Age | Commit message (Collapse) | Author | Files | Lines |
|
After previous changes it is not necessary to distinguish between
device wakeup for run time and device wakeup from system sleep states
any more, so rework the PCI device wakeup settings code accordingly.
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Reviewed-by: Mika Westerberg <mika.westerberg@linux.intel.com>
Acked-by: Bjorn Helgaas <bhelgaas@google.com>
|
|
The pme_interrupt flag in struct pci_dev is set when PMEs generated
by the device are going to be signaled via root port PME interrupts.
Ironically enough, that information is only used by the code setting
up device wakeup through ACPI which returns as soon as it sees the
pme_interrupt flag set while setting up "remote runtime wakeup".
That is questionable, however, because in theory there may be PCIe
devices using out-of-band PME signaling under root ports handled
by the native PME code or devices requiring wakeup power setup to be
carried out by AML. For such devices, ACPI wakeup should be invoked
regardless of whether or not native PME signaling is used in general.
For this reason, drop the pme_interrupt flag and rework the code
using it which then allows the ACPI-based device wakeup handling
in PCI to be consolidated to use one code path for both "runtime
remote wakeup" and system wakeup (from sleep states).
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Reviewed-by: Mika Westerberg <mika.westerberg@linux.intel.com>
Acked-by: Bjorn Helgaas <bhelgaas@google.com>
|
|
Currently, there are two separate ways of handling device wakeup
settings in the ACPI core, depending on whether this is runtime
wakeup or system wakeup (from sleep states). However, after the
previous commit eliminating the run_wake ACPI device wakeup flag,
there is no difference between the two any more at the ACPI level,
so they can be combined.
For this reason, introduce acpi_pm_set_device_wakeup() to replace both
acpi_pm_device_run_wake() and acpi_pm_device_sleep_wake() and make it
check the ACPI device object's wakeup.valid flag to determine whether
or not the device can be set up to generate wakeup signals.
Also notice that zpodd_enable/disable_run_wake() only call
device_set_run_wake() because acpi_pm_device_run_wake() called
device_run_wake(), which is not done by acpi_pm_set_device_wakeup(),
so drop the now redundant device_set_run_wake() calls from there.
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Reviewed-by: Mika Westerberg <mika.westerberg@linux.intel.com>
Acked-by: Bjorn Helgaas <bhelgaas@google.com>
|
|
The run_wake flag in struct acpi_device_wakeup_flags stores the
information on whether or not the device can generate wakeup
signals at run time, but in ACPI that really is equivalent to
being able to generate wakeup signals at all.
In fact, run_wake will always be set after successful executeion of
acpi_setup_gpe_for_wake(), but if that fails, the device will not be
able to use a wakeup GPE at all, so it won't be able to wake up the
systems from sleep states too. Hence, run_wake actually means that
the device is capable of triggering wakeup and so it is equivalent
to the valid flag.
For this reason, drop run_wake from struct acpi_device_wakeup_flags
and make sure that the valid flag is only set if
acpi_setup_gpe_for_wake() has been successful.
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Reviewed-by: Mika Westerberg <mika.westerberg@linux.intel.com>
Acked-by: Bjorn Helgaas <bhelgaas@google.com>
|
|
Some recent Dell laptops, including the XPS13 model numbers 9360 and
9365, cannot be woken up from suspend-to-idle by pressing the power
button which is unexpected and makes that feature less usable on
those systems. Moreover, on the 9365 ACPI S3 (suspend-to-RAM) is
not expected to be used at all (the OS these systems ship with never
exercises the ACPI S3 path in the firmware) and suspend-to-idle is
the only viable system suspend mechanism there.
The reason why the power button wakeup from suspend-to-idle doesn't
work on those systems is because their power button events are
signaled by the EC (Embedded Controller), whose GPE (General Purpose
Event) line is disabled during suspend-to-idle transitions in Linux.
That is done on purpose, because in general the EC tends to be noisy
for various reasons (battery and thermal updates and similar, for
example) and all events signaled by it would kick the CPUs out of
deep idle states while in suspend-to-idle, which effectively might
defeat its purpose.
Of course, on the Dell systems in question the EC GPE must be enabled
during suspend-to-idle transitions for the button press events to
be signaled while suspended at all, but fortunately there is a way
out of this puzzle.
First of all, those systems have the ACPI_FADT_LOW_POWER_S0 flag set
in their ACPI tables, which means that the OS is expected to prefer
the "low power S0 idle" system state over ACPI S3 on them. That
causes the most recent versions of other OSes to simply ignore ACPI
S3 on those systems, so it is reasonable to expect that it should not
be necessary to block GPEs during suspend-to-idle on them.
Second, in addition to that, the systems in question provide a special
firmware interface that can be used to indicate to the platform that
the OS is transitioning into a system-wide low-power state in which
certain types of activity are not desirable or that it is leaving
such a state and that (in principle) should allow the platform to
adjust its operation mode accordingly.
That interface is a special _DSM object under a System Power
Management Controller device (PNP0D80). The expected way to use it
is to invoke function 0 from it on system initialization, functions
3 and 5 during suspend transitions and functions 4 and 6 during
resume transitions (to reverse the actions carried out by the
former). In particular, function 5 from the "Low-Power S0" device
_DSM is expected to cause the platform to put itself into a low-power
operation mode which should include making the EC less verbose (so to
speak). Next, on resume, function 6 switches the platform back to
the "working-state" operation mode.
In accordance with the above, modify the ACPI suspend-to-idle code
to look for the "Low-Power S0" _DSM interface on platforms with the
ACPI_FADT_LOW_POWER_S0 flag set in the ACPI tables. If it's there,
use it during suspend-to-idle transitions as prescribed and avoid
changing the GPE configuration in that case. [That should reflect
what the most recent versions of other OSes do.]
Also modify the ACPI EC driver to make it handle events during
suspend-to-idle in the usual way if the "Low-Power S0" _DSM interface
is going to be used to make the power button events work while
suspended on the Dell machines mentioned above
Link: http://www.uefi.org/sites/default/files/resources/Intel_ACPI_Low_Power_S0_Idle.pdf
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
|
|
Allow the intel-hid driver to wake up the system from suspend-to-idle
by configuring its platform device as a wakeup one by default and
switching it over to a system wakeup events triggering mode during
system suspend transitions.
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Acked-by: Andy Shevchenko <andriy.shevchenko@linux.intel.com>
|
|
Allow the intel-vbtn driver to wake up the system from suspend-to-idle
by configuring its platform device as a wakeup one by default and
switching it over to a system wakeup events triggering mode during
system suspend transitions.
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Acked-by: Andy Shevchenko <andriy.shevchenko@linux.intel.com>
|
|
The ACPI SCI (System Control Interrupt) is set up as a wakeup IRQ
during suspend-to-idle transitions and, consequently, any events
signaled through it wake up the system from that state. However,
on some systems some of the events signaled via the ACPI SCI while
suspended to idle should not cause the system to wake up. In fact,
quite often they should just be discarded.
Arguably, systems should not resume entirely on such events, but in
order to decide which events really should cause the system to resume
and which are spurious, it is necessary to resume up to the point
when ACPI SCIs are actually handled and processed, which is after
executing dpm_resume_noirq() in the system resume path.
For this reasons, add a loop around freeze_enter() in which the
platforms can process events signaled via multiplexed IRQ lines
like the ACPI SCI and add suspend-to-idle hooks that can be
used for this purpose to struct platform_freeze_ops.
In the ACPI case, the ->wake hook is used for checking if the SCI
has triggered while suspended and deferring the interrupt-induced
system wakeup until the events signaled through it are actually
processed sufficiently to decide whether or not the system should
resume. In turn, the ->sync hook allows all of the relevant event
queues to be flushed so as to prevent events from being missed due
to race conditions.
In addition to that, some ACPI code processing wakeup events needs
to be modified to use the "hard" version of wakeup triggers, so that
it will cause a system resume to happen on device-induced wakeup
events even if the "soft" mechanism to prevent the system from
suspending is not enabled. However, to preserve the existing
behavior with respect to suspend-to-RAM, this only is done in
the suspend-to-idle case and only if an SCI has occurred while
suspended.
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
|
|
Some peripherals on Bay Trail and Cherry Trail platforms signal a
Power Management Event (PME) to the Power Management Controller (PMC)
to wakeup the system. When this happens software needs to explicitly
clear the PME bus 0 status bit in the GPE0a_STS register to avoid an
IRQ storm on IRQ 9.
This is modelled in ACPI through the INT0002 ACPI device, which is
called a "Virtual GPIO controller" in ACPI because it defines the
event handler to call when the PME triggers through _AEI and _L02
methods as would be done for a real GPIO interrupt in ACPI.
This commit adds a driver which registers the Virtual GPIOs expected
by the DSDT on these devices, letting gpiolib-acpi claim the
virtual GPIO and install a GPIO-interrupt handler which call the _L02
handler as it would for a real GPIO controller.
Signed-off-by: Hans de Goede <hdegoede@redhat.com>
Reviewed-by: Andy Shevchenko <andriy.shevchenko@linux.intel.com>
Reviewed-by: Linus Walleij <linus.walleij@linaro.org>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
|
|
The wakeup_prepared PCI device flag is used for preventing subsequent
changes of PCI device wakeup settings in the same way (e.g. enabling
device wakeup twice in a row).
However, in some cases PME Enable may be updated by things like PCI
configuration space restoration in the meantime and it may need to be
set again even though the rest of the settings need not change, so
modify __pci_enable_wake() to do that when it is about to return
early.
Also, it is reasonable to expect that __pci_enable_wake() will always
clear PME Status when invoked to disable device wakeup, so make it do
so even if it is going to return early then.
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Acked-by: Bjorn Helgaas <bhelgaas@google.com>
|
|
Avoid printing the device suspend/resume timing information if
CONFIG_PM_DEBUG is not set to reduce the log noise level.
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
|
|
The wakeup.flags.enabled flag in struct acpi_device is not used
consistently, as there is no reason why it should only apply
to the enabling/disabling of the wakeup GPE, so put the invocation
of acpi_enable_wakeup_device_power() under it too.
Moreover, it is not necessary to call
acpi_enable_wakeup_devices() and acpi_disable_wakeup_devices() for
suspend-to-idle, so don't do that.
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
|
|
Change the log level of the "System wakeup enabled/disabled by ACPI"
message in acpi_pm_device_sleep_wake() to "debug" to reduce to log
noise level.
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
|
|
hcd_pci_resume_noirq() used as a universal _resume_noirq handler for
PCI USB controllers calls pci_back_from_sleep() which is unnecessary
and may become problematic.
It is unnecessary, because the PCI bus type carries out post-suspend
cleanup of all PCI devices during resume and that covers all things
done by the pci_back_from_sleep(). There is no reason why USB cannot
follow all of the other PCI devices in that respect.
It will become problematic after subsequent changes that make it
possible to go back to sleep again after executing dpm_resume_noirq()
if no valid system wakeup events have been detected at that point.
Namely, calling pci_back_from_sleep() at the _resume_noirq stage
will cause the wakeup status of the devices in question to be cleared
and if any of them has triggered system wakeup, that event may be
missed then.
For the above reasons, drop the pci_back_from_sleep() invocation
from hcd_pci_resume_noirq().
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Acked-by: Alan Stern <stern@rowland.harvard.edu>
Acked-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
The work functions provided by the users of acpi_add_pm_notifier()
should be run synchronously before re-enabling the wakeup GPE in
case they are used to clear the status and/or disable the wakeup
signaling at the source. Otherwise, which is the case currently in
the PCI bus type code, the same wakeup event may be signaled for
multiple times while the execution of the work function in response
to it has already been queued up.
Fortunately, acpi_add_pm_notifier() is only used by PCI and by
ACPI device PM code internally, so the change is relatively
straightforward to make.
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Acked-by: Bjorn Helgaas <bhelgaas@google.com>
|
|
|
|
Commit abb2ea7dfd82 ("compiler, clang: suppress warning for unused
static inline functions") just caused more warnings due to re-defining
the 'inline' macro.
So undef it before re-defining it, and also add the 'notrace' attribute
like the gcc version that this is overriding does.
Maybe this makes clang happier.
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
INFO: task gnome-terminal-:1734 blocked for more than 120 seconds.
Not tainted 4.12.0-rc4+ #8
"echo 0 > /proc/sys/kernel/hung_task_timeout_secs" disables this message.
gnome-terminal- D 0 1734 1015 0x00000000
Call Trace:
__schedule+0x3cd/0xb30
schedule+0x40/0x90
kvm_async_pf_task_wait+0x1cc/0x270
? __vfs_read+0x37/0x150
? prepare_to_swait+0x22/0x70
do_async_page_fault+0x77/0xb0
? do_async_page_fault+0x77/0xb0
async_page_fault+0x28/0x30
This is triggered by running both win7 and win2016 on L1 KVM simultaneously,
and then gives stress to memory on L1, I can observed this hang on L1 when
at least ~70% swap area is occupied on L0.
This is due to async pf was injected to L2 which should be injected to L1,
L2 guest starts receiving pagefault w/ bogus %cr2(apf token from the host
actually), and L1 guest starts accumulating tasks stuck in D state in
kvm_async_pf_task_wait() since missing PAGE_READY async_pfs.
This patch fixes the hang by doing async pf when executing L1 guest.
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Radim Krčmář <rkrcmar@redhat.com>
Cc: stable@vger.kernel.org
Signed-off-by: Wanpeng Li <wanpeng.li@hotmail.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
Commit ac4691fac8ad ("hexagon: switch to RAW_COPY_USER") replaced
__copy_to_user_hexagon() with raw_copy_to_user(), but did not catch
all callers, resulting in the following build error.
arch/hexagon/mm/uaccess.c: In function '__clear_user_hexagon':
arch/hexagon/mm/uaccess.c:40:3: error:
implicit declaration of function '__copy_to_user_hexagon'
Fixes: ac4691fac8ad ("hexagon: switch to RAW_COPY_USER")
Cc: Al Viro <viro@zeniv.linux.org.uk>
Acked-by: Al Viro <viro@zeniv.linux.org.uk>
Acked-by: Richard Kuo <rkuo@codeaurora.org>
Signed-off-by: Guenter Roeck <linux@roeck-us.net>
|
|
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
|
|
As it is, short copy in write() to append-only file will fail
to truncate the excessive allocated blocks. As the matter of
fact, all checks in ufs_truncate_blocks() are either redundant
or wrong for that caller. As for the only other caller
(ufs_evict_inode()), we only need the file type checks there.
Cc: stable@vger.kernel.org
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
|
|
Cc: stable@vger.kernel.org
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
|
|
... and it really needs splitting into "new" and "extend" cases, but that's for
later
Cc: stable@vger.kernel.org
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
|
|
Cc: stable@vger.kernel.org
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
|
|
Cc: stable@vger.kernel.org
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
|
|
Cc: stable@vger.kernel.org
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
|
|
Cc: stable@vger.kernel.org
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
|
|
btrfs_calc_trans_metadata_size() does an unsigned 32-bit multiplication,
which can overflow if num_items >= 4 GB / (nodesize * BTRFS_MAX_LEVEL * 2).
For a nodesize of 16kB, this overflow happens at 16k items. Usually,
num_items is a small constant passed to btrfs_start_transaction(), but
we also use btrfs_calc_trans_metadata_size() for metadata reservations
for extent items in btrfs_delalloc_{reserve,release}_metadata().
In drop_outstanding_extents(), num_items is calculated as
inode->reserved_extents - inode->outstanding_extents. The difference
between these two counters is usually small, but if many delalloc
extents are reserved and then the outstanding extents are merged in
btrfs_merge_extent_hook(), the difference can become large enough to
overflow in btrfs_calc_trans_metadata_size().
The overflow manifests itself as a leak of a multiple of 4 GB in
delalloc_block_rsv and the metadata bytes_may_use counter. This in turn
can cause early ENOSPC errors. Additionally, these WARN_ONs in
extent-tree.c will be hit when unmounting:
WARN_ON(fs_info->delalloc_block_rsv.size > 0);
WARN_ON(fs_info->delalloc_block_rsv.reserved > 0);
WARN_ON(space_info->bytes_pinned > 0 ||
space_info->bytes_reserved > 0 ||
space_info->bytes_may_use > 0);
Fix it by casting nodesize to a u64 so that
btrfs_calc_trans_metadata_size() does a full 64-bit multiplication.
While we're here, do the same in btrfs_calc_trunc_metadata_size(); this
can't overflow with any existing uses, but it's better to be safe here
than have another hard-to-debug problem later on.
Cc: stable@vger.kernel.org
Signed-off-by: Omar Sandoval <osandov@fb.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: Chris Mason <clm@fb.com>
|
|
Before this, we use 'filled' mode here, ie. if all range has been
filled with EXTENT_DEFRAG bits, get to clear it, but if the defrag
range joins the adjacent delalloc range, then we'll have EXTENT_DEFRAG
bits in extent_state until releasing this inode's pages, and that
prevents extent_data from being freed.
This clears the bit if any was found within the ordered extent.
Signed-off-by: Liu Bo <bo.li.liu@oracle.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Signed-off-by: Chris Mason <clm@fb.com>
|
|
In verify_dir_item, it wants to printk name_len of dir_item but
printk data_len acutally.
Fix it by calling btrfs_dir_name_len instead of btrfs_dir_data_len.
Signed-off-by: Su Yue <suy.fnst@cn.fujitsu.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Signed-off-by: Chris Mason <clm@fb.com>
|
|
The 5th generation Thinkpad X1 Carbons use Synaptics touchpads accessible
over SMBus/RMI, combined with ALPS or Elantech trackpoint devices instead
of classic IBM/Lenovo trackpoints. Unfortunately there is no way for ALPS
driver to detect whether it is dealing with touchpad + trackpoint
combination or just a trackpoint, so we end up with a "phantom" dualpoint
ALPS device in addition to real touchpad and trackpoint.
Given that we do not have any special advanced handling for ALPS or
Elantech trackpoints (unlike IBM trackpoints that have separate driver and
a host of options) we are better off keeping the trackpoints in PS/2
emulation mode. We achieve that by setting serio type to SERIO_PS_PSTHRU,
which will limit number of protocols psmouse driver will try. In addition
to getting rid of the "phantom" touchpads, this will also speed up probing
of F03 pass-through port.
Reported-by: Damjan Georgievski <gdamjan@gmail.com>
Suggested-by: Benjamin Tissoires <benjamin.tissoires@redhat.com>
Acked-by: Benjamin Tissoires <benjamin.tissoires@redhat.com>
Signed-off-by: Dmitry Torokhov <dmitry.torokhov@gmail.com>
|
|
The inode destruction path for the 'dax' device filesystem incorrectly
assumes that the inode was initialized through 'alloc_dax()'. However,
if someone attempts to directly mount the dax filesystem with 'mount -t
dax dax mnt' that will bypass 'alloc_dax()' and the following failure
signatures may occur as a result:
kill_dax() must be called before final iput()
WARNING: CPU: 2 PID: 1188 at drivers/dax/super.c:243 dax_destroy_inode+0x48/0x50
RIP: 0010:dax_destroy_inode+0x48/0x50
Call Trace:
destroy_inode+0x3b/0x60
evict+0x139/0x1c0
iput+0x1f9/0x2d0
dentry_unlink_inode+0xc3/0x160
__dentry_kill+0xcf/0x180
? dput+0x37/0x3b0
dput+0x3a3/0x3b0
do_one_tree+0x36/0x40
shrink_dcache_for_umount+0x2d/0x90
generic_shutdown_super+0x1f/0x120
kill_anon_super+0x12/0x20
deactivate_locked_super+0x43/0x70
deactivate_super+0x4e/0x60
general protection fault: 0000 [#1] SMP DEBUG_PAGEALLOC
RIP: 0010:kfree+0x6d/0x290
Call Trace:
<IRQ>
dax_i_callback+0x22/0x60
? dax_destroy_inode+0x50/0x50
rcu_process_callbacks+0x298/0x740
ida_remove called for id=0 which is not allocated.
WARNING: CPU: 0 PID: 0 at lib/idr.c:383 ida_remove+0x110/0x120
[..]
Call Trace:
<IRQ>
ida_simple_remove+0x2b/0x50
? dax_destroy_inode+0x50/0x50
dax_i_callback+0x3c/0x60
rcu_process_callbacks+0x298/0x740
Add missing initialization of the 'struct dax_device' and inode so that
the destruction path does not kfree() or ida_simple_remove()
uninitialized data.
Fixes: 7b6be8444e0f ("dax: refactor dax-fs into a generic provider of 'struct dax_device' instances")
Reported-by: Sasha Levin <alexander.levin@verizon.com>
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
|
|
Fix the compile after the switch to the UUID API in commit f4c19ac9
("thermal: int340x_thermal: Switch to use new generic UUID API").
Signed-off-by: Christoph Hellwig <hch@lst.de>
|
|
There are new types and helpers that are supposed to be used in
new code.
As a preparation to get rid of legacy types and API functions do
the conversion here.
The conversion fixes a potential bug in int340x_thermal as well
since we have to use memcmp() on binary data.
Acked-by: Zhang Rui <rui.zhang@intel.com>
Signed-off-by: Andy Shevchenko <andriy.shevchenko@linux.intel.com>
Signed-off-by: Christoph Hellwig <hch@lst.de>
|
|
Maniaxx reported a kernel boot crash in the EFI code, which I emulated
by using same invalid phys addr in code:
BUG: unable to handle kernel paging request at ffffffffff280001
IP: efi_bgrt_init+0xfb/0x153
...
Call Trace:
? bgrt_init+0xbc/0xbc
acpi_parse_bgrt+0xe/0x12
acpi_table_parse+0x89/0xb8
acpi_boot_init+0x445/0x4e2
? acpi_parse_x2apic+0x79/0x79
? dmi_ignore_irq0_timer_override+0x33/0x33
setup_arch+0xb63/0xc82
? early_idt_handler_array+0x120/0x120
start_kernel+0xb7/0x443
? early_idt_handler_array+0x120/0x120
x86_64_start_reservations+0x29/0x2b
x86_64_start_kernel+0x154/0x177
secondary_startup_64+0x9f/0x9f
There is also a similar bug filed in bugzilla.kernel.org:
https://bugzilla.kernel.org/show_bug.cgi?id=195633
The crash is caused by this commit:
7b0a911478c7 efi/x86: Move the EFI BGRT init code to early init code
The root cause is the firmware on those machines provides invalid BGRT
image addresses.
In a kernel before above commit BGRT initializes late and uses ioremap()
to map the image address. Ioremap validates the address, if it is not a
valid physical address ioremap() just fails and returns. However in current
kernel EFI BGRT initializes early and uses early_memremap() which does not
validate the image address, and kernel panic happens.
According to ACPI spec the BGRT image address should fall into
EFI_BOOT_SERVICES_DATA, see the section 5.2.22.4 of below document:
http://www.uefi.org/sites/default/files/resources/ACPI_6_1.pdf
Fix this issue by validating the image address in efi_bgrt_init(). If the
image address does not fall into any EFI_BOOT_SERVICES_DATA areas we just
bail out with a warning message.
Reported-by: Maniaxx <tripleshiftone@gmail.com>
Signed-off-by: Dave Young <dyoung@redhat.com>
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Matt Fleming <matt@codeblueprint.co.uk>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-efi@vger.kernel.org
Fixes: 7b0a911478c7 ("efi/x86: Move the EFI BGRT init code to early init code")
Link: http://lkml.kernel.org/r/20170609084558.26766-2-ard.biesheuvel@linaro.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
|
|
During an eeh call to cxl_remove can result in double free_irq of
psl,slice interrupts. This can happen if perst_reloads_same_image == 1
and call to cxl_configure_adapter() fails during slot_reset
callback. In such a case we see a kernel oops with following back-trace:
Oops: Kernel access of bad area, sig: 11 [#1]
Call Trace:
free_irq+0x88/0xd0 (unreliable)
cxl_unmap_irq+0x20/0x40 [cxl]
cxl_native_release_psl_irq+0x78/0xd8 [cxl]
pci_deconfigure_afu+0xac/0x110 [cxl]
cxl_remove+0x104/0x210 [cxl]
pci_device_remove+0x6c/0x110
device_release_driver_internal+0x204/0x2e0
pci_stop_bus_device+0xa0/0xd0
pci_stop_and_remove_bus_device+0x28/0x40
pci_hp_remove_devices+0xb0/0x150
pci_hp_remove_devices+0x68/0x150
eeh_handle_normal_event+0x140/0x580
eeh_handle_event+0x174/0x360
eeh_event_handler+0x1e8/0x1f0
This patch fixes the issue of double free_irq by checking that
variables that hold the virqs (err_hwirq, serr_hwirq, psl_virq) are
not '0' before un-mapping and resetting these variables to '0' when
they are un-mapped.
Cc: stable@vger.kernel.org
Signed-off-by: Vaibhav Jain <vaibhav@linux.vnet.ibm.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
If more than one gpio bank has the "pwm" property, only one will be
registered successfully, all the others will fail with:
mvebu-gpio: probe of f1018140.gpio failed with error -17
That's because in alloc_pwms(), the chip->base (aka "int pwm"), was not
set (thus, ==0) ; and 0 is a meaningful start value in alloc_pwm().
What was intended is mvpwm->chip->base = -1.
Like that, the numbering will be done auto-magically
Moreover, as the region might be already occupied by another pwm, we
shouldn't force:
mvpwm->chip->base = 0
nor
mvpwm->chip->base = id * MVEBU_MAX_GPIO_PER_BANK;
Tested on clearfog-pro (Marvell 88F6828)
Fixes: 757642f9a584 ("gpio: mvebu: Add limited PWM support")
Signed-off-by: Richard Genoud <richard.genoud@gmail.com>
Reviewed-by: Gregory CLEMENT <gregory.clement@free-electrons.com>
Signed-off-by: Linus Walleij <linus.walleij@linaro.org>
|
|
The blink counter A was always selected because 0 was forced in the
blink select counter register.
The variable 'set' was obviously there to be used as the register value,
selecting the B counter when id==1 and A counter when id==0.
Tested on clearfog-pro (Marvell 88F6828)
Fixes: 757642f9a584 ("gpio: mvebu: Add limited PWM support")
Reviewed-by: Gregory CLEMENT <gregory.clement@free-electrons.com>
Reviewed-by: Ralph Sennhauser <ralph.sennhauser@gmail.com>
Signed-off-by: Richard Genoud <richard.genoud@gmail.com>
Signed-off-by: Linus Walleij <linus.walleij@linaro.org>
|
|
If a key's refcount is dropped to zero between key_lookup() peeking at
the refcount and subsequently attempting to increment it, refcount_inc()
will see a zero refcount. Here, refcount_inc() will WARN_ONCE(), and
will *not* increment the refcount, which will remain zero.
Once key_lookup() drops key_serial_lock, it is possible for the key to
be freed behind our back.
This patch uses refcount_inc_not_zero() to perform the peek and increment
atomically.
Fixes: fff292914d3a2f1e ("security, keys: convert key.usage from atomic_t to refcount_t")
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Signed-off-by: David Howells <dhowells@redhat.com>
Cc: David Windsor <dwindsor@gmail.com>
Cc: Elena Reshetova <elena.reshetova@intel.com>
Cc: Hans Liljestrand <ishkamiel@gmail.com>
Cc: James Morris <james.l.morris@oracle.com>
Cc: Kees Cook <keescook@chromium.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Signed-off-by: James Morris <james.l.morris@oracle.com>
|
|
The initial Diffie-Hellman computation made direct use of the MPI
library because the crypto module did not support DH at the time. Now
that KPP is implemented, KEYCTL_DH_COMPUTE should use it to get rid of
duplicate code and leverage possible hardware acceleration.
This fixes an issue whereby the input to the KDF computation would
include additional uninitialized memory when the result of the
Diffie-Hellman computation was shorter than the input prime number.
Signed-off-by: Mat Martineau <mathew.j.martineau@linux.intel.com>
Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: James Morris <james.l.morris@oracle.com>
|
|
Signed-off-by: Loganaden Velvindron <logan@hackers.mu>
Signed-off-by: Yasir Auleear <yasirmx@hackers.mu>
Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: James Morris <james.l.morris@oracle.com>
|
|
Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: David Howells <dhowells@redhat.com>
Acked-by: Stephan Mueller <smueller@chronox.de>
Signed-off-by: James Morris <james.l.morris@oracle.com>
|
|
Accessing a 'u8[4]' through a '__be32 *' violates alignment rules. Just
make the counter a __be32 instead.
Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: David Howells <dhowells@redhat.com>
Acked-by: Stephan Mueller <smueller@chronox.de>
Signed-off-by: James Morris <james.l.morris@oracle.com>
|
|
If userspace called KEYCTL_DH_COMPUTE with kdf_params containing NULL
otherinfo but nonzero otherinfolen, the kernel would allocate a buffer
for the otherinfo, then feed it into the KDF without initializing it.
Fix this by always doing the copy from userspace (which will fail with
EFAULT in this scenario).
Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: David Howells <dhowells@redhat.com>
Acked-by: Stephan Mueller <smueller@chronox.de>
Signed-off-by: James Morris <james.l.morris@oracle.com>
|
|
Requesting "digest_null" in the keyctl_kdf_params caused an infinite
loop in kdf_ctr() because the "null" hash has a digest size of 0. Fix
it by rejecting hash algorithms with a digest size of 0.
Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: David Howells <dhowells@redhat.com>
Acked-by: Stephan Mueller <smueller@chronox.de>
Signed-off-by: James Morris <james.l.morris@oracle.com>
|
|
While a 'struct key' itself normally does not contain sensitive
information, Documentation/security/keys.txt actually encourages this:
"Having a payload is not required; and the payload can, in fact,
just be a value stored in the struct key itself."
In case someone has taken this advice, or will take this advice in the
future, zero the key structure before freeing it. We might as well, and
as a bonus this could make it a bit more difficult for an adversary to
determine which keys have recently been in use.
This is safe because the key_jar cache does not use a constructor.
Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: James Morris <james.l.morris@oracle.com>
|
|
As the previous patch did for encrypted-keys, zero sensitive any
potentially sensitive data related to the "trusted" key type before it
is freed. Notably, we were not zeroing the tpm_buf structures in which
the actual key is stored for TPM seal and unseal, nor were we zeroing
the trusted_key_payload in certain error paths.
Cc: Mimi Zohar <zohar@linux.vnet.ibm.com>
Cc: David Safford <safford@us.ibm.com>
Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: James Morris <james.l.morris@oracle.com>
|
|
For keys of type "encrypted", consistently zero sensitive key material
before freeing it. This was already being done for the decrypted
payloads of encrypted keys, but not for the master key and the keys
derived from the master key.
Out of an abundance of caution and because it is trivial to do so, also
zero buffers containing the key payload in encrypted form, although
depending on how the encrypted-keys feature is used such information
does not necessarily need to be kept secret.
Cc: Mimi Zohar <zohar@linux.vnet.ibm.com>
Cc: David Safford <safford@us.ibm.com>
Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: James Morris <james.l.morris@oracle.com>
|
|
Zero the payloads of user and logon keys before freeing them. This
prevents sensitive key material from being kept around in the slab
caches after a key is released.
Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: James Morris <james.l.morris@oracle.com>
|
|
Before returning from add_key() or one of the keyctl() commands that
takes in a key payload, zero the temporary buffer that was allocated to
hold the key payload copied from userspace. This may contain sensitive
key material that should not be kept around in the slab caches.
Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: James Morris <james.l.morris@oracle.com>
|