Age | Commit message (Collapse) | Author | Files | Lines |
|
We currently allow invocation of 8 boot services with efi_call_early().
Not included are LocateHandleBuffer and LocateProtocol in particular.
For graphics output or to retrieve PCI ROMs and Apple device properties,
we're thus forced to use the LocateHandle + AllocatePool + LocateHandle
combo, which is cumbersome and needs more code.
The ARM folks allow invocation of the full set of boot services but are
restricted to our 8 boot services in functions shared across arches.
Thus, rather than adding just LocateHandleBuffer and LocateProtocol to
struct efi_config, let's rework efi_call_early() to allow invocation of
arbitrary boot services by selecting the 64 bit vs 32 bit code path in
the macro itself.
When compiling for 32 bit or for 64 bit without mixed mode, the unused
code path is optimized away and the binary code is the same as before.
But on 64 bit with mixed mode enabled, this commit adds one compare
instruction to each invocation of a boot service and, depending on the
code path selected, two jump instructions. (Most of the time gcc
arranges the jumps in the 32 bit code path.) The result is a minuscule
performance penalty and the binary code becomes slightly larger and more
difficult to read when disassembled. This isn't a hot path, so these
drawbacks are arguably outweighed by the attainable simplification of
the C code. We have some overhead anyway for thunking or conversion
between calling conventions.
The 8 boot services can consequently be removed from struct efi_config.
No functional change intended (for now).
Example -- invocation of free_pool before (64 bit code path):
0x2d4 movq %ds:efi_early, %rdx ; efi_early
0x2db movq %ss:arg_0-0x20(%rsp), %rsi
0x2e0 xorl %eax, %eax
0x2e2 movq %ds:0x28(%rdx), %rdi ; efi_early->free_pool
0x2e6 callq *%ds:0x58(%rdx) ; efi_early->call()
Example -- invocation of free_pool after (64 / 32 bit mixed code path):
0x0dc movq %ds:efi_early, %rax ; efi_early
0x0e3 cmpb $0, %ds:0x28(%rax) ; !efi_early->is64 ?
0x0e7 movq %ds:0x20(%rax), %rdx ; efi_early->call()
0x0eb movq %ds:0x10(%rax), %rax ; efi_early->boot_services
0x0ef je $0x150
0x0f1 movq %ds:0x48(%rax), %rdi ; free_pool (64 bit)
0x0f5 xorl %eax, %eax
0x0f7 callq *%rdx
...
0x150 movl %ds:0x30(%rax), %edi ; free_pool (32 bit)
0x153 jmp $0x0f5
Size of eboot.o text section:
CONFIG_X86_32: 6464 before, 6318 after
CONFIG_X86_64 && !CONFIG_EFI_MIXED: 7670 before, 7573 after
CONFIG_X86_64 && CONFIG_EFI_MIXED: 7670 before, 8319 after
Signed-off-by: Lukas Wunner <lukas@wunner.de>
Signed-off-by: Matt Fleming <matt@codeblueprint.co.uk>
|
|
Commit 2c23b73c2d02 ("x86/efi: Prepare GOP handling code for reuse
as generic code") introduced an efi_is_64bit() macro to x86 which
previously only existed for arm arches. The macro is used to
choose between the 64 bit or 32 bit code path in gop.c at runtime.
However the code path that's going to be taken is known at compile
time when compiling for x86_32 or for x86_64 with mixed mode disabled.
Amend the macro to eliminate the unused code path in those cases.
Size of gop.o text section:
CONFIG_X86_32: 1758 before, 1299 after
CONFIG_X86_64 && !CONFIG_EFI_MIXED: 2201 before, 1406 after
CONFIG_X86_64 && CONFIG_EFI_MIXED: 2201 before and after
Signed-off-by: Lukas Wunner <lukas@wunner.de>
Reviewed-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Matt Fleming <matt@codeblueprint.co.uk>
|
|
* A multiplication for the size determination of a memory allocation
indicated that an array data structure should be processed.
Thus reuse the corresponding function "kmalloc_array".
This issue was detected by using the Coccinelle software.
* Replace the specification of a data type by a pointer dereference
to make the corresponding size determination a bit safer according to
the Linux coding style convention.
Signed-off-by: Markus Elfring <elfring@users.sourceforge.net>
Reviewed-by: Paolo Bonzini <pbonzini@redhat.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Julia Lawall <julia.lawall@lip6.fr>
Signed-off-by: Matt Fleming <matt@codeblueprint.co.uk>
|
|
Currently, memory regions are only recorded in the memblock memory table
if they have the EFI_MEMORY_WB memory type attribute set. In case the
region is of a reserved type, it is also marked as MEMBLOCK_NOMAP, which
will leave it out of the linear mapping.
However, memory regions may legally have the EFI_MEMORY_WT or EFI_MEMORY_WC
attributes set, and the EFI_MEMORY_WB cleared, in which case the region in
question is obviously backed by normal memory, but is not recorded in the
memblock memory table at all. Since it would be useful to be able to
identify any UEFI reported memory region using memblock_is_memory(), it
makes sense to add all memory to the memblock memory table, and simply mark
it as MEMBLOCK_NOMAP if it lacks the EFI_MEMORY_WB attribute.
While implementing this, let's refactor the code slightly to make it easier
to understand: replace is_normal_ram() with is_memory(), and make it return
true for each region that has any of the WB|WT|WC bits set. (This follows
the AArch64 bindings in the UEFI spec, which state that those are the
attributes that map to normal memory)
Also, replace is_reserve_region() with is_usable_memory(), and only invoke
it if the region in question was identified as memory by is_memory() in the
first place. The net result is the same (only reserved regions that are
backed by memory end up in the memblock memory table with the MEMBLOCK_NOMAP
flag set) but carried out in a more straightforward way.
Finally, we remove the trailing asterisk in the EFI debug output. Keeping it
clutters the code, and it serves no real purpose now that we no longer
temporarily reserve BootServices code and data regions like we did in the
early days of EFI support on arm64 Linux (which it inherited from the x86
implementation)
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Reviewed-by: Leif Lindholm <leif.lindholm@linaro.org>
Tested-by: James Morse <james.morse@arm.com>
Reviewed-by: James Morse <james.morse@arm.com>
Signed-off-by: Matt Fleming <matt@codeblueprint.co.uk>
|
|
This driver is used by the Firmware Test Suite (FWTS) for testing the UEFI
runtime interfaces readiness of the firmware.
This driver exports UEFI runtime service interfaces into userspace,
which allows to use and test UEFI runtime services provided by the
firmware.
This driver uses the efi.<service> function pointers directly instead of
going through the efivar API to allow for direct testing of the UEFI
runtime service interfaces provided by the firmware.
Details for FWTS are available from,
<https://wiki.ubuntu.com/FirmwareTestSuite>
Signed-off-by: Ivan Hu <ivan.hu@canonical.com>
Cc: joeyli <jlee@suse.com>
Cc: Ricardo Neri <ricardo.neri-calderon@linux.intel.com>
Cc: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Matt Fleming <matt@codeblueprint.co.uk>
|
|
Commit 7b02d53e7852 ("efi: Allow drivers to reserve boot services forever")
introduced a new efi_mem_reserve to reserve the boot services memory
regions forever. This reservation involves allocating a new EFI memory
range descriptor. However, allocation can only succeed if there is memory
available for the allocation. Otherwise, error such as the following may
occur:
esrt: Reserving ESRT space from 0x000000003dd6a000 to 0x000000003dd6a010.
Kernel panic - not syncing: ERROR: Failed to allocate 0x9f0 bytes below \
0x0.
CPU: 0 PID: 0 Comm: swapper Not tainted 4.7.0-rc5+ #503
0000000000000000 ffffffff81e03ce0 ffffffff8131dae8 ffffffff81bb6c50
ffffffff81e03d70 ffffffff81e03d60 ffffffff8111f4df 0000000000000018
ffffffff81e03d70 ffffffff81e03d08 00000000000009f0 00000000000009f0
Call Trace:
[<ffffffff8131dae8>] dump_stack+0x4d/0x65
[<ffffffff8111f4df>] panic+0xc5/0x206
[<ffffffff81f7c6d3>] memblock_alloc_base+0x29/0x2e
[<ffffffff81f7c6e3>] memblock_alloc+0xb/0xd
[<ffffffff81f6c86d>] efi_arch_mem_reserve+0xbc/0x134
[<ffffffff81fa3280>] efi_mem_reserve+0x2c/0x31
[<ffffffff81fa3280>] ? efi_mem_reserve+0x2c/0x31
[<ffffffff81fa40d3>] efi_esrt_init+0x19e/0x1b4
[<ffffffff81f6d2dd>] efi_init+0x398/0x44a
[<ffffffff81f5c782>] setup_arch+0x415/0xc30
[<ffffffff81f55af1>] start_kernel+0x5b/0x3ef
[<ffffffff81f55434>] x86_64_start_reservations+0x2f/0x31
[<ffffffff81f55520>] x86_64_start_kernel+0xea/0xed
---[ end Kernel panic - not syncing: ERROR: Failed to allocate 0x9f0
bytes below 0x0.
An inspection of the memblock configuration reveals that there is no memory
available for the allocation:
MEMBLOCK configuration:
memory size = 0x0 reserved size = 0x4f339c0
memory.cnt = 0x1
memory[0x0] [0x00000000000000-0xffffffffffffffff], 0x0 bytes on node 0\
flags: 0x0
reserved.cnt = 0x4
reserved[0x0] [0x0000000008c000-0x0000000008c9bf], 0x9c0 bytes flags: 0x0
reserved[0x1] [0x0000000009f000-0x000000000fffff], 0x61000 bytes\
flags: 0x0
reserved[0x2] [0x00000002800000-0x0000000394bfff], 0x114c000 bytes\
flags: 0x0
reserved[0x3] [0x000000304e4000-0x00000034269fff], 0x3d86000 bytes\
flags: 0x0
This situation can be avoided if we call efi_esrt_init after memblock has
memory regions for the allocation.
Also, the EFI ESRT driver makes use of early_memremap'pings. Therfore, we
do not want to defer efi_esrt_init for too long. We must call such function
while calls to early_memremap are still valid.
A good place to meet the two aforementioned conditions is right after
memblock_x86_fill, grouped with other EFI-related functions.
Reported-by: Scott Lawson <scott.lawson@intel.com>
Signed-off-by: Ricardo Neri <ricardo.neri-calderon@linux.intel.com>
Cc: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Cc: Peter Jones <pjones@redhat.com>
Signed-off-by: Matt Fleming <matt@codeblueprint.co.uk>
|
|
Register the debugfs node 'efi_page_tables' to allow the UEFI runtime
page tables to be inspected. Note that ARM does not have 'asm/ptdump.h'
[yet] so for now, this is arm64 only.
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Acked-by: Mark Rutland <mark.rutland@arm.com>
Cc: Leif Lindholm <leif.lindholm@linaro.org>
Signed-off-by: Matt Fleming <matt@codeblueprint.co.uk>
|
|
Left behind by commit fc37206427ce ("efi/libstub: Move Graphics Output
Protocol handling to generic code").
Signed-off-by: Lukas Wunner <lukas@wunner.de>
Cc: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Matt Fleming <matt@codeblueprint.co.uk>
|
|
Julia reported that we may double free 'name' in efivarfs_callback(),
and that this bug was introduced by commit 0d22f33bc37c ("efi: Don't
use spinlocks for efi vars").
Move one of the kfree()s until after the point at which we know we are
definitely on the success path.
Reported-by: Julia Lawall <julia.lawall@lip6.fr>
Acked-by: Julia Lawall <julia.lawall@lip6.fr>
Cc: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Cc: Sylvain Chouleur <sylvain.chouleur@gmail.com>
Signed-off-by: Matt Fleming <matt@codeblueprint.co.uk>
|
|
This is a simple change to add in the physical mappings as well as the
virtual mappings in efi_map_region_fixed. The motivation here is to
get access to EFI runtime code that is only available via the 1:1
mappings on a kexec'd kernel.
The added call is essentially the kexec analog of the first __map_region
that Boris put in efi_map_region in commit d2f7cbe7b26a ("x86/efi:
Runtime services virtual mapping").
Signed-off-by: Alex Thorlton <athorlton@sgi.com>
Cc: Russ Anderson <rja@sgi.com>
Cc: Dimitri Sivanich <sivanich@sgi.com>
Cc: Mike Travis <travis@sgi.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Dave Young <dyoung@redhat.com>
Cc: Borislav Petkov <bp@alien8.de>
Signed-off-by: Matt Fleming <matt@codeblueprint.co.uk>
|
|
No need to calculate the string length on every loop iteration.
Signed-off-by: Lukas Wunner <lukas@wunner.de>
Cc: Peter Jones <pjones@redhat.com>
Signed-off-by: Matt Fleming <matt@codeblueprint.co.uk>
|
|
The dma_pool_destroy() function tests whether its argument is NULL
and then returns immediately. Thus the test around the call is not needed.
This issue was detected by using the Coccinelle software.
Signed-off-by: Markus Elfring <elfring@users.sourceforge.net>
Cc: Greg KH <gregkh@linuxfoundation.org>
Cc: Julia Lawall <julia.lawall@lip6.fr>
Cc: Mike Waychison <mikew@google.com>
Cc: Michel Lespinasse <walken@google.com>
Signed-off-by: Matt Fleming <matt@codeblueprint.co.uk>
|
|
Although very unlikey, if size is too small or zero, then we end up with
status not being set and returning garbage. Instead, initializing status to
EFI_INVALID_PARAMETER to indicate that size is invalid in the calls to
setup_uga32 and setup_uga64.
Signed-off-by: Colin Ian King <colin.king@canonical.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Ingo Molnar <mingo@kernel.org>
Signed-off-by: Matt Fleming <matt@codeblueprint.co.uk>
|
|
The purpose of the efi_runtime_lock is to prevent concurrent calls into
the firmware. There is no need to use spinlocks here, as long as we ensure
that runtime service invocations from an atomic context (i.e., EFI pstore)
cannot block.
So use a semaphore instead, and use down_trylock() in the nonblocking case.
We don't use a mutex here because the mutex_trylock() function must not
be called from interrupt context, whereas the down_trylock() can.
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Cc: Leif Lindholm <leif.lindholm@linaro.org>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Sylvain Chouleur <sylvain.chouleur@gmail.com>
Signed-off-by: Matt Fleming <matt@codeblueprint.co.uk>
|
|
All efivars operations are protected by a spinlock which prevents
interruptions and preemption. This is too restricted, we just need a
lock preventing concurrency.
The idea is to use a semaphore of count 1 and to have two ways of
locking, depending on the context:
- In interrupt context, we call down_trylock(), if it fails we return
an error
- In normal context, we call down_interruptible()
We don't use a mutex here because the mutex_trylock() function must not
be called from interrupt context, whereas the down_trylock() can.
Signed-off-by: Sylvain Chouleur <sylvain.chouleur@intel.com>
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Cc: Leif Lindholm <leif.lindholm@linaro.org>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Sylvain Chouleur <sylvain.chouleur@gmail.com>
Signed-off-by: Matt Fleming <matt@codeblueprint.co.uk>
|
|
This patch replaces the spinlock in the efivars struct with a single lock
for the whole vars.c file. The goal of this lock is to protect concurrent
calls to efi variable services, registering and unregistering. This allows
us to register new efivars operations without having in-progress call.
Signed-off-by: Sylvain Chouleur <sylvain.chouleur@intel.com>
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Cc: Leif Lindholm <leif.lindholm@linaro.org>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Sylvain Chouleur <sylvain.chouleur@gmail.com>
Signed-off-by: Matt Fleming <matt@codeblueprint.co.uk>
|
|
ESRT support is built by default for all architectures that define
CONFIG_EFI. However, this support was not wired up yet for ARM/arm64,
since efi_esrt_init() was never called. So add the missing call.
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Cc: Leif Lindholm <leif.lindholm@linaro.org>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Peter Jones <pjones@redhat.com>
Signed-off-by: Matt Fleming <matt@codeblueprint.co.uk>
|
|
On ARM and arm64, ioremap() and memremap() are not interchangeable like
on x86, and the use of ioremap() on ordinary RAM is typically flagged
as an error if the memory region being mapped is also covered by the
linear mapping, since that would lead to aliases with conflicting
cacheability attributes.
Since what we are dealing with is not an I/O region with side effects,
using ioremap() here is arguably incorrect anyway, so let's replace
it with memremap() instead.
Acked-by: Peter Jones <pjones@redhat.com>
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Cc: Leif Lindholm <leif.lindholm@linaro.org>
Cc: Mark Rutland <mark.rutland@arm.com>
Signed-off-by: Matt Fleming <matt@codeblueprint.co.uk>
|
|
efi_mem_reserve() allows us to permanently mark EFI boot services
regions as reserved, which means we no longer need to copy the image
data out and into a separate buffer.
Leaving the data in the original boot services region has the added
benefit that BGRT images can now be passed across kexec reboot.
Reviewed-by: Josh Triplett <josh@joshtriplett.org>
Tested-by: Dave Young <dyoung@redhat.com> [kexec/kdump]
Tested-by: Ard Biesheuvel <ard.biesheuvel@linaro.org> [arm]
Acked-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Cc: Leif Lindholm <leif.lindholm@linaro.org>
Cc: Peter Jones <pjones@redhat.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Josh Boyer <jwboyer@fedoraproject.org>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Môshe van der Sterre <me@moshe.nl>
Signed-off-by: Matt Fleming <matt@codeblueprint.co.uk>
|
|
We can use the new efi_mem_reserve() API to mark the ESRT table as
reserved forever and save ourselves the trouble of copying the data
out into a kmalloc buffer.
The added advantage is that now the ESRT driver will work across
kexec reboot.
Tested-by: Dave Young <dyoung@redhat.com> [kexec/kdump]
Tested-by: Ard Biesheuvel <ard.biesheuvel@linaro.org> [arm]
Acked-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Cc: Leif Lindholm <leif.lindholm@linaro.org>
Cc: Peter Jones <pjones@redhat.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Mark Rutland <mark.rutland@arm.com>
Signed-off-by: Matt Fleming <matt@codeblueprint.co.uk>
|
|
Now that efi.memmap is available all of the time there's no need to
allocate and build a separate copy of the EFI memory map.
Furthermore, efi.memmap contains boot services regions but only those
regions that have been reserved via efi_mem_reserve(). Using
efi.memmap allows us to pass boot services across kexec reboot so that
the ESRT and BGRT drivers will now work.
Tested-by: Dave Young <dyoung@redhat.com> [kexec/kdump]
Tested-by: Ard Biesheuvel <ard.biesheuvel@linaro.org> [arm]
Acked-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Cc: Leif Lindholm <leif.lindholm@linaro.org>
Cc: Peter Jones <pjones@redhat.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Mark Rutland <mark.rutland@arm.com>
Signed-off-by: Matt Fleming <matt@codeblueprint.co.uk>
|
|
Today, it is not possible for drivers to reserve EFI boot services for
access after efi_free_boot_services() has been called on x86. For
ARM/arm64 it can be done simply by calling memblock_reserve().
Having this ability for all three architectures is desirable for a
couple of reasons,
1) It saves drivers copying data out of those regions
2) kexec reboot can now make use of things like ESRT
Instead of using the standard memblock_reserve() which is insufficient
to reserve the region on x86 (see efi_reserve_boot_services()), a new
API is introduced in this patch; efi_mem_reserve().
efi.memmap now always represents which EFI memory regions are
available. On x86 the EFI boot services regions that have not been
reserved via efi_mem_reserve() will be removed from efi.memmap during
efi_free_boot_services().
This has implications for kexec, since it is not possible for a newly
kexec'd kernel to access the same boot services regions that the
initial boot kernel had access to unless they are reserved by every
kexec kernel in the chain.
Tested-by: Dave Young <dyoung@redhat.com> [kexec/kdump]
Tested-by: Ard Biesheuvel <ard.biesheuvel@linaro.org> [arm]
Acked-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Cc: Leif Lindholm <leif.lindholm@linaro.org>
Cc: Peter Jones <pjones@redhat.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Mark Rutland <mark.rutland@arm.com>
Signed-off-by: Matt Fleming <matt@codeblueprint.co.uk>
|
|
While efi_memmap_init_{early,late}() exist for architecture code to
install memory maps from firmware data and for the virtual memory
regions respectively, drivers don't care which stage of the boot we're
at and just want to swap the existing memmap for a modified one.
efi_memmap_install() abstracts the details of how the new memory map
should be mapped and the existing one unmapped.
Tested-by: Dave Young <dyoung@redhat.com> [kexec/kdump]
Tested-by: Ard Biesheuvel <ard.biesheuvel@linaro.org> [arm]
Acked-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Cc: Leif Lindholm <leif.lindholm@linaro.org>
Cc: Peter Jones <pjones@redhat.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Taku Izumi <izumi.taku@jp.fujitsu.com>
Signed-off-by: Matt Fleming <matt@codeblueprint.co.uk>
|
|
Also move the functions from the EFI fake mem driver since future
patches will require access to the memmap insertion code even if
CONFIG_EFI_FAKE_MEM isn't enabled.
This will be useful when we need to build custom EFI memory maps to
allow drivers to mark regions as reserved.
Tested-by: Dave Young <dyoung@redhat.com> [kexec/kdump]
Tested-by: Ard Biesheuvel <ard.biesheuvel@linaro.org> [arm]
Acked-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Cc: Leif Lindholm <leif.lindholm@linaro.org>
Cc: Peter Jones <pjones@redhat.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Taku Izumi <izumi.taku@jp.fujitsu.com>
Signed-off-by: Matt Fleming <matt@codeblueprint.co.uk>
|
|
There is a whole load of generic EFI memory map code inside of the
fake_mem driver which is better suited to being grouped with the rest
of the generic EFI code for manipulating EFI memory maps.
In preparation for that, this patch refactors the core code, so that
it's possible to move entire functions later.
Tested-by: Dave Young <dyoung@redhat.com> [kexec/kdump]
Tested-by: Ard Biesheuvel <ard.biesheuvel@linaro.org> [arm]
Acked-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Cc: Leif Lindholm <leif.lindholm@linaro.org>
Cc: Peter Jones <pjones@redhat.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Taku Izumi <izumi.taku@jp.fujitsu.com>
Signed-off-by: Matt Fleming <matt@codeblueprint.co.uk>
|
|
Drivers need a way to access the EFI memory map at runtime. ARM and
arm64 currently provide this by remapping the EFI memory map into the
vmalloc space before setting up the EFI virtual mappings.
x86 does not provide this functionality which has resulted in the code
in efi_mem_desc_lookup() where it will manually map individual EFI
memmap entries if the memmap has already been torn down on x86,
/*
* If a driver calls this after efi_free_boot_services,
* ->map will be NULL, and the target may also not be mapped.
* So just always get our own virtual map on the CPU.
*
*/
md = early_memremap(p, sizeof (*md));
There isn't a good reason for not providing a permanent EFI memory map
for runtime queries, especially since the EFI regions are not mapped
into the standard kernel page tables.
Tested-by: Dave Young <dyoung@redhat.com> [kexec/kdump]
Tested-by: Ard Biesheuvel <ard.biesheuvel@linaro.org> [arm]
Acked-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Cc: Leif Lindholm <leif.lindholm@linaro.org>
Cc: Peter Jones <pjones@redhat.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Mark Rutland <mark.rutland@arm.com>
Signed-off-by: Matt Fleming <matt@codeblueprint.co.uk>
|
|
Every EFI architecture apart from ia64 needs to setup the EFI memory
map at efi.memmap, and the code for doing that is essentially the same
across all implementations. Therefore, it makes sense to factor this
out into the common code under drivers/firmware/efi/.
The only slight variation is the data structure out of which we pull
the initial memory map information, such as physical address, memory
descriptor size and version, etc. We can address this by passing a
generic data structure (struct efi_memory_map_data) as the argument to
efi_memmap_init_early() which contains the minimum info required for
initialising the memory map.
In the process, this patch also fixes a few undesirable implementation
differences:
- ARM and arm64 were failing to clear the EFI_MEMMAP bit when
unmapping the early EFI memory map. EFI_MEMMAP indicates whether
the EFI memory map is mapped (not the regions contained within) and
can be traversed. It's more correct to set the bit as soon as we
memremap() the passed in EFI memmap.
- Rename efi_unmmap_memmap() to efi_memmap_unmap() to adhere to the
regular naming scheme.
This patch also uses a read-write mapping for the memory map instead
of the read-only mapping currently used on ARM and arm64. x86 needs
the ability to update the memory map in-place when assigning virtual
addresses to regions (efi_map_region()) and tagging regions when
reserving boot services (efi_reserve_boot_services()).
There's no way for the generic fake_mem code to know which mapping to
use without introducing some arch-specific constant/hook, so just use
read-write since read-only is of dubious value for the EFI memory map.
Tested-by: Dave Young <dyoung@redhat.com> [kexec/kdump]
Tested-by: Ard Biesheuvel <ard.biesheuvel@linaro.org> [arm]
Acked-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Cc: Leif Lindholm <leif.lindholm@linaro.org>
Cc: Peter Jones <pjones@redhat.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Mark Rutland <mark.rutland@arm.com>
Signed-off-by: Matt Fleming <matt@codeblueprint.co.uk>
|
|
EFI regions are currently mapped in two separate places. The bulk of
the work is done in efi_map_regions() but when CONFIG_EFI_MIXED is
enabled the additional regions that are required when operating in
mixed mode are mapping in efi_setup_page_tables().
Pull everything into efi_map_regions() and refactor the test for
which regions should be mapped into a should_map_region() function.
Generously sprinkle comments to clarify the different cases.
Acked-by: Borislav Petkov <bp@suse.de>
Tested-by: Dave Young <dyoung@redhat.com> [kexec/kdump]
Tested-by: Ard Biesheuvel <ard.biesheuvel@linaro.org> [arm]
Acked-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Matt Fleming <matt@codeblueprint.co.uk>
|
|
Both efi_find_mirror() and efi_fake_memmap() really want to know
whether the EFI memory map is available, not just whether the machine
was booted using EFI. efi_fake_memmap() even has a check for
EFI_MEMMAP at the start of the function.
Since we've already got other code that has this dependency, merge
everything under one if() conditional, and remove the now superfluous
check from efi_fake_memmap().
Tested-by: Dave Young <dyoung@redhat.com> [kexec/kdump]
Tested-by: Ard Biesheuvel <ard.biesheuvel@linaro.org> [arm]
Acked-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Cc: Taku Izumi <izumi.taku@jp.fujitsu.com>
Cc: Tony Luck <tony.luck@intel.com>
Cc: Xishi Qiu <qiuxishi@huawei.com>
Cc: Kamezawa Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Signed-off-by: Matt Fleming <matt@codeblueprint.co.uk>
|
|
The eboot code directly calls ExitBootServices. This is inadvisable as the
UEFI spec details a complex set of errors, race conditions, and API
interactions that the caller of ExitBootServices must get correct. The
eboot code attempts allocations after calling ExitBootSerives which is
not permitted per the spec. Call the efi_exit_boot_services() helper
intead, which handles the allocation scenario properly.
Signed-off-by: Jeffrey Hugo <jhugo@codeaurora.org>
Cc: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Leif Lindholm <leif.lindholm@linaro.org>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: <stable@vger.kernel.org>
Signed-off-by: Matt Fleming <matt@codeblueprint.co.uk>
|
|
The FDT code directly calls ExitBootServices. This is inadvisable as the
UEFI spec details a complex set of errors, race conditions, and API
interactions that the caller of ExitBootServices must get correct. The
FDT code does not handle EFI_INVALID_PARAMETER as required by the spec,
which causes intermittent boot failures on the Qualcomm Technologies
QDF2432. Call the efi_exit_boot_services() helper intead, which handles
the EFI_INVALID_PARAMETER scenario properly.
Signed-off-by: Jeffrey Hugo <jhugo@codeaurora.org>
Cc: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Leif Lindholm <leif.lindholm@linaro.org>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: <stable@vger.kernel.org>
Signed-off-by: Matt Fleming <matt@codeblueprint.co.uk>
|
|
The spec allows ExitBootServices to fail with EFI_INVALID_PARAMETER if a
race condition has occurred where the EFI has updated the memory map after
the stub grabbed a reference to the map. The spec defines a retry
proceedure with specific requirements to handle this scenario.
This scenario was previously observed on x86 - commit d3768d885c6c ("x86,
efi: retry ExitBootServices() on failure") but the current fix is not spec
compliant and the scenario is now observed on the Qualcomm Technologies
QDF2432 via the FDT stub which does not handle the error and thus causes
boot failures. The user will notice the boot failure as the kernel is not
executed and the system may drop back to a UEFI shell, but will be
unresponsive to input and the system will require a power cycle to recover.
Add a helper to the stub library that correctly adheres to the spec in the
case of EFI_INVALID_PARAMETER from ExitBootServices and can be universally
used across all stub implementations.
Signed-off-by: Jeffrey Hugo <jhugo@codeaurora.org>
Cc: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Leif Lindholm <leif.lindholm@linaro.org>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: <stable@vger.kernel.org>
Signed-off-by: Matt Fleming <matt@codeblueprint.co.uk>
|
|
efi_get_memory_map() allocates a buffer to store the memory map that it
retrieves. This buffer may need to be reused by the client after
ExitBootServices() is called, at which point allocations are not longer
permitted. To support this usecase, provide the allocated buffer size back
to the client, and allocate some additional headroom to account for any
reasonable growth in the map that is likely to happen between the call to
efi_get_memory_map() and the client reusing the buffer.
Signed-off-by: Jeffrey Hugo <jhugo@codeaurora.org>
Cc: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Leif Lindholm <leif.lindholm@linaro.org>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: <stable@vger.kernel.org>
Signed-off-by: Matt Fleming <matt@codeblueprint.co.uk>
|
|
of_get_flat_dt_subnode_by_name can return negative value in case of error.
Assigning the result to unsigned variable and checking if the variable
is lesser than zero is incorrect and always false.
The patch fixes it by using signed variable to check the result.
The problem has been detected using semantic patch
scripts/coccinelle/tests/unsigned_lesser_than_zero.cocci
Signed-off-by: Andrzej Hajda <a.hajda@samsung.com>
Cc: Bartlomiej Zolnierkiewicz <b.zolnierkie@samsung.com>
Cc: Marek Szyprowski <m.szyprowski@samsung.com>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Shawn Lin <shawn.lin@rock-chips.com>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Matt Fleming <matt@codeblueprint.co.uk>
|
|
While commit 55f1ea15216 ("efi: Fix for_each_efi_memory_desc_in_map()
for empty memmaps") made an attempt to deal with empty memory maps, it
didn't address the case where the map field never gets set, as is
apparently the case when running under Xen.
Reported-by: <lists@ssl-mail.com>
Tested-by: <lists@ssl-mail.com>
Cc: Vitaly Kuznetsov <vkuznets@redhat.com>
Cc: Jiri Slaby <jslaby@suse.cz>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: <stable@vger.kernel.org> # v4.7+
Signed-off-by: Jan Beulich <jbeulich@suse.com>
[ Guard the loop with a NULL check instead of pointer underflow ]
Signed-off-by: Matt Fleming <matt@codeblueprint.co.uk>
|
|
|
|
In commit 8ead9dd54716 ("devpts: more pty driver interface cleanups") I
made devpts_get_priv() just return the dentry->fs_data directly. And
because I thought it wouldn't happen, I added a warning if you ever saw
a pts node that wasn't on devpts.
And no, that warning never triggered under any actual real use, but you
can trigger it by creating nonsensical pts nodes by hand.
So just revert the warning, and make devpts_get_priv() return NULL for
that case like it used to.
Reported-by: Dmitry Vyukov <dvyukov@google.com>
Cc: stable@vger.kernel.org # 4.6+
Cc: Eric W Biederman" <ebiederm@xmission.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
The driver emits invalid self test error message even though the init
succeeds.
Signed-off-by: Jarkko Sakkinen <jarkko.sakkinen@linux.intel.com>
Fixes: cae8b441fc20 ("tpm: Factor out common startup code")
Reviewed-by: James Morris <james.l.morris@oracle.com>
Signed-off-by: James Morris <james.l.morris@oracle.com>
|
|
Commit e647b532275b ("ACPI: Add early device probing infrastructure")
introduced code that allows inserting driver specific
struct acpi_probe_entry probe entries into ACPI linker sections
(one per-subsystem, eg irqchip, clocksource) that are then walked
to retrieve the data and function hooks required to probe the
respective kernel components.
Probing for all entries in a section is triggered through
the __acpi_probe_device_table() function, that in turn, according
to the table ID a given probe entry reports parses the table
with the function retrieved from the respective section structures
(ie struct acpi_probe_entry). Owing to the current ACPI table
parsing implementation, the __acpi_probe_device_table() function
has to share global variables with the acpi_match_madt() function, so
in order to guarantee mutual exclusion locking is required
between the two functions.
Current kernel code implements the locking through the acpi_probe_lock
spinlock; this has the side effect of requiring all code called
within the lock (ie struct acpi_probe_entry.probe_{table/subtbl} hooks)
not to sleep.
However, kernel subsystems that make use of the early probing
infrastructure are relying on kernel APIs that may sleep (eg
irq_domain_alloc_fwnode(), among others) in the function calls
pointed at by struct acpi_probe_entry.{probe_table/subtbl} entries
(eg gic_v2_acpi_init()), which is a bug.
Since __acpi_probe_device_table() is called from context
that is allowed to sleep the acpi_probe_lock spinlock can be replaced
with a mutex; this fixes the issue whilst still guaranteeing
mutual exclusion.
Signed-off-by: Lorenzo Pieralisi <lorenzo.pieralisi@arm.com>
Fixes: e647b532275b (ACPI: Add early device probing infrastructure)
Cc: 4.4+ <stable@vger.kernel.org> # 4.4+
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
|
|
When the ACPI_DECLARE_PROBE_ENTRY macro was added in
commit e647b532275b ("ACPI: Add early device probing infrastructure"),
a stub macro adding an unused entry was added for the !CONFIG_ACPI
Kconfig option case to make sure kernel code making use of the
macro did not require to be guarded within CONFIG_ACPI in order to
be compiled.
The stub macro was never used since all kernel code that defines
ACPI_DECLARE_PROBE_ENTRY entries is currently guarded within
CONFIG_ACPI; it contains a typo that should be nonetheless fixed.
Fix the typo in the stub (ie !CONFIG_ACPI) ACPI_DECLARE_PROBE_ENTRY()
macro so that it can actually be used if needed.
Signed-off-by: Lorenzo Pieralisi <lorenzo.pieralisi@arm.com>
Fixes: e647b532275b (ACPI: Add early device probing infrastructure)
Cc: 4.4+ <stable@vger.kernel.org> # 4.4+
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
|
|
AMD F12h machines have an erratum which can cause DIV/IDIV to behave
unpredictably. The workaround is to set MSRC001_1029[31] but sometimes
there is no BIOS update containing that workaround so let's do it
ourselves unconditionally. It is simple enough.
[ Borislav: Wrote commit message. ]
Signed-off-by: Emanuel Czirai <icanrealizeum@gmail.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Cc: Yaowu Xu <yaowu@google.com>
Cc: stable@vger.kernel.org
Link: http://lkml.kernel.org/r/20160902053550.18097-1-bp@alien8.de
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
|
|
Łukasz Daniluk reported that on a RHEL kernel that his machine would lock up
after enabling function tracer. I asked him to bisect the functions within
available_filter_functions, which he did and it came down to three:
_paravirt_nop(), _paravirt_ident_32() and _paravirt_ident_64()
It was found that this is only an issue when noreplace-paravirt is added
to the kernel command line.
This means that those functions are most likely called within critical
sections of the funtion tracer, and must not be traced.
In newer kenels _paravirt_nop() is defined within gcc asm(), and is no
longer an issue. But both _paravirt_ident_{32,64}() causes the
following splat when they are traced:
mm/pgtable-generic.c:33: bad pmd ffff8800d2435150(0000000001d00054)
mm/pgtable-generic.c:33: bad pmd ffff8800d3624190(0000000001d00070)
mm/pgtable-generic.c:33: bad pmd ffff8800d36a5110(0000000001d00054)
mm/pgtable-generic.c:33: bad pmd ffff880118eb1450(0000000001d00054)
NMI watchdog: BUG: soft lockup - CPU#2 stuck for 22s! [systemd-journal:469]
Modules linked in: e1000e
CPU: 2 PID: 469 Comm: systemd-journal Not tainted 4.6.0-rc4-test+ #513
Hardware name: Hewlett-Packard HP Compaq Pro 6300 SFF/339A, BIOS K01 v02.05 05/07/2012
task: ffff880118f740c0 ti: ffff8800d4aec000 task.ti: ffff8800d4aec000
RIP: 0010:[<ffffffff81134148>] [<ffffffff81134148>] queued_spin_lock_slowpath+0x118/0x1a0
RSP: 0018:ffff8800d4aefb90 EFLAGS: 00000246
RAX: 0000000000000000 RBX: 0000000000000000 RCX: ffff88011eb16d40
RDX: ffffffff82485760 RSI: 000000001f288820 RDI: ffffea0000008030
RBP: ffff8800d4aefb90 R08: 00000000000c0000 R09: 0000000000000000
R10: ffffffff821c8e0e R11: 0000000000000000 R12: ffff880000200fb8
R13: 00007f7a4e3f7000 R14: ffffea000303f600 R15: ffff8800d4b562e0
FS: 00007f7a4e3d7840(0000) GS:ffff88011eb00000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 00007f7a4e3f7000 CR3: 00000000d3e71000 CR4: 00000000001406e0
Call Trace:
_raw_spin_lock+0x27/0x30
handle_pte_fault+0x13db/0x16b0
handle_mm_fault+0x312/0x670
__do_page_fault+0x1b1/0x4e0
do_page_fault+0x22/0x30
page_fault+0x28/0x30
__vfs_read+0x28/0xe0
vfs_read+0x86/0x130
SyS_read+0x46/0xa0
entry_SYSCALL_64_fastpath+0x1e/0xa8
Code: 12 48 c1 ea 0c 83 e8 01 83 e2 30 48 98 48 81 c2 40 6d 01 00 48 03 14 c5 80 6a 5d 82 48 89 0a 8b 41 08 85 c0 75 09 f3 90 8b 41 08 <85> c0 74 f7 4c 8b 09 4d 85 c9 74 08 41 0f 18 09 eb 02 f3 90 8b
Reported-by: Łukasz Daniluk <lukasz.daniluk@intel.com>
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
Cc: stable@vger.kernel.org
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Changes to make the resume from cpu_suspend() code behave more like
secondary boot caused debug exceptions to be unmasked early by
__cpu_setup(). We then go on to restore mdscr_el1 in cpu_do_resume(),
potentially taking break or watch points based on uninitialised registers.
Mask debug exceptions in cpu_do_resume(), which is specific to resume
from cpu_suspend(). Debug exceptions will be restored to their original
state by local_dbg_restore() in cpu_suspend(), which runs after
hw_breakpoint_restore() has re-initialised the other registers.
Reported-by: Lorenzo Pieralisi <lorenzo.pieralisi@arm.com>
Fixes: cabe1c81ea5b ("arm64: Change cpu_resume() to enable mmu early then access sleep_sp by va")
Cc: <stable@vger.kernel.org> # 4.7+
Signed-off-by: James Morse <james.morse@arm.com>
Acked-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
|
|
Patch 7f1d642fbb5c ("drivers/perf: arm-pmu: Fix handling of SPI lacking
interrupt-affinity property") unintended also fixes perf_event support
for bcm2835 which doesn't have PMU interrupts. Unfortunately this change
introduce a NULL pointer dereference on bcm2835, because irq_is_percpu
always expected to be called with a valid IRQ. So fix this regression
by validating the IRQ before.
Tested-by: Kevin Hilman <khilman@baylibre.com>
Signed-off-by: Stefan Wahren <stefan.wahren@i2se.com>
Fixes: 7f1d642fbb5c ("drivers/perf: arm-pmu: Fix handling of SPI lacking "interrupt-affinity" property")
Signed-off-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
|
|
In case of a IRQ type mismatch in of_pmu_irq_cfg() the
device node for interrupt affinity isn't freed. So fix this
issue by calling of_node_put().
Signed-off-by: Stefan Wahren <stefan.wahren@i2se.com>
Fixes: fa8ad7889d83 ("arm: perf: factor arm_pmu core out to drivers")
Signed-off-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
|
|
tick_nohz_start_idle() is prevented to be called if the idle tick can't
be stopped since commit 1f3b0f8243cb934 ("tick/nohz: Optimize nohz idle
enter"). As a result, after suspend/resume the host machine, full dynticks
kvm guest will softlockup:
NMI watchdog: BUG: soft lockup - CPU#0 stuck for 26s! [swapper/0:0]
Call Trace:
default_idle+0x31/0x1a0
arch_cpu_idle+0xf/0x20
default_idle_call+0x2a/0x50
cpu_startup_entry+0x39b/0x4d0
rest_init+0x138/0x140
? rest_init+0x5/0x140
start_kernel+0x4c1/0x4ce
? set_init_arg+0x55/0x55
? early_idt_handler_array+0x120/0x120
x86_64_start_reservations+0x24/0x26
x86_64_start_kernel+0x142/0x14f
In addition, cat /proc/stat | grep cpu in guest or host:
cpu 398 16 5049 15754 5490 0 1 46 0 0
cpu0 206 5 450 0 0 0 1 14 0 0
cpu1 81 0 3937 3149 1514 0 0 9 0 0
cpu2 45 6 332 6052 2243 0 0 11 0 0
cpu3 65 2 328 6552 1732 0 0 11 0 0
The idle and iowait states are weird 0 for cpu0(housekeeping).
The bug is present in both guest and host kernels, and they both have
cpu0's idle and iowait states issue, however, host kernel's suspend/resume
path etc will touch watchdog to avoid the softlockup.
- The watchdog will not be touched in tick_nohz_stop_idle path (need be
touched since the scheduler stall is expected) if idle_active flags are
not detected.
- The idle and iowait states will not be accounted when exit idle loop
(resched or interrupt) if idle start time and idle_active flags are
not set.
This patch fixes it by reverting commit 1f3b0f8243cb934 since can't stop
idle tick doesn't mean can't be idle.
Fixes: 1f3b0f8243cb934 ("tick/nohz: Optimize nohz idle enter")
Signed-off-by: Wanpeng Li <wanpeng.li@hotmail.com>
Cc: Sanjeev Yadav<sanjeev.yadav@spreadtrum.com>
Cc: Gaurav Jindal<gaurav.jindal@spreadtrum.com>
Cc: stable@vger.kernel.org
Cc: kvm@vger.kernel.org
Cc: Radim Krčmář <rkrcmar@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Link: http://lkml.kernel.org/r/1472798303-4154-1-git-send-email-wanpeng.li@hotmail.com
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
|
|
Fix incorrect condition to identify involvment of a address translation
mechanism.
This bug results in NULL pointer kernel crash dump in cases when mapping
of inbound RapidIO address range is requested within existing aprture.
Link: http://lkml.kernel.org/r/20160901173144.2983-1-alexandre.bounine@idt.com
Signed-off-by: Alexandre Bounine <alexandre.bounine@idt.com>
Cc: Matt Porter <mporter@kernel.crashing.org>
Cc: Andre van Herk <andre.van.herk@prodrive-technologies.com>
Cc: Barry Wood <barry.wood@idt.com>
Cc: <stable@vger.kernel.org> [4.6+]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Add missing description for rio_mport_cdev driver parameter
'dma_timeout'.
This patch is applicable to kernel versions starting from v4.6.
Link: http://lkml.kernel.org/r/20160901173104.2928-1-alexandre.bounine@idt.com
Signed-off-by: Alexandre Bounine <alexandre.bounine@idt.com>
Cc: Matt Porter <mporter@kernel.crashing.org>
Cc: Andre van Herk <andre.van.herk@prodrive-technologies.com>
Cc: Barry Wood <barry.wood@idt.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Commit fec1d0115240 ("[PATCH] Disable CLONE_CHILD_CLEARTID for abnormal
exit") has caused a subtle regression in nscd which uses
CLONE_CHILD_CLEARTID to clear the nscd_certainly_running flag in the
shared databases, so that the clients are notified when nscd is
restarted. Now, when nscd uses a non-persistent database, clients that
have it mapped keep thinking the database is being updated by nscd, when
in fact nscd has created a new (anonymous) one (for non-persistent
databases it uses an unlinked file as backend).
The original proposal for the CLONE_CHILD_CLEARTID change claimed
(https://lkml.org/lkml/2006/10/25/233):
: The NPTL library uses the CLONE_CHILD_CLEARTID flag on clone() syscalls
: on behalf of pthread_create() library calls. This feature is used to
: request that the kernel clear the thread-id in user space (at an address
: provided in the syscall) when the thread disassociates itself from the
: address space, which is done in mm_release().
:
: Unfortunately, when a multi-threaded process incurs a core dump (such as
: from a SIGSEGV), the core-dumping thread sends SIGKILL signals to all of
: the other threads, which then proceed to clear their user-space tids
: before synchronizing in exit_mm() with the start of core dumping. This
: misrepresents the state of process's address space at the time of the
: SIGSEGV and makes it more difficult for someone to debug NPTL and glibc
: problems (misleading him/her to conclude that the threads had gone away
: before the fault).
:
: The fix below is to simply avoid the CLONE_CHILD_CLEARTID action if a
: core dump has been initiated.
The resulting patch from Roland (https://lkml.org/lkml/2006/10/26/269)
seems to have a larger scope than the original patch asked for. It
seems that limitting the scope of the check to core dumping should work
for SIGSEGV issue describe above.
[Changelog partly based on Andreas' description]
Fixes: fec1d0115240 ("[PATCH] Disable CLONE_CHILD_CLEARTID for abnormal exit")
Link: http://lkml.kernel.org/r/1471968749-26173-1-git-send-email-mhocko@kernel.org
Signed-off-by: Michal Hocko <mhocko@suse.com>
Tested-by: William Preston <wpreston@suse.com>
Acked-by: Oleg Nesterov <oleg@redhat.com>
Cc: Roland McGrath <roland@hack.frob.com>
Cc: Andreas Schwab <schwab@suse.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
vdavydov@{parallels,virtuozzo}.com will bounce from now on.
Link: http://lkml.kernel.org/r/20160831180752.GB10353@esperanza
Signed-off-by: Vladimir Davydov <vdavydov.dev@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|