Pull block fixes from Jens Axboe:
"A few fixes/changes that should go into this release:
- null_blk zoned fixes (Damien)
- blkdev_close() sync improvement (Douglas)
- Fix regression in blk-iocost that impacted (at least) systemtap
(Waiman)
- Comment fix, header removal (Zhiqiang, Jianpeng)"
* tag 'block-5.7-2020-04-24' of git://git.kernel.dk/linux-block:
null_blk: Cleanup zoned device initialization
null_blk: Fix zoned command handling
block: remove unused header
blk-iocost: Fix error on iocost_ioc_vrate_adj
bdev: Reduce time holding bd_mutex in sync in blkdev_close()
buffer: remove useless comment and WB_REASON_FREE_MORE_MEM, reason.
|
|
Pull tracing fixes from Steven Rostedt:
"A few tracing fixes:
- Two fixes for memory leaks detected by kmemleak
- Removal of some dead code
- A few local functions turned static"
* tag 'trace-v5.7-rc2' of git://git.kernel.org/pub/scm/linux/kernel/git/rostedt/linux-trace:
tracing: Convert local functions in tracing_map.c to static
tracing: Remove DECLARE_TRACE_NOARGS
ftrace: Fix memory leak caused by not freeing entry in unregister_ftrace_direct()
tracing: Fix memory leaks in trace_events_hist.c
|
|
Pull Kbuild fixes from Masahiro Yamada:
- fix scripts/config to properly handle ':' in string type CONFIG
options
- fix unneeded rebuilds of DT schema check rule
- git rid of ordering dependency between <linux/vermagic.h> and
<linux/module.h> to fix build errors in some network drivers
- clean up generated headers of host arch with 'make ARCH=um mrproper'
* tag 'kbuild-fixes-v5.7' of git://git.kernel.org/pub/scm/linux/kernel/git/masahiroy/linux-kbuild:
h8300: ignore vmlinux.lds
Documentation: kbuild: fix the section title format
um: ensure `make ARCH=um mrproper` removes arch/$(SUBARCH)/include/generated/
arch: split MODULE_ARCH_VERMAGIC definitions out to <asm/vermagic.h>
kbuild: fix DT binding schema rule again to avoid needless rebuilds
scripts/config: allow colons in option strings for sed
|
|
Pull nfsd fixes from Chuck Lever:
"The first set of 5.7-rc fixes for NFS server issues.
These were all unresolved at the time the 5.7 window opened, and
needed some additional time to ensure they were correctly addressed.
They are ready now.
At the moment I know of one more urgent issue regarding the NFS
server. A fix has been tested and is under review. I expect to send
one more pull request, containing this fix (which now consists of 3
patches).
Fixes:
- Address several use-after-free and memory leak bugs
- Prevent a backchannel livelock"
* tag 'nfsd-5.7-rc-1' of git://git.linux-nfs.org/projects/cel/cel-2.6:
svcrdma: Fix leak of svc_rdma_recv_ctxt objects
svcrdma: Fix trace point use-after-free race
SUNRPC: Fix backchannel RPC soft lockups
SUNRPC/cache: Fix unsafe traverse caused double-free in cache_purge
nfsd: memory corruption in nfsd4_lock()
|
|
This macro was intentionally broken so that the kernel code is not
poluted with such noargs macro used simply as markers. This use case
can be satisfied by using dummy no inline functions. Just remove it.
Link: http://lkml.kernel.org/r/20200413153246.8511-1-nborisov@suse.com
Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
|
|
As the bug report [1] pointed out, <linux/vermagic.h> must be included
after <linux/module.h>.
I believe we should not impose any include order restriction. We often
sort include directives alphabetically, but it is just coding style
convention. Technically, we can include header files in any order by
making every header self-contained.
Currently, arch-specific MODULE_ARCH_VERMAGIC is defined in
<asm/module.h>, which is not included from <linux/vermagic.h>.
Hence, the straight-forward fix-up would be as follows:
|--- a/include/linux/vermagic.h
|+++ b/include/linux/vermagic.h
|@@ -1,5 +1,6 @@
| /* SPDX-License-Identifier: GPL-2.0 */
| #include <generated/utsrelease.h>
|+#include <linux/module.h>
|
| /* Simply sanity version stamp for modules. */
| #ifdef CONFIG_SMP
This works enough, but for further cleanups, I split MODULE_ARCH_VERMAGIC
definitions into <asm/vermagic.h>.
With this, <linux/module.h> and <linux/vermagic.h> will be orthogonal,
and the location of MODULE_ARCH_VERMAGIC definitions will be consistent.
For arc and ia64, MODULE_PROC_FAMILY is only used for defining
MODULE_ARCH_VERMAGIC. I squashed it.
For hexagon, nds32, and xtensa, I removed <asm/modules.h> entirely
because they contained nothing but MODULE_ARCH_VERMAGIC definition.
Kbuild will automatically generate <asm/modules.h> at build-time,
wrapping <asm-generic/module.h>.
[1] https://lore.kernel.org/lkml/20200411155623.GA22175@zn.tnic
Reported-by: Borislav Petkov <bp@suse.de>
Signed-off-by: Masahiro Yamada <masahiroy@kernel.org>
Acked-by: Jessica Yu <jeyu@kernel.org>
|
|
Aside from good practice, this avoids a warning from gcc 10:
./include/linux/kernel.h:997:3: warning: array subscript -31 is outside array bounds of ‘struct list_head[1]’ [-Warray-bounds]
997 | ((type *)(__mptr - offsetof(type, member))); })
| ~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
./include/linux/list.h:493:2: note: in expansion of macro ‘container_of’
493 | container_of(ptr, type, member)
| ^~~~~~~~~~~~
./include/linux/pnp.h:275:30: note: in expansion of macro ‘list_entry’
275 | #define global_to_pnp_dev(n) list_entry(n, struct pnp_dev, global_list)
| ^~~~~~~~~~
./include/linux/pnp.h:281:11: note: in expansion of macro ‘global_to_pnp_dev’
281 | (dev) != global_to_pnp_dev(&pnp_global); \
| ^~~~~~~~~~~~~~~~~
arch/x86/kernel/rtc.c:189:2: note: in expansion of macro ‘pnp_for_each_dev’
189 | pnp_for_each_dev(dev) {
Because the common code doesn't cast the starting list_head to the
containing struct.
Signed-off-by: Jason Gunthorpe <jgg@mellanox.com>
[ rjw: Whitespace adjustments ]
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
|
|
This patch is to enable Intel SERDES power up/down sequence. The SERDES
converts 8/10 bits data to SGMII signal. Below is an example of
HW configuration for SGMII mode. The SERDES is located in the PHY IF
in the diagram below.
<-----------------GBE Controller---------->|<--External PHY chip-->
+----------+ +----+ +---+ +----------+
| EQoS | <-GMII->| DW | < ------ > |PHY| <-SGMII-> | External |
| MAC | |xPCS| |IF | | PHY |
+----------+ +----+ +---+ +----------+
^ ^ ^ ^
| | | |
+---------------------MDIO-------------------------+
PHY IF configuration and status registers are accessible through
mdio address 0x15 which is defined as mdio_adhoc_addr. During D0,
The driver will need to power up PHY IF by changing the power state
to P0. Likewise, for D3, the driver sets PHY IF power state to P3.
Signed-off-by: Voon Weifeng <weifeng.voon@intel.com>
Signed-off-by: Ong Boon Leong <boon.leong.ong@intel.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
|
|
Merge misc fixes from Andrew Morton:
"15 fixes"
* emailed patches from Andrew Morton <akpm@linux-foundation.org>:
tools/vm: fix cross-compile build
coredump: fix null pointer dereference on coredump
mm: shmem: disable interrupt when acquiring info->lock in userfaultfd_copy path
shmem: fix possible deadlocks on shmlock_user_lock
vmalloc: fix remap_vmalloc_range() bounds checks
mm/shmem: fix build without THP
mm/ksm: fix NULL pointer dereference when KSM zero page is enabled
tools/build: tweak unused value workaround
checkpatch: fix a typo in the regex for $allocFunctions
mm, gup: return EINTR when gup is interrupted by fatal signals
mm/hugetlb: fix a addressing exception caused by huge_pte_offset
MAINTAINERS: add an entry for kfifo
mm/userfaultfd: disable userfaultfd-wp on x86_32
slub: avoid redzone when choosing freepointer location
sh: fix build error in mm/init.c
|
|
Pull kvm fixes from Paolo Bonzini:
"Bugfixes, and a few cleanups to the newly-introduced assembly language
vmentry code for AMD"
* tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm:
KVM: PPC: Book3S HV: Handle non-present PTEs in page fault functions
kvm: Disable objtool frame pointer checking for vmenter.S
MAINTAINERS: add a reviewer for KVM/s390
KVM: s390: Fix PV check in deliverable_irqs()
kvm: Handle reads of SandyBridge RAPL PMU MSRs rather than injecting #GP
KVM: Remove CREATE_IRQCHIP/SET_PIT2 race
KVM: SVM: Fix __svm_vcpu_run declaration.
KVM: SVM: Do not setup frame pointer in __svm_vcpu_run
KVM: SVM: Fix build error due to missing release_pages() include
KVM: SVM: Do not mark svm_vcpu_run with STACK_FRAME_NON_STANDARD
kvm: nVMX: match comment with return type for nested_vmx_exit_reflected
kvm: nVMX: reflect MTF VM-exits if injected by L1
KVM: s390: Return last valid slot if approx index is out-of-bounds
KVM: Check validity of resolved slot when searching memslots
KVM: VMX: Enable machine check support for 32bit targets
KVM: SVM: move more vmentry code to assembly
KVM: SVM: fix compilation with modular PSP and non-modular KVM
|
|
Pull virtio fixes and cleanups from Michael Tsirkin:
- Some bug fixes
- Cleanup a couple of issues that surfaced meanwhile
- Disable vhost on ARM with OABI for now - to be fixed fully later in
the cycle or in the next release.
* tag 'for_linus' of git://git.kernel.org/pub/scm/linux/kernel/git/mst/vhost: (24 commits)
vhost: disable for OABI
virtio: drop vringh.h dependency
virtio_blk: add a missing include
virtio-balloon: Avoid using the word 'report' when referring to free page hinting
virtio-balloon: make virtballoon_free_page_report() static
vdpa: fix comment of vdpa_register_device()
vdpa: make vhost, virtio depend on menu
vdpa: allow a 32 bit vq alignment
drm/virtio: fix up for include file changes
remoteproc: pull in slab.h
rpmsg: pull in slab.h
virtio_input: pull in slab.h
remoteproc: pull in slab.h
virtio-rng: pull in slab.h
virtgpu: pull in uaccess.h
tools/virtio: make asm/barrier.h self contained
tools/virtio: define aligned attribute
virtio/test: fix up after IOTLB changes
vhost: Create accessors for virtqueues private_data
vdpasim: Return status in vdpasim_get_status
...
|
|
remap_vmalloc_range() has had various issues with the bounds checks it
promises to perform ("This function checks that addr is a valid
vmalloc'ed area, and that it is big enough to cover the vma") over time,
e.g.:
- not detecting pgoff<<PAGE_SHIFT overflow
- not detecting (pgoff<<PAGE_SHIFT)+usize overflow
- not checking whether addr and addr+(pgoff<<PAGE_SHIFT) are the same
vmalloc allocation
- comparing a potentially wildly out-of-bounds pointer with the end of
the vmalloc region
In particular, since commit fc9702273e2e ("bpf: Add mmap() support for
BPF_MAP_TYPE_ARRAY"), unprivileged users can cause kernel null pointer
dereferences by calling mmap() on a BPF map with a size that is bigger
than the distance from the start of the BPF map to the end of the
address space.
This could theoretically be used as a kernel ASLR bypass, by using
whether mmap() with a given offset oopses or returns an error code to
perform a binary search over the possible address range.
To allow remap_vmalloc_range_partial() to verify that addr and
addr+(pgoff<<PAGE_SHIFT) are in the same vmalloc region, pass the offset
to remap_vmalloc_range_partial() instead of adding it to the pointer in
remap_vmalloc_range().
In remap_vmalloc_range_partial(), fix the check against
get_vm_area_size() by using size comparisons instead of pointer
comparisons, and add checks for pgoff.
Fixes: 833423143c3a ("[PATCH] mm: introduce remap_vmalloc_range()")
Signed-off-by: Jann Horn <jannh@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Cc: stable@vger.kernel.org
Cc: Alexei Starovoitov <ast@kernel.org>
Cc: Daniel Borkmann <daniel@iogearbox.net>
Cc: Martin KaFai Lau <kafai@fb.com>
Cc: Song Liu <songliubraving@fb.com>
Cc: Yonghong Song <yhs@fb.com>
Cc: Andrii Nakryiko <andriin@fb.com>
Cc: John Fastabend <john.fastabend@gmail.com>
Cc: KP Singh <kpsingh@chromium.org>
Link: http://lkml.kernel.org/r/20200415222312.236431-1-jannh@google.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
KVM: s390: Fix for 5.7 and maintainer update
- Silence false positive lockdep warning
- add Claudio as reviewer
|
|
Pull irq fixes from Thomas Gleixner:
"A set of fixes/updates for the interrupt subsystem:
- Remove setup_irq() and remove_irq(). All users have been converted
so remove them before new users surface.
- A set of bugfixes for various interrupt chip drivers
- Add a few missing static attributes to address sparse warnings"
* tag 'irq-urgent-2020-04-19' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
irqchip/irq-bcm7038-l1: Make bcm7038_l1_of_init() static
irqchip/irq-mvebu-icu: Make legacy_bindings static
irqchip/meson-gpio: Fix HARDIRQ-safe -> HARDIRQ-unsafe lock order
irqchip/sifive-plic: Fix maximum priority threshold value
irqchip/ti-sci-inta: Fix processing of masked irqs
irqchip/mbigen: Free msi_desc on device teardown
irqchip/gic-v4.1: Update effective affinity of virtual SGIs
irqchip/gic-v4.1: Add support for VPENDBASER's Dirty+Valid signaling
genirq: Remove setup_irq() and remove_irq()
|
|
Pull ext4 fixes from Ted Ts'o:
"Miscellaneous bug fixes and cleanups for ext4, including a fix for
generic/388 in data=journal mode, removing some BUG_ON's, and cleaning
up some compiler warnings"
* tag 'ext4_for_linus_stable' of git://git.kernel.org/pub/scm/linux/kernel/git/tytso/ext4:
ext4: convert BUG_ON's to WARN_ON's in mballoc.c
ext4: increase wait time needed before reuse of deleted inode numbers
ext4: remove set but not used variable 'es' in ext4_jbd2.c
ext4: remove set but not used variable 'es'
ext4: do not zeroout extents beyond i_disksize
ext4: fix return-value types in several function comments
ext4: use non-movable memory for superblock readahead
ext4: use matching invalidatepage in ext4_writepage
|
|
Pull flexible-array member conversion from Gustavo Silva:
"The current codebase makes use of the zero-length array language
extension to the C90 standard, but the preferred mechanism to declare
variable-length types such as these ones is a flexible array
member[1][2], introduced in C99:
struct foo {
int stuff;
struct boo array[];
};
By making use of the mechanism above, we will get a compiler warning
in case the flexible array does not occur last in the structure, which
will help us prevent some kind of undefined behavior bugs from being
inadvertently introduced[3] to the codebase from now on.
Also, notice that, dynamic memory allocations won't be affected by
this change:
"Flexible array members have incomplete type, and so the sizeof
operator may not be applied. As a quirk of the original
implementation of zero-length arrays, sizeof evaluates to zero."[1]
sizeof(flexible-array-member) triggers a warning because flexible
array members have incomplete type[1]. There are some instances of
code in which the sizeof operator is being incorrectly/erroneously
applied to zero-length arrays and the result is zero. Such instances
may be hiding some bugs. So, this work (flexible-array member
convertions) will also help to get completely rid of those sorts of
issues.
Notice that all of these patches have been baking in linux-next for
quite a while now and, 238 more of these patches have already been
merged into 5.7-rc1.
There are a couple hundred more of these issues waiting to be
addressed in the whole codebase"
[1] https://gcc.gnu.org/onlinedocs/gcc/Zero-Length.html
[2] https://github.com/KSPP/linux/issues/21
[3] commit 76497732932f ("cxgb3/l2t: Fix undefined behaviour")
* tag 'flexible-array-member-5.7-rc2' of git://git.kernel.org/pub/scm/linux/kernel/git/gustavoars/linux: (28 commits)
xattr.h: Replace zero-length array with flexible-array member
uapi: linux: fiemap.h: Replace zero-length array with flexible-array member
uapi: linux: dlm_device.h: Replace zero-length array with flexible-array member
tpm_eventlog.h: Replace zero-length array with flexible-array member
ti_wilink_st.h: Replace zero-length array with flexible-array member
swap.h: Replace zero-length array with flexible-array member
skbuff.h: Replace zero-length array with flexible-array member
sched: topology.h: Replace zero-length array with flexible-array member
rslib.h: Replace zero-length array with flexible-array member
rio.h: Replace zero-length array with flexible-array member
posix_acl.h: Replace zero-length array with flexible-array member
platform_data: wilco-ec.h: Replace zero-length array with flexible-array member
memcontrol.h: Replace zero-length array with flexible-array member
list_lru.h: Replace zero-length array with flexible-array member
lib: cpu_rmap: Replace zero-length array with flexible-array member
irq.h: Replace zero-length array with flexible-array member
ihex.h: Replace zero-length array with flexible-array member
igmp.h: Replace zero-length array with flexible-array member
genalloc.h: Replace zero-length array with flexible-array member
ethtool.h: Replace zero-length array with flexible-array member
...
|
|
The current codebase makes use of the zero-length array language
extension to the C90 standard, but the preferred mechanism to declare
variable-length types such as these ones is a flexible array member[1][2],
introduced in C99:
struct foo {
int stuff;
struct boo array[];
};
By making use of the mechanism above, we will get a compiler warning
in case the flexible array does not occur last in the structure, which
will help us prevent some kind of undefined behavior bugs from being
inadvertently introduced[3] to the codebase from now on.
Also, notice that, dynamic memory allocations won't be affected by
this change:
"Flexible array members have incomplete type, and so the sizeof operator
may not be applied. As a quirk of the original implementation of
zero-length arrays, sizeof evaluates to zero."[1]
This issue was found with the help of Coccinelle.
[1] https://gcc.gnu.org/onlinedocs/gcc/Zero-Length.html
[2] https://github.com/KSPP/linux/issues/21
[3] commit 76497732932f ("cxgb3/l2t: Fix undefined behaviour")
Signed-off-by: Gustavo A. R. Silva <gustavo@embeddedor.com>
|
|
The current codebase makes use of the zero-length array language
extension to the C90 standard, but the preferred mechanism to declare
variable-length types such as these ones is a flexible array member[1][2],
introduced in C99:
struct foo {
int stuff;
struct boo array[];
};
By making use of the mechanism above, we will get a compiler warning
in case the flexible array does not occur last in the structure, which
will help us prevent some kind of undefined behavior bugs from being
inadvertently introduced[3] to the codebase from now on.
Also, notice that, dynamic memory allocations won't be affected by
this change:
"Flexible array members have incomplete type, and so the sizeof operator
may not be applied. As a quirk of the original implementation of
zero-length arrays, sizeof evaluates to zero."[1]
This issue was found with the help of Coccinelle.
[1] https://gcc.gnu.org/onlinedocs/gcc/Zero-Length.html
[2] https://github.com/KSPP/linux/issues/21
[3] commit 76497732932f ("cxgb3/l2t: Fix undefined behaviour")
Signed-off-by: Gustavo A. R. Silva <gustavo@embeddedor.com>
|
|
The current codebase makes use of the zero-length array language
extension to the C90 standard, but the preferred mechanism to declare
variable-length types such as these ones is a flexible array member[1][2],
introduced in C99:
struct foo {
int stuff;
struct boo array[];
};
By making use of the mechanism above, we will get a compiler warning
in case the flexible array does not occur last in the structure, which
will help us prevent some kind of undefined behavior bugs from being
inadvertently introduced[3] to the codebase from now on.
Also, notice that, dynamic memory allocations won't be affected by
this change:
"Flexible array members have incomplete type, and so the sizeof operator
may not be applied. As a quirk of the original implementation of
zero-length arrays, sizeof evaluates to zero."[1]
This issue was found with the help of Coccinelle.
[1] https://gcc.gnu.org/onlinedocs/gcc/Zero-Length.html
[2] https://github.com/KSPP/linux/issues/21
[3] commit 76497732932f ("cxgb3/l2t: Fix undefined behaviour")
Signed-off-by: Gustavo A. R. Silva <gustavo@embeddedor.com>
|
|
The current codebase makes use of the zero-length array language
extension to the C90 standard, but the preferred mechanism to declare
variable-length types such as these ones is a flexible array member[1][2],
introduced in C99:
struct foo {
int stuff;
struct boo array[];
};
By making use of the mechanism above, we will get a compiler warning
in case the flexible array does not occur last in the structure, which
will help us prevent some kind of undefined behavior bugs from being
inadvertently introduced[3] to the codebase from now on.
Also, notice that, dynamic memory allocations won't be affected by
this change:
"Flexible array members have incomplete type, and so the sizeof operator
may not be applied. As a quirk of the original implementation of
zero-length arrays, sizeof evaluates to zero."[1]
This issue was found with the help of Coccinelle.
[1] https://gcc.gnu.org/onlinedocs/gcc/Zero-Length.html
[2] https://github.com/KSPP/linux/issues/21
[3] commit 76497732932f ("cxgb3/l2t: Fix undefined behaviour")
Signed-off-by: Gustavo A. R. Silva <gustavo@embeddedor.com>
|
|
The current codebase makes use of the zero-length array language
extension to the C90 standard, but the preferred mechanism to declare
variable-length types such as these ones is a flexible array member[1][2],
introduced in C99:
struct foo {
int stuff;
struct boo array[];
};
By making use of the mechanism above, we will get a compiler warning
in case the flexible array does not occur last in the structure, which
will help us prevent some kind of undefined behavior bugs from being
inadvertently introduced[3] to the codebase from now on.
Also, notice that, dynamic memory allocations won't be affected by
this change:
"Flexible array members have incomplete type, and so the sizeof operator
may not be applied. As a quirk of the original implementation of
zero-length arrays, sizeof evaluates to zero."[1]
This issue was found with the help of Coccinelle.
[1] https://gcc.gnu.org/onlinedocs/gcc/Zero-Length.html
[2] https://github.com/KSPP/linux/issues/21
[3] commit 76497732932f ("cxgb3/l2t: Fix undefined behaviour")
Signed-off-by: Gustavo A. R. Silva <gustavo@embeddedor.com>
|
|
The current codebase makes use of the zero-length array language
extension to the C90 standard, but the preferred mechanism to declare
variable-length types such as these ones is a flexible array member[1][2],
introduced in C99:
struct foo {
int stuff;
struct boo array[];
};
By making use of the mechanism above, we will get a compiler warning
in case the flexible array does not occur last in the structure, which
will help us prevent some kind of undefined behavior bugs from being
inadvertently introduced[3] to the codebase from now on.
Also, notice that, dynamic memory allocations won't be affected by
this change:
"Flexible array members have incomplete type, and so the sizeof operator
may not be applied. As a quirk of the original implementation of
zero-length arrays, sizeof evaluates to zero."[1]
This issue was found with the help of Coccinelle.
[1] https://gcc.gnu.org/onlinedocs/gcc/Zero-Length.html
[2] https://github.com/KSPP/linux/issues/21
[3] commit 76497732932f ("cxgb3/l2t: Fix undefined behaviour")
Signed-off-by: Gustavo A. R. Silva <gustavo@embeddedor.com>
|
|
The current codebase makes use of the zero-length array language
extension to the C90 standard, but the preferred mechanism to declare
variable-length types such as these ones is a flexible array member[1][2],
introduced in C99:
struct foo {
int stuff;
struct boo array[];
};
By making use of the mechanism above, we will get a compiler warning
in case the flexible array does not occur last in the structure, which
will help us prevent some kind of undefined behavior bugs from being
inadvertently introduced[3] to the codebase from now on.
Also, notice that, dynamic memory allocations won't be affected by
this change:
"Flexible array members have incomplete type, and so the sizeof operator
may not be applied. As a quirk of the original implementation of
zero-length arrays, sizeof evaluates to zero."[1]
This issue was found with the help of Coccinelle.
[1] https://gcc.gnu.org/onlinedocs/gcc/Zero-Length.html
[2] https://github.com/KSPP/linux/issues/21
[3] commit 76497732932f ("cxgb3/l2t: Fix undefined behaviour")
Signed-off-by: Gustavo A. R. Silva <gustavo@embeddedor.com>
|
|
The current codebase makes use of the zero-length array language
extension to the C90 standard, but the preferred mechanism to declare
variable-length types such as these ones is a flexible array member[1][2],
introduced in C99:
struct foo {
int stuff;
struct boo array[];
};
By making use of the mechanism above, we will get a compiler warning
in case the flexible array does not occur last in the structure, which
will help us prevent some kind of undefined behavior bugs from being
inadvertently introduced[3] to the codebase from now on.
Also, notice that, dynamic memory allocations won't be affected by
this change:
"Flexible array members have incomplete type, and so the sizeof operator
may not be applied. As a quirk of the original implementation of
zero-length arrays, sizeof evaluates to zero."[1]
This issue was found with the help of Coccinelle.
[1] https://gcc.gnu.org/onlinedocs/gcc/Zero-Length.html
[2] https://github.com/KSPP/linux/issues/21
[3] commit 76497732932f ("cxgb3/l2t: Fix undefined behaviour")
Signed-off-by: Gustavo A. R. Silva <gustavo@embeddedor.com>
|
|
The current codebase makes use of the zero-length array language
extension to the C90 standard, but the preferred mechanism to declare
variable-length types such as these ones is a flexible array member[1][2],
introduced in C99:
struct foo {
int stuff;
struct boo array[];
};
By making use of the mechanism above, we will get a compiler warning
in case the flexible array does not occur last in the structure, which
will help us prevent some kind of undefined behavior bugs from being
inadvertently introduced[3] to the codebase from now on.
Also, notice that, dynamic memory allocations won't be affected by
this change:
"Flexible array members have incomplete type, and so the sizeof operator
may not be applied. As a quirk of the original implementation of
zero-length arrays, sizeof evaluates to zero."[1]
This issue was found with the help of Coccinelle.
[1] https://gcc.gnu.org/onlinedocs/gcc/Zero-Length.html
[2] https://github.com/KSPP/linux/issues/21
[3] commit 76497732932f ("cxgb3/l2t: Fix undefined behaviour")
Signed-off-by: Gustavo A. R. Silva <gustavo@embeddedor.com>
|
|
The current codebase makes use of the zero-length array language
extension to the C90 standard, but the preferred mechanism to declare
variable-length types such as these ones is a flexible array member[1][2],
introduced in C99:
struct foo {
int stuff;
struct boo array[];
};
By making use of the mechanism above, we will get a compiler warning
in case the flexible array does not occur last in the structure, which
will help us prevent some kind of undefined behavior bugs from being
inadvertently introduced[3] to the codebase from now on.
Also, notice that, dynamic memory allocations won't be affected by
this change:
"Flexible array members have incomplete type, and so the sizeof operator
may not be applied. As a quirk of the original implementation of
zero-length arrays, sizeof evaluates to zero."[1]
This issue was found with the help of Coccinelle.
[1] https://gcc.gnu.org/onlinedocs/gcc/Zero-Length.html
[2] https://github.com/KSPP/linux/issues/21
[3] commit 76497732932f ("cxgb3/l2t: Fix undefined behaviour")
Signed-off-by: Gustavo A. R. Silva <gustavo@embeddedor.com>
|
|
The current codebase makes use of the zero-length array language
extension to the C90 standard, but the preferred mechanism to declare
variable-length types such as these ones is a flexible array member[1][2],
introduced in C99:
struct foo {
int stuff;
struct boo array[];
};
By making use of the mechanism above, we will get a compiler warning
in case the flexible array does not occur last in the structure, which
will help us prevent some kind of undefined behavior bugs from being
inadvertently introduced[3] to the codebase from now on.
Also, notice that, dynamic memory allocations won't be affected by
this change:
"Flexible array members have incomplete type, and so the sizeof operator
may not be applied. As a quirk of the original implementation of
zero-length arrays, sizeof evaluates to zero."[1]
This issue was found with the help of Coccinelle.
[1] https://gcc.gnu.org/onlinedocs/gcc/Zero-Length.html
[2] https://github.com/KSPP/linux/issues/21
[3] commit 76497732932f ("cxgb3/l2t: Fix undefined behaviour")
Signed-off-by: Gustavo A. R. Silva <gustavo@embeddedor.com>
|
|
The current codebase makes use of the zero-length array language
extension to the C90 standard, but the preferred mechanism to declare
variable-length types such as these ones is a flexible array member[1][2],
introduced in C99:
struct foo {
int stuff;
struct boo array[];
};
By making use of the mechanism above, we will get a compiler warning
in case the flexible array does not occur last in the structure, which
will help us prevent some kind of undefined behavior bugs from being
inadvertently introduced[3] to the codebase from now on.
Also, notice that, dynamic memory allocations won't be affected by
this change:
"Flexible array members have incomplete type, and so the sizeof operator
may not be applied. As a quirk of the original implementation of
zero-length arrays, sizeof evaluates to zero."[1]
This issue was found with the help of Coccinelle.
[1] https://gcc.gnu.org/onlinedocs/gcc/Zero-Length.html
[2] https://github.com/KSPP/linux/issues/21
[3] commit 76497732932f ("cxgb3/l2t: Fix undefined behaviour")
Signed-off-by: Gustavo A. R. Silva <gustavo@embeddedor.com>
|
|
The current codebase makes use of the zero-length array language
extension to the C90 standard, but the preferred mechanism to declare
variable-length types such as these ones is a flexible array member[1][2],
introduced in C99:
struct foo {
int stuff;
struct boo array[];
};
By making use of the mechanism above, we will get a compiler warning
in case the flexible array does not occur last in the structure, which
will help us prevent some kind of undefined behavior bugs from being
inadvertently introduced[3] to the codebase from now on.
Also, notice that, dynamic memory allocations won't be affected by
this change:
"Flexible array members have incomplete type, and so the sizeof operator
may not be applied. As a quirk of the original implementation of
zero-length arrays, sizeof evaluates to zero."[1]
This issue was found with the help of Coccinelle.
[1] https://gcc.gnu.org/onlinedocs/gcc/Zero-Length.html
[2] https://github.com/KSPP/linux/issues/21
[3] commit 76497732932f ("cxgb3/l2t: Fix undefined behaviour")
Signed-off-by: Gustavo A. R. Silva <gustavo@embeddedor.com>
|
|
The current codebase makes use of the zero-length array language
extension to the C90 standard, but the preferred mechanism to declare
variable-length types such as these ones is a flexible array member[1][2],
introduced in C99:
struct foo {
int stuff;
struct boo array[];
};
By making use of the mechanism above, we will get a compiler warning
in case the flexible array does not occur last in the structure, which
will help us prevent some kind of undefined behavior bugs from being
inadvertently introduced[3] to the codebase from now on.
Also, notice that, dynamic memory allocations won't be affected by
this change:
"Flexible array members have incomplete type, and so the sizeof operator
may not be applied. As a quirk of the original implementation of
zero-length arrays, sizeof evaluates to zero."[1]
This issue was found with the help of Coccinelle.
[1] https://gcc.gnu.org/onlinedocs/gcc/Zero-Length.html
[2] https://github.com/KSPP/linux/issues/21
[3] commit 76497732932f ("cxgb3/l2t: Fix undefined behaviour")
Signed-off-by: Gustavo A. R. Silva <gustavo@embeddedor.com>
|
|
The current codebase makes use of the zero-length array language
extension to the C90 standard, but the preferred mechanism to declare
variable-length types such as these ones is a flexible array member[1][2],
introduced in C99:
struct foo {
int stuff;
struct boo array[];
};
By making use of the mechanism above, we will get a compiler warning
in case the flexible array does not occur last in the structure, which
will help us prevent some kind of undefined behavior bugs from being
inadvertently introduced[3] to the codebase from now on.
Also, notice that, dynamic memory allocations won't be affected by
this change:
"Flexible array members have incomplete type, and so the sizeof operator
may not be applied. As a quirk of the original implementation of
zero-length arrays, sizeof evaluates to zero."[1]
This issue was found with the help of Coccinelle.
[1] https://gcc.gnu.org/onlinedocs/gcc/Zero-Length.html
[2] https://github.com/KSPP/linux/issues/21
[3] commit 76497732932f ("cxgb3/l2t: Fix undefined behaviour")
Signed-off-by: Gustavo A. R. Silva <gustavo@embeddedor.com>
|
|
The current codebase makes use of the zero-length array language
extension to the C90 standard, but the preferred mechanism to declare
variable-length types such as these ones is a flexible array member[1][2],
introduced in C99:
struct foo {
int stuff;
struct boo array[];
};
By making use of the mechanism above, we will get a compiler warning
in case the flexible array does not occur last in the structure, which
will help us prevent some kind of undefined behavior bugs from being
inadvertently introduced[3] to the codebase from now on.
Also, notice that, dynamic memory allocations won't be affected by
this change:
"Flexible array members have incomplete type, and so the sizeof operator
may not be applied. As a quirk of the original implementation of
zero-length arrays, sizeof evaluates to zero."[1]
This issue was found with the help of Coccinelle.
[1] https://gcc.gnu.org/onlinedocs/gcc/Zero-Length.html
[2] https://github.com/KSPP/linux/issues/21
[3] commit 76497732932f ("cxgb3/l2t: Fix undefined behaviour")
Signed-off-by: Gustavo A. R. Silva <gustavo@embeddedor.com>
|
|
The current codebase makes use of the zero-length array language
extension to the C90 standard, but the preferred mechanism to declare
variable-length types such as these ones is a flexible array member[1][2],
introduced in C99:
struct foo {
int stuff;
struct boo array[];
};
By making use of the mechanism above, we will get a compiler warning
in case the flexible array does not occur last in the structure, which
will help us prevent some kind of undefined behavior bugs from being
inadvertently introduced[3] to the codebase from now on.
Also, notice that, dynamic memory allocations won't be affected by
this change:
"Flexible array members have incomplete type, and so the sizeof operator
may not be applied. As a quirk of the original implementation of
zero-length arrays, sizeof evaluates to zero."[1]
This issue was found with the help of Coccinelle.
[1] https://gcc.gnu.org/onlinedocs/gcc/Zero-Length.html
[2] https://github.com/KSPP/linux/issues/21
[3] commit 76497732932f ("cxgb3/l2t: Fix undefined behaviour")
Signed-off-by: Gustavo A. R. Silva <gustavo@embeddedor.com>
|
|
The current codebase makes use of the zero-length array language
extension to the C90 standard, but the preferred mechanism to declare
variable-length types such as these ones is a flexible array member[1][2],
introduced in C99:
struct foo {
int stuff;
struct boo array[];
};
By making use of the mechanism above, we will get a compiler warning
in case the flexible array does not occur last in the structure, which
will help us prevent some kind of undefined behavior bugs from being
inadvertently introduced[3] to the codebase from now on.
Also, notice that, dynamic memory allocations won't be affected by
this change:
"Flexible array members have incomplete type, and so the sizeof operator
may not be applied. As a quirk of the original implementation of
zero-length arrays, sizeof evaluates to zero."[1]
This issue was found with the help of Coccinelle.
[1] https://gcc.gnu.org/onlinedocs/gcc/Zero-Length.html
[2] https://github.com/KSPP/linux/issues/21
[3] commit 76497732932f ("cxgb3/l2t: Fix undefined behaviour")
Signed-off-by: Gustavo A. R. Silva <gustavo@embeddedor.com>
|
|
The current codebase makes use of the zero-length array language
extension to the C90 standard, but the preferred mechanism to declare
variable-length types such as these ones is a flexible array member[1][2],
introduced in C99:
struct foo {
int stuff;
struct boo array[];
};
By making use of the mechanism above, we will get a compiler warning
in case the flexible array does not occur last in the structure, which
will help us prevent some kind of undefined behavior bugs from being
inadvertently introduced[3] to the codebase from now on.
Also, notice that, dynamic memory allocations won't be affected by
this change:
"Flexible array members have incomplete type, and so the sizeof operator
may not be applied. As a quirk of the original implementation of
zero-length arrays, sizeof evaluates to zero."[1]
This issue was found with the help of Coccinelle.
[1] https://gcc.gnu.org/onlinedocs/gcc/Zero-Length.html
[2] https://github.com/KSPP/linux/issues/21
[3] commit 76497732932f ("cxgb3/l2t: Fix undefined behaviour")
Signed-off-by: Gustavo A. R. Silva <gustavo@embeddedor.com>
|
|
The current codebase makes use of the zero-length array language
extension to the C90 standard, but the preferred mechanism to declare
variable-length types such as these ones is a flexible array member[1][2],
introduced in C99:
struct foo {
int stuff;
struct boo array[];
};
By making use of the mechanism above, we will get a compiler warning
in case the flexible array does not occur last in the structure, which
will help us prevent some kind of undefined behavior bugs from being
inadvertently introduced[3] to the codebase from now on.
Also, notice that, dynamic memory allocations won't be affected by
this change:
"Flexible array members have incomplete type, and so the sizeof operator
may not be applied. As a quirk of the original implementation of
zero-length arrays, sizeof evaluates to zero."[1]
This issue was found with the help of Coccinelle.
[1] https://gcc.gnu.org/onlinedocs/gcc/Zero-Length.html
[2] https://github.com/KSPP/linux/issues/21
[3] commit 76497732932f ("cxgb3/l2t: Fix undefined behaviour")
Signed-off-by: Gustavo A. R. Silva <gustavo@embeddedor.com>
|
|
The current codebase makes use of the zero-length array language
extension to the C90 standard, but the preferred mechanism to declare
variable-length types such as these ones is a flexible array member[1][2],
introduced in C99:
struct foo {
int stuff;
struct boo array[];
};
By making use of the mechanism above, we will get a compiler warning
in case the flexible array does not occur last in the structure, which
will help us prevent some kind of undefined behavior bugs from being
inadvertently introduced[3] to the codebase from now on.
Also, notice that, dynamic memory allocations won't be affected by
this change:
"Flexible array members have incomplete type, and so the sizeof operator
may not be applied. As a quirk of the original implementation of
zero-length arrays, sizeof evaluates to zero."[1]
This issue was found with the help of Coccinelle.
[1] https://gcc.gnu.org/onlinedocs/gcc/Zero-Length.html
[2] https://github.com/KSPP/linux/issues/21
[3] commit 76497732932f ("cxgb3/l2t: Fix undefined behaviour")
Signed-off-by: Gustavo A. R. Silva <gustavo@embeddedor.com>
|
|
The current codebase makes use of the zero-length array language
extension to the C90 standard, but the preferred mechanism to declare
variable-length types such as these ones is a flexible array member[1][2],
introduced in C99:
struct foo {
int stuff;
struct boo array[];
};
By making use of the mechanism above, we will get a compiler warning
in case the flexible array does not occur last in the structure, which
will help us prevent some kind of undefined behavior bugs from being
inadvertently introduced[3] to the codebase from now on.
Also, notice that, dynamic memory allocations won't be affected by
this change:
"Flexible array members have incomplete type, and so the sizeof operator
may not be applied. As a quirk of the original implementation of
zero-length arrays, sizeof evaluates to zero."[1]
This issue was found with the help of Coccinelle.
[1] https://gcc.gnu.org/onlinedocs/gcc/Zero-Length.html
[2] https://github.com/KSPP/linux/issues/21
[3] commit 76497732932f ("cxgb3/l2t: Fix undefined behaviour")
Signed-off-by: Gustavo A. R. Silva <gustavo@embeddedor.com>
|
|
The current codebase makes use of the zero-length array language
extension to the C90 standard, but the preferred mechanism to declare
variable-length types such as these ones is a flexible array member[1][2],
introduced in C99:
struct foo {
int stuff;
struct boo array[];
};
By making use of the mechanism above, we will get a compiler warning
in case the flexible array does not occur last in the structure, which
will help us prevent some kind of undefined behavior bugs from being
inadvertently introduced[3] to the codebase from now on.
Also, notice that, dynamic memory allocations won't be affected by
this change:
"Flexible array members have incomplete type, and so the sizeof operator
may not be applied. As a quirk of the original implementation of
zero-length arrays, sizeof evaluates to zero."[1]
This issue was found with the help of Coccinelle.
[1] https://gcc.gnu.org/onlinedocs/gcc/Zero-Length.html
[2] https://github.com/KSPP/linux/issues/21
[3] commit 76497732932f ("cxgb3/l2t: Fix undefined behaviour")
Signed-off-by: Gustavo A. R. Silva <gustavo@embeddedor.com>
|
|
The current codebase makes use of the zero-length array language
extension to the C90 standard, but the preferred mechanism to declare
variable-length types such as these ones is a flexible array member[1][2],
introduced in C99:
struct foo {
int stuff;
struct boo array[];
};
By making use of the mechanism above, we will get a compiler warning
in case the flexible array does not occur last in the structure, which
will help us prevent some kind of undefined behavior bugs from being
inadvertently introduced[3] to the codebase from now on.
Also, notice that, dynamic memory allocations won't be affected by
this change:
"Flexible array members have incomplete type, and so the sizeof operator
may not be applied. As a quirk of the original implementation of
zero-length arrays, sizeof evaluates to zero."[1]
This issue was found with the help of Coccinelle.
[1] https://gcc.gnu.org/onlinedocs/gcc/Zero-Length.html
[2] https://github.com/KSPP/linux/issues/21
[3] commit 76497732932f ("cxgb3/l2t: Fix undefined behaviour")
Signed-off-by: Gustavo A. R. Silva <gustavo@embeddedor.com>
|
|
The current codebase makes use of the zero-length array language
extension to the C90 standard, but the preferred mechanism to declare
variable-length types such as these ones is a flexible array member[1][2],
introduced in C99:
struct foo {
int stuff;
struct boo array[];
};
By making use of the mechanism above, we will get a compiler warning
in case the flexible array does not occur last in the structure, which
will help us prevent some kind of undefined behavior bugs from being
inadvertently introduced[3] to the codebase from now on.
Also, notice that, dynamic memory allocations won't be affected by
this change:
"Flexible array members have incomplete type, and so the sizeof operator
may not be applied. As a quirk of the original implementation of
zero-length arrays, sizeof evaluates to zero."[1]
This issue was found with the help of Coccinelle.
[1] https://gcc.gnu.org/onlinedocs/gcc/Zero-Length.html
[2] https://github.com/KSPP/linux/issues/21
[3] commit 76497732932f ("cxgb3/l2t: Fix undefined behaviour")
Signed-off-by: Gustavo A. R. Silva <gustavo@embeddedor.com>
|
|
The current codebase makes use of the zero-length array language
extension to the C90 standard, but the preferred mechanism to declare
variable-length types such as these ones is a flexible array member[1][2],
introduced in C99:
struct foo {
int stuff;
struct boo array[];
};
By making use of the mechanism above, we will get a compiler warning
in case the flexible array does not occur last in the structure, which
will help us prevent some kind of undefined behavior bugs from being
inadvertently introduced[3] to the codebase from now on.
Also, notice that, dynamic memory allocations won't be affected by
this change:
"Flexible array members have incomplete type, and so the sizeof operator
may not be applied. As a quirk of the original implementation of
zero-length arrays, sizeof evaluates to zero."[1]
This issue was found with the help of Coccinelle.
[1] https://gcc.gnu.org/onlinedocs/gcc/Zero-Length.html
[2] https://github.com/KSPP/linux/issues/21
[3] commit 76497732932f ("cxgb3/l2t: Fix undefined behaviour")
Signed-off-by: Gustavo A. R. Silva <gustavo@embeddedor.com>
|
|
free_more_memory func has been completely removed in commit bc48f001de12
("buffer: eliminate the need to call free_more_memory() in __getblk_slow()")
So comment and `WB_REASON_FREE_MORE_MEM` reason about free_more_memory
are no longer needed.
Fixes: bc48f001de12 ("buffer: eliminate the need to call free_more_memory() in __getblk_slow()")
Reviewed-by: Jan Kara <jack@suse.cz>
Signed-off-by: Zhiqiang Liu <liuzhiqiang26@huawei.com>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
|
|
Utilize the xpo_release_rqst transport method to ensure that each
rqstp's svc_rdma_recv_ctxt object is released even when the server
cannot return a Reply for that rqstp.
Without this fix, each RPC whose Reply cannot be sent leaks one
svc_rdma_recv_ctxt. This is a 2.5KB structure, a 4KB DMA-mapped
Receive buffer, and any pages that might be part of the Reply
message.
The leak is infrequent unless the network fabric is unreliable or
Kerberos is in use, as GSS sequence window overruns, which result
in connection loss, are more common on fast transports.
Fixes: 3a88092ee319 ("svcrdma: Preserve Receive buffer until svc_rdma_sendto")
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
|
|
Most virtio drivers don't depend on vringh, let's not
pull that dependency, include it directly as needed.
Signed-off-by: Michael S. Tsirkin <mst@redhat.com>
|
|
get_vq_align returns u16 now, but that's not enough for
systems/devices with 64K pages. All callers assign it to
a u32 variable anyway, so let's just change the return
value type to u32.
Reported-by: Arnd Bergmann <arnd@arndb.de>
Signed-off-by: Michael S. Tsirkin <mst@redhat.com>
|