aboutsummaryrefslogtreecommitdiffstatshomepage
path: root/kernel/stackleak.c (follow)
AgeCommit message (Collapse)AuthorFilesLines
2020-06-24gcc-plugins/stackleak: Use asm instrumentation to avoid useless register savingAlexander Popov1-12/+4
The kernel code instrumentation in stackleak gcc plugin works in two stages. At first, stack tracking is added to GIMPLE representation of every function (except some special cases). And later, when stack frame size info is available, stack tracking is removed from the RTL representation of the functions with small stack frame. There is an unwanted side-effect for these functions: some of them do useless work with caller-saved registers. As an example of such case, proc_sys_write without() instrumentation: 55 push %rbp 41 b8 01 00 00 00 mov $0x1,%r8d 48 89 e5 mov %rsp,%rbp e8 11 ff ff ff callq ffffffff81284610 <proc_sys_call_handler> 5d pop %rbp c3 retq 0f 1f 44 00 00 nopl 0x0(%rax,%rax,1) 66 2e 0f 1f 84 00 00 nopw %cs:0x0(%rax,%rax,1) 00 00 00 proc_sys_write() with instrumentation: 55 push %rbp 48 89 e5 mov %rsp,%rbp 41 56 push %r14 41 55 push %r13 41 54 push %r12 53 push %rbx 49 89 f4 mov %rsi,%r12 48 89 fb mov %rdi,%rbx 49 89 d5 mov %rdx,%r13 49 89 ce mov %rcx,%r14 4c 89 f1 mov %r14,%rcx 4c 89 ea mov %r13,%rdx 4c 89 e6 mov %r12,%rsi 48 89 df mov %rbx,%rdi 41 b8 01 00 00 00 mov $0x1,%r8d e8 f2 fe ff ff callq ffffffff81298e80 <proc_sys_call_handler> 5b pop %rbx 41 5c pop %r12 41 5d pop %r13 41 5e pop %r14 5d pop %rbp c3 retq 66 0f 1f 84 00 00 00 nopw 0x0(%rax,%rax,1) 00 00 Let's improve the instrumentation to avoid this: 1. Make stackleak_track_stack() save all register that it works with. Use no_caller_saved_registers attribute for that function. This attribute is available for x86_64 and i386 starting from gcc-7. 2. Insert calling stackleak_track_stack() in asm: asm volatile("call stackleak_track_stack" :: "r" (current_stack_pointer)) Here we use ASM_CALL_CONSTRAINT trick from arch/x86/include/asm/asm.h. The input constraint is taken into account during gcc shrink-wrapping optimization. It is needed to be sure that stackleak_track_stack() call is inserted after the prologue of the containing function, when the stack frame is prepared. This work is a deep reengineering of the idea described on grsecurity blog https://grsecurity.net/resolving_an_unfortunate_stackleak_interaction Signed-off-by: Alexander Popov <alex.popov@linux.com> Acked-by: Miguel Ojeda <miguel.ojeda.sandonis@gmail.com> Link: https://lore.kernel.org/r/20200624123330.83226-5-alex.popov@linux.com Signed-off-by: Kees Cook <keescook@chromium.org>
2018-12-05stackleak: Mark stackleak_track_stack() as notraceAnders Roxell1-1/+1
Function graph tracing recurses into itself when stackleak is enabled, causing the ftrace graph selftest to run for up to 90 seconds and trigger the softlockup watchdog. Breakpoint 2, ftrace_graph_caller () at ../arch/arm64/kernel/entry-ftrace.S:200 200 mcount_get_lr_addr x0 // pointer to function's saved lr (gdb) bt \#0 ftrace_graph_caller () at ../arch/arm64/kernel/entry-ftrace.S:200 \#1 0xffffff80081d5280 in ftrace_caller () at ../arch/arm64/kernel/entry-ftrace.S:153 \#2 0xffffff8008555484 in stackleak_track_stack () at ../kernel/stackleak.c:106 \#3 0xffffff8008421ff8 in ftrace_ops_test (ops=0xffffff8009eaa840 <graph_ops>, ip=18446743524091297036, regs=<optimized out>) at ../kernel/trace/ftrace.c:1507 \#4 0xffffff8008428770 in __ftrace_ops_list_func (regs=<optimized out>, ignored=<optimized out>, parent_ip=<optimized out>, ip=<optimized out>) at ../kernel/trace/ftrace.c:6286 \#5 ftrace_ops_no_ops (ip=18446743524091297036, parent_ip=18446743524091242824) at ../kernel/trace/ftrace.c:6321 \#6 0xffffff80081d5280 in ftrace_caller () at ../arch/arm64/kernel/entry-ftrace.S:153 \#7 0xffffff800832fd10 in irq_find_mapping (domain=0xffffffc03fc4bc80, hwirq=27) at ../kernel/irq/irqdomain.c:876 \#8 0xffffff800832294c in __handle_domain_irq (domain=0xffffffc03fc4bc80, hwirq=27, lookup=true, regs=0xffffff800814b840) at ../kernel/irq/irqdesc.c:650 \#9 0xffffff80081d52b4 in ftrace_graph_caller () at ../arch/arm64/kernel/entry-ftrace.S:205 Rework so we mark stackleak_track_stack as notrace Co-developed-by: Arnd Bergmann <arnd@arndb.de> Signed-off-by: Arnd Bergmann <arnd@arndb.de> Signed-off-by: Anders Roxell <anders.roxell@linaro.org> Acked-by: Steven Rostedt (VMware) <rostedt@goodmis.org> Signed-off-by: Kees Cook <keescook@chromium.org>
2018-11-30stackleak: Disable function tracing and kprobes for stackleak_erase()Alexander Popov1-1/+3
The stackleak_erase() function is called on the trampoline stack at the end of syscall. This stack is not big enough for ftrace and kprobes operations, e.g. it can be exhausted if we use kprobe_events for stackleak_erase(). So let's disable function tracing and kprobes of stackleak_erase(). Reported-by: kernel test robot <lkp@intel.com> Fixes: 10e9ae9fabaf ("gcc-plugins: Add STACKLEAK plugin for tracking the kernel stack") Signed-off-by: Alexander Popov <alex.popov@linux.com> Reviewed-by: Steven Rostedt (VMware) <rostedt@goodmis.org> Reviewed-by: Masami Hiramatsu <mhiramat@kernel.org> Signed-off-by: Kees Cook <keescook@chromium.org>
2018-09-04stackleak: Allow runtime disabling of kernel stack erasingAlexander Popov1-0/+38
Introduce CONFIG_STACKLEAK_RUNTIME_DISABLE option, which provides 'stack_erasing' sysctl. It can be used in runtime to control kernel stack erasing for kernels built with CONFIG_GCC_PLUGIN_STACKLEAK. Suggested-by: Ingo Molnar <mingo@kernel.org> Signed-off-by: Alexander Popov <alex.popov@linux.com> Tested-by: Laura Abbott <labbott@redhat.com> Signed-off-by: Kees Cook <keescook@chromium.org>
2018-09-04fs/proc: Show STACKLEAK metrics in the /proc file systemAlexander Popov1-0/+4
Introduce CONFIG_STACKLEAK_METRICS providing STACKLEAK information about tasks via the /proc file system. In particular, /proc/<pid>/stack_depth shows the maximum kernel stack consumption for the current and previous syscalls. Although this information is not precise, it can be useful for estimating the STACKLEAK performance impact for your workloads. Suggested-by: Ingo Molnar <mingo@kernel.org> Signed-off-by: Alexander Popov <alex.popov@linux.com> Tested-by: Laura Abbott <labbott@redhat.com> Signed-off-by: Kees Cook <keescook@chromium.org>
2018-09-04gcc-plugins: Add STACKLEAK plugin for tracking the kernel stackAlexander Popov1-0/+28
The STACKLEAK feature erases the kernel stack before returning from syscalls. That reduces the information which kernel stack leak bugs can reveal and blocks some uninitialized stack variable attacks. This commit introduces the STACKLEAK gcc plugin. It is needed for tracking the lowest border of the kernel stack, which is important for the code erasing the used part of the kernel stack at the end of syscalls (comes in a separate commit). The STACKLEAK feature is ported from grsecurity/PaX. More information at: https://grsecurity.net/ https://pax.grsecurity.net/ This code is modified from Brad Spengler/PaX Team's code in the last public patch of grsecurity/PaX based on our understanding of the code. Changes or omissions from the original code are ours and don't reflect the original grsecurity/PaX code. Signed-off-by: Alexander Popov <alex.popov@linux.com> Tested-by: Laura Abbott <labbott@redhat.com> Signed-off-by: Kees Cook <keescook@chromium.org>
2018-09-04x86/entry: Add STACKLEAK erasing the kernel stack at the end of syscallsAlexander Popov1-0/+62
The STACKLEAK feature (initially developed by PaX Team) has the following benefits: 1. Reduces the information that can be revealed through kernel stack leak bugs. The idea of erasing the thread stack at the end of syscalls is similar to CONFIG_PAGE_POISONING and memzero_explicit() in kernel crypto, which all comply with FDP_RIP.2 (Full Residual Information Protection) of the Common Criteria standard. 2. Blocks some uninitialized stack variable attacks (e.g. CVE-2017-17712, CVE-2010-2963). That kind of bugs should be killed by improving C compilers in future, which might take a long time. This commit introduces the code filling the used part of the kernel stack with a poison value before returning to userspace. Full STACKLEAK feature also contains the gcc plugin which comes in a separate commit. The STACKLEAK feature is ported from grsecurity/PaX. More information at: https://grsecurity.net/ https://pax.grsecurity.net/ This code is modified from Brad Spengler/PaX Team's code in the last public patch of grsecurity/PaX based on our understanding of the code. Changes or omissions from the original code are ours and don't reflect the original grsecurity/PaX code. Performance impact: Hardware: Intel Core i7-4770, 16 GB RAM Test #1: building the Linux kernel on a single core 0.91% slowdown Test #2: hackbench -s 4096 -l 2000 -g 15 -f 25 -P 4.2% slowdown So the STACKLEAK description in Kconfig includes: "The tradeoff is the performance impact: on a single CPU system kernel compilation sees a 1% slowdown, other systems and workloads may vary and you are advised to test this feature on your expected workload before deploying it". Signed-off-by: Alexander Popov <alex.popov@linux.com> Acked-by: Thomas Gleixner <tglx@linutronix.de> Reviewed-by: Dave Hansen <dave.hansen@linux.intel.com> Acked-by: Ingo Molnar <mingo@kernel.org> Signed-off-by: Kees Cook <keescook@chromium.org>