aboutsummaryrefslogtreecommitdiffstatshomepage
path: root/tools/perf/scripts/python/export-to-postgresql.py (unfollow)
AgeCommit message (Collapse)AuthorFilesLines
2024-12-23KVM: guest_memfd: Remove RCU-protected attribute from slot->gmem.fileYan Zhao2-14/+27
Remove the RCU-protected attribute from slot->gmem.file. No need to use RCU primitives rcu_assign_pointer()/synchronize_rcu() to update this pointer. - slot->gmem.file is updated in 3 places: kvm_gmem_bind(), kvm_gmem_unbind(), kvm_gmem_release(). All of them are protected by kvm->slots_lock. - slot->gmem.file is read in 2 paths: (1) kvm_gmem_populate kvm_gmem_get_file __kvm_gmem_get_pfn (2) kvm_gmem_get_pfn kvm_gmem_get_file __kvm_gmem_get_pfn Path (1) kvm_gmem_populate() requires holding kvm->slots_lock, so slot->gmem.file is protected by the kvm->slots_lock in this path. Path (2) kvm_gmem_get_pfn() does not require holding kvm->slots_lock. However, it's also not guarded by rcu_read_lock() and rcu_read_unlock(). So synchronize_rcu() in kvm_gmem_unbind()/kvm_gmem_release() actually will not wait for the readers in kvm_gmem_get_pfn() due to lack of RCU read-side critical section. The path (2) kvm_gmem_get_pfn() is safe without RCU protection because: a) kvm_gmem_bind() is called on a new memslot, before the memslot is visible to kvm_gmem_get_pfn(). b) kvm->srcu ensures that kvm_gmem_unbind() and freeing of a memslot occur after the memslot is no longer visible to kvm_gmem_get_pfn(). c) get_file_active() ensures that kvm_gmem_get_pfn() will not access the stale file if kvm_gmem_release() sets it to NULL. This is because if kvm_gmem_release() occurs before kvm_gmem_get_pfn(), get_file_active() will return NULL; if get_file_active() does not return NULL, kvm_gmem_release() should not occur until after kvm_gmem_get_pfn() releases the file reference. Signed-off-by: Yan Zhao <yan.y.zhao@intel.com> Message-ID: <20241104084303.29909-1-yan.y.zhao@intel.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2024-12-22KVM: x86: Refactor __kvm_emulate_hypercall() into a macroPaolo Bonzini2-25/+30
Rework __kvm_emulate_hypercall() into a macro so that completion of hypercalls that don't exit to userspace use direct function calls to the completion helper, i.e. don't trigger a retpoline when RETPOLINE=y. Opportunistically take the names of the input registers, as opposed to taking the input values, to preemptively dedup more of the calling code (TDX needs to use different registers). Use the direct GPR accessors to read values to avoid the pointless marking of the registers as available (KVM requires GPRs to always be available). Signed-off-by: Sean Christopherson <seanjc@google.com> Reviewed-by: Binbin Wu <binbin.wu@linux.intel.com> Reviewed-by: Kai Huang <kai.huang@intel.com> Message-ID: <20241128004344.4072099-7-seanjc@google.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2024-12-22KVM: x86: Always complete hypercall via function callbackSean Christopherson2-21/+17
Finish "emulation" of KVM hypercalls by function callback, even when the hypercall is handled entirely within KVM, i.e. doesn't require an exit to userspace, and refactor __kvm_emulate_hypercall()'s return value to *only* communicate whether or not KVM should exit to userspace or resume the guest. (Ab)Use vcpu->run->hypercall.ret to propagate the return value to the callback, purely to avoid having to add a trampoline for every completion callback. Using the function return value for KVM's control flow eliminates the multiplexed return value, where '0' for KVM_HC_MAP_GPA_RANGE (and only that hypercall) means "exit to userspace". Note, the unnecessary extra indirect call and thus potential retpoline will be eliminated in the near future by converting the intermediate layer to a macro. Suggested-by: Binbin Wu <binbin.wu@linux.intel.com> Suggested-by: Kai Huang <kai.huang@intel.com> Signed-off-by: Sean Christopherson <seanjc@google.com> Reviewed-by: Kai Huang <kai.huang@intel.com> Message-ID: <20241128004344.4072099-6-seanjc@google.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2024-12-22KVM: x86: Bump hypercall stat prior to fully completing hypercallSean Christopherson1-3/+2
Increment the "hypercalls" stat for KVM hypercalls as soon as KVM knows it will skip the guest instruction, i.e. once KVM is committed to emulating the hypercall. Waiting until completion adds no known value, and creates a discrepancy where the stat will be bumped if KVM exits to userspace as a result of trying to skip the instruction, but not if the hypercall itself exits. Handling the stat in common code will also avoid the need for another helper to dedup code when TDX comes along (TDX needs a separate completion path due to GPR usage differences). Signed-off-by: Sean Christopherson <seanjc@google.com> Reviewed-by: Binbin Wu <binbin.wu@linux.intel.com> Reviewed-by: Kai Huang <kai.huang@intel.com> Reviewed-by: Tom Lendacky <thomas.lendacky@amd.com> Reviewed-by: Xiaoyao Li <xiaoyao.li@intel.com> Message-ID: <20241128004344.4072099-5-seanjc@google.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2024-12-22KVM: x86: Move "emulate hypercall" function declarations to x86.hSean Christopherson2-6/+6
Move the declarations for the hypercall emulation APIs to x86.h. While the helpers are exported, they are intended to be consumed only by KVM vendor modules, i.e. don't need to be exposed to the kernel at-large. No functional change intended. Signed-off-by: Sean Christopherson <seanjc@google.com> Reviewed-by: Binbin Wu <binbin.wu@linux.intel.com> Reviewed-by: Kai Huang <kai.huang@intel.com> Reviewed-by: Tom Lendacky <thomas.lendacky@amd.com> Reviewed-by: Xiaoyao Li <xiaoyao.li@intel.com> Message-ID: <20241128004344.4072099-4-seanjc@google.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2024-12-22KVM: x86: Add a helper to check for user interception of KVM hypercallsBinbin Wu3-3/+8
Add and use user_exit_on_hypercall() to check if userspace wants to handle a KVM hypercall instead of open-coding the logic everywhere. No functional change intended. Signed-off-by: Binbin Wu <binbin.wu@linux.intel.com> Reviewed-by: Isaku Yamahata <isaku.yamahata@intel.com> Reviewed-by: Kai Huang <kai.huang@intel.com> Reviewed-by: Xiaoyao Li <xiaoyao.li@intel.com> [sean: squash into one patch, keep explicit KVM_HC_MAP_GPA_RANGE check] Signed-off-by: Sean Christopherson <seanjc@google.com> Reviewed-by: Tom Lendacky <thomas.lendacky@amd.com> Message-ID: <20241128004344.4072099-3-seanjc@google.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2024-12-22KVM: x86: clear vcpu->run->hypercall.ret before exiting for KVM_EXIT_HYPERCALLPaolo Bonzini2-0/+21
QEMU up to 9.2.0 is assuming that vcpu->run->hypercall.ret is 0 on exit and it never modifies it when processing KVM_EXIT_HYPERCALL. Make this explicit in the code, to avoid breakage when KVM starts modifying that field. This in principle is not a good idea... It would have been much better if KVM had set the field to -KVM_ENOSYS from the beginning, so that a dumb userspace that does nothing on KVM_EXIT_HYPERCALL would tell the guest it does not support KVM_HC_MAP_GPA_RANGE. However, breaking userspace is a Very Bad Thing, as everybody should know. Reported-by: Binbin Wu <binbin.wu@linux.intel.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2024-12-19KVM: x86/mmu: Treat TDP MMU faults as spurious if access is already allowedSean Christopherson3-12/+22
Treat slow-path TDP MMU faults as spurious if the access is allowed given the existing SPTE to fix a benign warning (other than the WARN itself) due to replacing a writable SPTE with a read-only SPTE, and to avoid the unnecessary LOCK CMPXCHG and subsequent TLB flush. If a read fault races with a write fault, fast GUP fails for any reason when trying to "promote" the read fault to a writable mapping, and KVM resolves the write fault first, then KVM will end up trying to install a read-only SPTE (for a !map_writable fault) overtop a writable SPTE. Note, it's not entirely clear why fast GUP fails, or if that's even how KVM ends up with a !map_writable fault with a writable SPTE. If something else is going awry, e.g. due to a bug in mmu_notifiers, then treating read faults as spurious in this scenario could effectively mask the underlying problem. However, retrying the faulting access instead of overwriting an existing SPTE is functionally correct and desirable irrespective of the WARN, and fast GUP _can_ legitimately fail with a writable VMA, e.g. if the Accessed bit in primary MMU's PTE is toggled and causes a PTE value mismatch. The WARN was also recently added, specifically to track down scenarios where KVM is unnecessarily overwrites SPTEs, i.e. treating the fault as spurious doesn't regress KVM's bug-finding capabilities in any way. In short, letting the WARN linger because there's a tiny chance it's due to a bug elsewhere would be excessively paranoid. Fixes: 1a175082b190 ("KVM: x86/mmu: WARN and flush if resolving a TDP MMU fault clears MMU-writable") Reported-by: Lei Yang <leiyang@redhat.com> Closes: https://bugzilla.kernel.org/show_bug.cgi?id=219588 Tested-by: Lei Yang <leiyang@redhat.com> Link: https://lore.kernel.org/r/20241218213611.3181643-1-seanjc@google.com Signed-off-by: Sean Christopherson <seanjc@google.com>
2024-12-19KVM: SVM: Allow guest writes to set MSR_AMD64_DE_CFG bitsSean Christopherson1-9/+0
Drop KVM's arbitrary behavior of making DE_CFG.LFENCE_SERIALIZE read-only for the guest, as rejecting writes can lead to guest crashes, e.g. Windows in particular doesn't gracefully handle unexpected #GPs on the WRMSR, and nothing in the AMD manuals suggests that LFENCE_SERIALIZE is read-only _if it exists_. KVM only allows LFENCE_SERIALIZE to be set, by the guest or host, if the underlying CPU has X86_FEATURE_LFENCE_RDTSC, i.e. if LFENCE is guaranteed to be serializing. So if the guest sets LFENCE_SERIALIZE, KVM will provide the desired/correct behavior without any additional action (the guest's value is never stuffed into hardware). And having LFENCE be serializing even when it's not _required_ to be is a-ok from a functional perspective. Fixes: 74a0e79df68a ("KVM: SVM: Disallow guest from changing userspace's MSR_AMD64_DE_CFG value") Fixes: d1d93fa90f1a ("KVM: SVM: Add MSR-based feature support for serializing LFENCE") Reported-by: Simon Pilkington <simonp.git@mailbox.org> Closes: https://lore.kernel.org/all/52914da7-a97b-45ad-86a0-affdf8266c61@mailbox.org Cc: Tom Lendacky <thomas.lendacky@amd.com> Cc: stable@vger.kernel.org Reviewed-by: Tom Lendacky <thomas.lendacky@amd.com> Link: https://lore.kernel.org/r/20241211172952.1477605-1-seanjc@google.com Signed-off-by: Sean Christopherson <seanjc@google.com>
2024-12-19KVM: x86: Play nice with protected guests in complete_hypercall_exit()Sean Christopherson1-1/+1
Use is_64_bit_hypercall() instead of is_64_bit_mode() to detect a 64-bit hypercall when completing said hypercall. For guests with protected state, e.g. SEV-ES and SEV-SNP, KVM must assume the hypercall was made in 64-bit mode as the vCPU state needed to detect 64-bit mode is unavailable. Hacking the sev_smoke_test selftest to generate a KVM_HC_MAP_GPA_RANGE hypercall via VMGEXIT trips the WARN: ------------[ cut here ]------------ WARNING: CPU: 273 PID: 326626 at arch/x86/kvm/x86.h:180 complete_hypercall_exit+0x44/0xe0 [kvm] Modules linked in: kvm_amd kvm ... [last unloaded: kvm] CPU: 273 UID: 0 PID: 326626 Comm: sev_smoke_test Not tainted 6.12.0-smp--392e932fa0f3-feat #470 Hardware name: Google Astoria/astoria, BIOS 0.20240617.0-0 06/17/2024 RIP: 0010:complete_hypercall_exit+0x44/0xe0 [kvm] Call Trace: <TASK> kvm_arch_vcpu_ioctl_run+0x2400/0x2720 [kvm] kvm_vcpu_ioctl+0x54f/0x630 [kvm] __se_sys_ioctl+0x6b/0xc0 do_syscall_64+0x83/0x160 entry_SYSCALL_64_after_hwframe+0x76/0x7e </TASK> ---[ end trace 0000000000000000 ]--- Fixes: b5aead0064f3 ("KVM: x86: Assume a 64-bit hypercall for guests with protected state") Cc: stable@vger.kernel.org Cc: Tom Lendacky <thomas.lendacky@amd.com> Reviewed-by: Xiaoyao Li <xiaoyao.li@intel.com> Reviewed-by: Nikunj A Dadhania <nikunj@amd.com> Reviewed-by: Tom Lendacky <thomas.lendacky@amd.com> Reviewed-by: Binbin Wu <binbin.wu@linux.intel.com> Reviewed-by: Kai Huang <kai.huang@intel.com> Link: https://lore.kernel.org/r/20241128004344.4072099-2-seanjc@google.com Signed-off-by: Sean Christopherson <seanjc@google.com>
2024-12-19KVM: SVM: Disable AVIC on SNP-enabled system without HvInUseWrAllowed featureSuravee Suthikulpanit2-0/+7
On SNP-enabled system, VMRUN marks AVIC Backing Page as in-use while the guest is running for both secure and non-secure guest. Any hypervisor write to the in-use vCPU's AVIC backing page (e.g. to inject an interrupt) will generate unexpected #PF in the host. Currently, attempt to run AVIC guest would result in the following error: BUG: unable to handle page fault for address: ff3a442e549cc270 #PF: supervisor write access in kernel mode #PF: error_code(0x80000003) - RMP violation PGD b6ee01067 P4D b6ee02067 PUD 10096d063 PMD 11c540063 PTE 80000001149cc163 SEV-SNP: PFN 0x1149cc unassigned, dumping non-zero entries in 2M PFN region: [0x114800 - 0x114a00] ... Newer AMD system is enhanced to allow hypervisor to modify the backing page for non-secure guest on SNP-enabled system. This enhancement is available when the CPUID Fn8000_001F_EAX bit 30 is set (HvInUseWrAllowed). This table describes AVIC support matrix w.r.t. SNP enablement: | Non-SNP system | SNP system ----------------------------------------------------- Non-SNP guest | AVIC Activate | AVIC Activate iff | | HvInuseWrAllowed=1 ----------------------------------------------------- SNP guest | N/A | Secure AVIC Therefore, check and disable AVIC in kvm_amd driver when the feature is not available on SNP-enabled system. See the AMD64 Architecture Programmer’s Manual (APM) Volume 2 for detail. (https://www.amd.com/content/dam/amd/en/documents/processor-tech-docs/ programmer-references/40332.pdf) Fixes: 216d106c7ff7 ("x86/sev: Add SEV-SNP host initialization support") Signed-off-by: Suravee Suthikulpanit <suravee.suthikulpanit@amd.com> Link: https://lore.kernel.org/r/20241104075845.7583-1-suravee.suthikulpanit@amd.com Signed-off-by: Sean Christopherson <seanjc@google.com>
2024-12-18KVM: selftests: Override ARCH for x86_64 instead of using ARCH_DIRSean Christopherson2-13/+11
Now that KVM selftests uses the kernel's canonical arch paths, directly override ARCH to 'x86' when targeting x86_64 instead of defining ARCH_DIR to redirect to appropriate paths. ARCH_DIR was originally added to deal with KVM selftests using the target triple ARCH for directories, e.g. s390x and aarch64; keeping it around just to deal with the one-off alias from x86_64=>x86 is unnecessary and confusing. Note, even when selftests are built from the top-level Makefile, ARCH is scoped to KVM's makefiles, i.e. overriding ARCH won't trip up some other selftests that (somehow) expects x86_64 and can't work with x86. Reviewed-by: Muhammad Usama Anjum <usama.anjum@collabora.com> Link: https://lore.kernel.org/r/20241128005547.4077116-17-seanjc@google.com Signed-off-by: Sean Christopherson <seanjc@google.com>
2024-12-18KVM: selftests: Use canonical $(ARCH) paths for KVM selftests directoriesSean Christopherson152-212/+176
Use the kernel's canonical $(ARCH) paths instead of the raw target triple for KVM selftests directories. KVM selftests are quite nearly the only place in the entire kernel that using the target triple for directories, tools/testing/selftests/drivers/s390x being the lone holdout. Using the kernel's preferred nomenclature eliminates the minor, but annoying, friction of having to translate to KVM's selftests directories, e.g. for pattern matching, opening files, running selftests, etc. Opportunsitically delete file comments that reference the full path of the file, as they are obviously prone to becoming stale, and serve no known purpose. Reviewed-by: Muhammad Usama Anjum <usama.anjum@collabora.com> Acked-by: Claudio Imbrenda <imbrenda@linux.ibm.com> Acked-by: Andrew Jones <ajones@ventanamicro.com> Link: https://lore.kernel.org/r/20241128005547.4077116-16-seanjc@google.com Signed-off-by: Sean Christopherson <seanjc@google.com>
2024-12-18KVM: selftests: Provide empty 'all' and 'clean' targets for unsupported ARCHsSean Christopherson3-331/+340
Provide empty targets for KVM selftests if the target architecture is unsupported to make it obvious which architectures are supported, and so that various side effects don't fail and/or do weird things, e.g. as is, "mkdir -p $(sort $(dir $(TEST_GEN_PROGS)))" fails due to a missing operand, and conversely, "$(shell mkdir -p $(sort $(OUTPUT)/$(ARCH_DIR) ..." will create an empty, useless directory for the unsupported architecture. Move the guts of the Makefile to Makefile.kvm so that it's easier to see that the if-statement effectively guards all of KVM selftests. Reported-by: Muhammad Usama Anjum <usama.anjum@collabora.com> Acked-by: Muhammad Usama Anjum <usama.anjum@collabora.com> Acked-by: Andrew Jones <ajones@ventanamicro.com> Link: https://lore.kernel.org/r/20241128005547.4077116-15-seanjc@google.com Signed-off-by: Sean Christopherson <seanjc@google.com>
2024-12-18KVM: selftests: Verify KVM correctly handles mprotect(PROT_READ)Sean Christopherson1-3/+101
Add two phases to mmu_stress_test to verify that KVM correctly handles guest memory that was writable, and then made read-only in the primary MMU, and then made writable again. Add bonus coverage for x86 and arm64 to verify that all of guest memory was marked read-only. Making forward progress (without making memory writable) requires arch specific code to skip over the faulting instruction, but the test can at least verify each vCPU's starting page was made read-only for other architectures. Link: https://lore.kernel.org/r/20241128005547.4077116-14-seanjc@google.com Signed-off-by: Sean Christopherson <seanjc@google.com>
2024-12-18KVM: selftests: Add a read-only mprotect() phase to mmu_stress_testSean Christopherson1-4/+18
Add a third phase of mmu_stress_test to verify that mprotect()ing guest memory to make it read-only doesn't cause explosions, e.g. to verify KVM correctly handles the resulting mmu_notifier invalidations. Reviewed-by: James Houghton <jthoughton@google.com> Reviewed-by: Andrew Jones <ajones@ventanamicro.com> Link: https://lore.kernel.org/r/20241128005547.4077116-13-seanjc@google.com Signed-off-by: Sean Christopherson <seanjc@google.com>
2024-12-18KVM: selftests: Precisely limit the number of guest loops in mmu_stress_testSean Christopherson1-6/+19
Run the exact number of guest loops required in mmu_stress_test instead of looping indefinitely in anticipation of adding more stages that run different code (e.g. reads instead of writes). Reviewed-by: James Houghton <jthoughton@google.com> Reviewed-by: Andrew Jones <ajones@ventanamicro.com> Link: https://lore.kernel.org/r/20241128005547.4077116-12-seanjc@google.com Signed-off-by: Sean Christopherson <seanjc@google.com>
2024-12-18KVM: selftests: Use vcpu_arch_put_guest() in mmu_stress_testSean Christopherson1-1/+1
Use vcpu_arch_put_guest() to write memory from the guest in mmu_stress_test as an easy way to provide a bit of extra coverage. Reviewed-by: James Houghton <jthoughton@google.com> Reviewed-by: Andrew Jones <ajones@ventanamicro.com> Link: https://lore.kernel.org/r/20241128005547.4077116-11-seanjc@google.com Signed-off-by: Sean Christopherson <seanjc@google.com>
2024-12-18KVM: selftests: Enable mmu_stress_test on arm64Sean Christopherson1-0/+1
Enable the mmu_stress_test on arm64. The intent was to enable the test across all architectures when it was first added, but a few goofs made it unrunnable on !x86. Now that those goofs are fixed, at least for arm64, enable the test. Cc: Oliver Upton <oliver.upton@linux.dev> Cc: Marc Zyngier <maz@kernel.org> Reviewed-by: James Houghton <jthoughton@google.com> Reviewed-by: Andrew Jones <ajones@ventanamicro.com> Link: https://lore.kernel.org/r/20241128005547.4077116-10-seanjc@google.com Signed-off-by: Sean Christopherson <seanjc@google.com>
2024-12-18KVM: sefltests: Explicitly include ucall_common.h in mmu_stress_test.cSean Christopherson1-0/+1
Explicitly include ucall_common.h in the MMU stress test, as unlike arm64 and x86-64, RISC-V doesn't include ucall_common.h in its processor.h, i.e. this will allow enabling the test on RISC-V. Reported-by: Andrew Jones <ajones@ventanamicro.com> Link: https://lore.kernel.org/r/20241128005547.4077116-9-seanjc@google.com Signed-off-by: Sean Christopherson <seanjc@google.com>
2024-12-18KVM: selftests: Compute number of extra pages needed in mmu_stress_testSean Christopherson1-1/+7
Create mmu_stress_tests's VM with the correct number of extra pages needed to map all of memory in the guest. The bug hasn't been noticed before as the test currently runs only on x86, which maps guest memory with 1GiB pages, i.e. doesn't need much memory in the guest for page tables. Reviewed-by: James Houghton <jthoughton@google.com> Reviewed-by: Andrew Jones <ajones@ventanamicro.com> Link: https://lore.kernel.org/r/20241128005547.4077116-8-seanjc@google.com Signed-off-by: Sean Christopherson <seanjc@google.com>
2024-12-18KVM: selftests: Only muck with SREGS on x86 in mmu_stress_testSean Christopherson1-3/+3
Try to get/set SREGS in mmu_stress_test only when running on x86, as the ioctls are supported only by x86 and PPC, and the latter doesn't yet support KVM selftests. Reviewed-by: James Houghton <jthoughton@google.com> Reviewed-by: Andrew Jones <ajones@ventanamicro.com> Link: https://lore.kernel.org/r/20241128005547.4077116-7-seanjc@google.com Signed-off-by: Sean Christopherson <seanjc@google.com>
2024-12-18KVM: selftests: Rename max_guest_memory_test to mmu_stress_testSean Christopherson2-1/+1
Rename max_guest_memory_test to mmu_stress_test so that the name isn't horribly misleading when future changes extend the test to verify things like mprotect() interactions, and because the test is useful even when its configured to populate far less than the maximum amount of guest memory. Reviewed-by: James Houghton <jthoughton@google.com> Reviewed-by: Andrew Jones <ajones@ventanamicro.com> Link: https://lore.kernel.org/r/20241128005547.4077116-6-seanjc@google.com Signed-off-by: Sean Christopherson <seanjc@google.com>
2024-12-18KVM: selftests: Check for a potential unhandled exception iff KVM_RUN succeededSean Christopherson1-1/+2
Don't check for an unhandled exception if KVM_RUN failed, e.g. if it returned errno=EFAULT, as reporting unhandled exceptions is done via a ucall, i.e. requires KVM_RUN to exit cleanly. Theoretically, checking for a ucall on a failed KVM_RUN could get a false positive, e.g. if there were stale data in vcpu->run from a previous exit. Reviewed-by: James Houghton <jthoughton@google.com> Reviewed-by: Andrew Jones <ajones@ventanamicro.com> Link: https://lore.kernel.org/r/20241128005547.4077116-5-seanjc@google.com Signed-off-by: Sean Christopherson <seanjc@google.com>
2024-12-18KVM: selftests: Assert that vcpu_{g,s}et_reg() won't truncateSean Christopherson1-0/+4
Assert that the register being read/written by vcpu_{g,s}et_reg() is no larger than a uint64_t, i.e. that a selftest isn't unintentionally truncating the value being read/written. Ideally, the assert would be done at compile-time, but that would limit the checks to hardcoded accesses and/or require fancier compile-time assertion infrastructure to filter out dynamic usage. Reviewed-by: Andrew Jones <ajones@ventanamicro.com> Link: https://lore.kernel.org/r/20241128005547.4077116-4-seanjc@google.com Signed-off-by: Sean Christopherson <seanjc@google.com>
2024-12-18KVM: selftests: Return a value from vcpu_get_reg() instead of using an out-paramSean Christopherson15-81/+81
Return a uint64_t from vcpu_get_reg() instead of having the caller provide a pointer to storage, as none of the vcpu_get_reg() usage in KVM selftests accesses a register larger than 64 bits, and vcpu_set_reg() only accepts a 64-bit value. If a use case comes along that needs to get a register that is larger than 64 bits, then a utility can be added to assert success and take a void pointer, but until then, forcing an out param yields ugly code and prevents feeding the output of vcpu_get_reg() into vcpu_set_reg(). Reviewed-by: Andrew Jones <ajones@ventanamicro.com> Acked-by: Claudio Imbrenda <imbrenda@linux.ibm.com> Link: https://lore.kernel.org/r/20241128005547.4077116-3-seanjc@google.com Signed-off-by: Sean Christopherson <seanjc@google.com>
2024-12-17KVM: Move KVM_REG_SIZE() definition to common uAPI headerSean Christopherson3-6/+4
Define KVM_REG_SIZE() in the common kvm.h header, and delete the arm64 and RISC-V versions. As evidenced by the surrounding definitions, all aspects of the register size encoding are generic, i.e. RISC-V should have moved arm64's definition to common code instead of copy+pasting. Acked-by: Anup Patel <anup@brainfault.org> Reviewed-by: Andrew Jones <ajones@ventanamicro.com> Reviewed-by: Muhammad Usama Anjum <usama.anjum@collabora.com> Link: https://lore.kernel.org/r/20241128005547.4077116-2-seanjc@google.com Signed-off-by: Sean Christopherson <seanjc@google.com>
2024-12-15Linux 6.13-rc3Linus Torvalds1-1/+1
2024-12-14bpf: Avoid deadlock caused by nested kprobe and fentry bpf programsPriya Bala Govindasamy1-0/+6
BPF program types like kprobe and fentry can cause deadlocks in certain situations. If a function takes a lock and one of these bpf programs is hooked to some point in the function's critical section, and if the bpf program tries to call the same function and take the same lock it will lead to deadlock. These situations have been reported in the following bug reports. In percpu_freelist - Link: https://lore.kernel.org/bpf/CAADnVQLAHwsa+2C6j9+UC6ScrDaN9Fjqv1WjB1pP9AzJLhKuLQ@mail.gmail.com/T/ Link: https://lore.kernel.org/bpf/CAPPBnEYm+9zduStsZaDnq93q1jPLqO-PiKX9jy0MuL8LCXmCrQ@mail.gmail.com/T/ In bpf_lru_list - Link: https://lore.kernel.org/bpf/CAPPBnEajj+DMfiR_WRWU5=6A7KKULdB5Rob_NJopFLWF+i9gCA@mail.gmail.com/T/ Link: https://lore.kernel.org/bpf/CAPPBnEZQDVN6VqnQXvVqGoB+ukOtHGZ9b9U0OLJJYvRoSsMY_g@mail.gmail.com/T/ Link: https://lore.kernel.org/bpf/CAPPBnEaCB1rFAYU7Wf8UxqcqOWKmRPU1Nuzk3_oLk6qXR7LBOA@mail.gmail.com/T/ Similar bugs have been reported by syzbot. In queue_stack_maps - Link: https://lore.kernel.org/lkml/0000000000004c3fc90615f37756@google.com/ Link: https://lore.kernel.org/all/20240418230932.2689-1-hdanton@sina.com/T/ In lpm_trie - Link: https://lore.kernel.org/linux-kernel/00000000000035168a061a47fa38@google.com/T/ In ringbuf - Link: https://lore.kernel.org/bpf/20240313121345.2292-1-hdanton@sina.com/T/ Prevent kprobe and fentry bpf programs from attaching to these critical sections by removing CC_FLAGS_FTRACE for percpu_freelist.o, bpf_lru_list.o, queue_stack_maps.o, lpm_trie.o, ringbuf.o files. The bugs reported by syzbot are due to tracepoint bpf programs being called in the critical sections. This patch does not aim to fix deadlocks caused by tracepoint programs. However, it does prevent deadlocks from occurring in similar situations due to kprobe and fentry programs. Signed-off-by: Priya Bala Govindasamy <pgovind2@uci.edu> Link: https://lore.kernel.org/r/CAPPBnEZpjGnsuA26Mf9kYibSaGLm=oF6=12L21X1GEQdqjLnzQ@mail.gmail.com Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2024-12-13selftests/bpf: Add tests for raw_tp NULL argsKumar Kartikeya Dwivedi2-0/+27
Add tests to ensure that arguments are correctly marked based on their specified positions, and whether they get marked correctly as maybe null. For modules, all tracepoint parameters should be marked PTR_MAYBE_NULL by default. Signed-off-by: Kumar Kartikeya Dwivedi <memxor@gmail.com> Link: https://lore.kernel.org/r/20241213221929.3495062-4-memxor@gmail.com Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2024-12-13bpf: Augment raw_tp arguments with PTR_MAYBE_NULLKumar Kartikeya Dwivedi2-10/+147
Arguments to a raw tracepoint are tagged as trusted, which carries the semantics that the pointer will be non-NULL. However, in certain cases, a raw tracepoint argument may end up being NULL. More context about this issue is available in [0]. Thus, there is a discrepancy between the reality, that raw_tp arguments can actually be NULL, and the verifier's knowledge, that they are never NULL, causing explicit NULL check branch to be dead code eliminated. A previous attempt [1], i.e. the second fixed commit, was made to simulate symbolic execution as if in most accesses, the argument is a non-NULL raw_tp, except for conditional jumps. This tried to suppress branch prediction while preserving compatibility, but surfaced issues with production programs that were difficult to solve without increasing verifier complexity. A more complete discussion of issues and fixes is available at [2]. Fix this by maintaining an explicit list of tracepoints where the arguments are known to be NULL, and mark the positional arguments as PTR_MAYBE_NULL. Additionally, capture the tracepoints where arguments are known to be ERR_PTR, and mark these arguments as scalar values to prevent potential dereference. Each hex digit is used to encode NULL-ness (0x1) or ERR_PTR-ness (0x2), shifted by the zero-indexed argument number x 4. This can be represented as follows: 1st arg: 0x1 2nd arg: 0x10 3rd arg: 0x100 ... and so on (likewise for ERR_PTR case). In the future, an automated pass will be used to produce such a list, or insert __nullable annotations automatically for tracepoints. Each compilation unit will be analyzed and results will be collated to find whether a tracepoint pointer is definitely not null, maybe null, or an unknown state where verifier conservatively marks it PTR_MAYBE_NULL. A proof of concept of this tool from Eduard is available at [3]. Note that in case we don't find a specification in the raw_tp_null_args array and the tracepoint belongs to a kernel module, we will conservatively mark the arguments as PTR_MAYBE_NULL. This is because unlike for in-tree modules, out-of-tree module tracepoints may pass NULL freely to the tracepoint. We don't protect against such tracepoints passing ERR_PTR (which is uncommon anyway), lest we mark all such arguments as SCALAR_VALUE. While we are it, let's adjust the test raw_tp_null to not perform dereference of the skb->mark, as that won't be allowed anymore, and make it more robust by using inline assembly to test the dead code elimination behavior, which should still stay the same. [0]: https://lore.kernel.org/bpf/ZrCZS6nisraEqehw@jlelli-thinkpadt14gen4.remote.csb [1]: https://lore.kernel.org/all/20241104171959.2938862-1-memxor@gmail.com [2]: https://lore.kernel.org/bpf/20241206161053.809580-1-memxor@gmail.com [3]: https://github.com/eddyz87/llvm-project/tree/nullness-for-tracepoint-params Reported-by: Juri Lelli <juri.lelli@redhat.com> # original bug Reported-by: Manu Bretelle <chantra@meta.com> # bugs in masking fix Fixes: 3f00c5239344 ("bpf: Allow trusted pointers to be passed to KF_TRUSTED_ARGS kfuncs") Fixes: cb4158ce8ec8 ("bpf: Mark raw_tp arguments with PTR_MAYBE_NULL") Reviewed-by: Eduard Zingerman <eddyz87@gmail.com> Co-developed-by: Jiri Olsa <jolsa@kernel.org> Signed-off-by: Jiri Olsa <jolsa@kernel.org> Signed-off-by: Kumar Kartikeya Dwivedi <memxor@gmail.com> Link: https://lore.kernel.org/r/20241213221929.3495062-3-memxor@gmail.com Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2024-12-13bpf: Revert "bpf: Mark raw_tp arguments with PTR_MAYBE_NULL"Kumar Kartikeya Dwivedi4-87/+9
This patch reverts commit cb4158ce8ec8 ("bpf: Mark raw_tp arguments with PTR_MAYBE_NULL"). The patch was well-intended and meant to be as a stop-gap fixing branch prediction when the pointer may actually be NULL at runtime. Eventually, it was supposed to be replaced by an automated script or compiler pass detecting possibly NULL arguments and marking them accordingly. However, it caused two main issues observed for production programs and failed to preserve backwards compatibility. First, programs relied on the verifier not exploring == NULL branch when pointer is not NULL, thus they started failing with a 'dereference of scalar' error. Next, allowing raw_tp arguments to be modified surfaced the warning in the verifier that warns against reg->off when PTR_MAYBE_NULL is set. More information, context, and discusson on both problems is available in [0]. Overall, this approach had several shortcomings, and the fixes would further complicate the verifier's logic, and the entire masking scheme would have to be removed eventually anyway. Hence, revert the patch in preparation of a better fix avoiding these issues to replace this commit. [0]: https://lore.kernel.org/bpf/20241206161053.809580-1-memxor@gmail.com Reported-by: Manu Bretelle <chantra@meta.com> Fixes: cb4158ce8ec8 ("bpf: Mark raw_tp arguments with PTR_MAYBE_NULL") Signed-off-by: Kumar Kartikeya Dwivedi <memxor@gmail.com> Link: https://lore.kernel.org/r/20241213221929.3495062-2-memxor@gmail.com Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2024-12-13ARC: build: Try to guess GCC variant of cross compilerLeon Romanovsky1-1/+1
ARC GCC compiler is packaged starting from Fedora 39i and the GCC variant of cross compile tools has arc-linux-gnu- prefix and not arc-linux-. This is causing that CROSS_COMPILE variable is left unset. This change allows builds without need to supply CROSS_COMPILE argument if distro package is used. Before this change: $ make -j 128 ARCH=arc W=1 drivers/infiniband/hw/mlx4/ gcc: warning: ‘-mcpu=’ is deprecated; use ‘-mtune=’ or ‘-march=’ instead gcc: error: unrecognized command-line option ‘-mmedium-calls’ gcc: error: unrecognized command-line option ‘-mlock’ gcc: error: unrecognized command-line option ‘-munaligned-access’ [1] https://packages.fedoraproject.org/pkgs/cross-gcc/gcc-arc-linux-gnu/index.html Signed-off-by: Leon Romanovsky <leonro@nvidia.com> Signed-off-by: Vineet Gupta <vgupta@kernel.org>
2024-12-13KVM: x86: Cache CPUID.0xD XSTATE offsets+sizes during module initSean Christopherson3-5/+29
Snapshot the output of CPUID.0xD.[1..n] during kvm.ko initiliaization to avoid the overead of CPUID during runtime. The offset, size, and metadata for CPUID.0xD.[1..n] sub-leaves does not depend on XCR0 or XSS values, i.e. is constant for a given CPU, and thus can be cached during module load. On Intel's Emerald Rapids, CPUID is *wildly* expensive, to the point where recomputing XSAVE offsets and sizes results in a 4x increase in latency of nested VM-Enter and VM-Exit (nested transitions can trigger xstate_required_size() multiple times per transition), relative to using cached values. The issue is easily visible by running `perf top` while triggering nested transitions: kvm_update_cpuid_runtime() shows up at a whopping 50%. As measured via RDTSC from L2 (using KVM-Unit-Test's CPUID VM-Exit test and a slightly modified L1 KVM to handle CPUID in the fastpath), a nested roundtrip to emulate CPUID on Skylake (SKX), Icelake (ICX), and Emerald Rapids (EMR) takes: SKX 11650 ICX 22350 EMR 28850 Using cached values, the latency drops to: SKX 6850 ICX 9000 EMR 7900 The underlying issue is that CPUID itself is slow on ICX, and comically slow on EMR. The problem is exacerbated on CPUs which support XSAVES and/or XSAVEC, as KVM invokes xstate_required_size() twice on each runtime CPUID update, and because there are more supported XSAVE features (CPUID for supported XSAVE feature sub-leafs is significantly slower). SKX: CPUID.0xD.2 = 348 cycles CPUID.0xD.3 = 400 cycles CPUID.0xD.4 = 276 cycles CPUID.0xD.5 = 236 cycles <other sub-leaves are similar> EMR: CPUID.0xD.2 = 1138 cycles CPUID.0xD.3 = 1362 cycles CPUID.0xD.4 = 1068 cycles CPUID.0xD.5 = 910 cycles CPUID.0xD.6 = 914 cycles CPUID.0xD.7 = 1350 cycles CPUID.0xD.8 = 734 cycles CPUID.0xD.9 = 766 cycles CPUID.0xD.10 = 732 cycles CPUID.0xD.11 = 718 cycles CPUID.0xD.12 = 734 cycles CPUID.0xD.13 = 1700 cycles CPUID.0xD.14 = 1126 cycles CPUID.0xD.15 = 898 cycles CPUID.0xD.16 = 716 cycles CPUID.0xD.17 = 748 cycles CPUID.0xD.18 = 776 cycles Note, updating runtime CPUID information multiple times per nested transition is itself a flaw, especially since CPUID is a mandotory intercept on both Intel and AMD. E.g. KVM doesn't need to ensure emulated CPUID state is up-to-date while running L2. That flaw will be fixed in a future patch, as deferring runtime CPUID updates is more subtle than it appears at first glance, the benefits aren't super critical to have once the XSAVE issue is resolved, and caching CPUID output is desirable even if KVM's updates are deferred. Cc: Jim Mattson <jmattson@google.com> Cc: stable@vger.kernel.org Signed-off-by: Sean Christopherson <seanjc@google.com> Message-ID: <20241211013302.1347853-2-seanjc@google.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2024-12-13block: Fix potential deadlock while freezing queue and acquiring sysfs_lockNilay Shroff3-23/+26
For storing a value to a queue attribute, the queue_attr_store function first freezes the queue (->q_usage_counter(io)) and then acquire ->sysfs_lock. This seems not correct as the usual ordering should be to acquire ->sysfs_lock before freezing the queue. This incorrect ordering causes the following lockdep splat which we are able to reproduce always simply by accessing /sys/kernel/debug file using ls command: [ 57.597146] WARNING: possible circular locking dependency detected [ 57.597154] 6.12.0-10553-gb86545e02e8c #20 Tainted: G W [ 57.597162] ------------------------------------------------------ [ 57.597168] ls/4605 is trying to acquire lock: [ 57.597176] c00000003eb56710 (&mm->mmap_lock){++++}-{4:4}, at: __might_fault+0x58/0xc0 [ 57.597200] but task is already holding lock: [ 57.597207] c0000018e27c6810 (&sb->s_type->i_mutex_key#3){++++}-{4:4}, at: iterate_dir+0x94/0x1d4 [ 57.597226] which lock already depends on the new lock. [ 57.597233] the existing dependency chain (in reverse order) is: [ 57.597241] -> #5 (&sb->s_type->i_mutex_key#3){++++}-{4:4}: [ 57.597255] down_write+0x6c/0x18c [ 57.597264] start_creating+0xb4/0x24c [ 57.597274] debugfs_create_dir+0x2c/0x1e8 [ 57.597283] blk_register_queue+0xec/0x294 [ 57.597292] add_disk_fwnode+0x2e4/0x548 [ 57.597302] brd_alloc+0x2c8/0x338 [ 57.597309] brd_init+0x100/0x178 [ 57.597317] do_one_initcall+0x88/0x3e4 [ 57.597326] kernel_init_freeable+0x3cc/0x6e0 [ 57.597334] kernel_init+0x34/0x1cc [ 57.597342] ret_from_kernel_user_thread+0x14/0x1c [ 57.597350] -> #4 (&q->debugfs_mutex){+.+.}-{4:4}: [ 57.597362] __mutex_lock+0xfc/0x12a0 [ 57.597370] blk_register_queue+0xd4/0x294 [ 57.597379] add_disk_fwnode+0x2e4/0x548 [ 57.597388] brd_alloc+0x2c8/0x338 [ 57.597395] brd_init+0x100/0x178 [ 57.597402] do_one_initcall+0x88/0x3e4 [ 57.597410] kernel_init_freeable+0x3cc/0x6e0 [ 57.597418] kernel_init+0x34/0x1cc [ 57.597426] ret_from_kernel_user_thread+0x14/0x1c [ 57.597434] -> #3 (&q->sysfs_lock){+.+.}-{4:4}: [ 57.597446] __mutex_lock+0xfc/0x12a0 [ 57.597454] queue_attr_store+0x9c/0x110 [ 57.597462] sysfs_kf_write+0x70/0xb0 [ 57.597471] kernfs_fop_write_iter+0x1b0/0x2ac [ 57.597480] vfs_write+0x3dc/0x6e8 [ 57.597488] ksys_write+0x84/0x140 [ 57.597495] system_call_exception+0x130/0x360 [ 57.597504] system_call_common+0x160/0x2c4 [ 57.597516] -> #2 (&q->q_usage_counter(io)#21){++++}-{0:0}: [ 57.597530] __submit_bio+0x5ec/0x828 [ 57.597538] submit_bio_noacct_nocheck+0x1e4/0x4f0 [ 57.597547] iomap_readahead+0x2a0/0x448 [ 57.597556] xfs_vm_readahead+0x28/0x3c [ 57.597564] read_pages+0x88/0x41c [ 57.597571] page_cache_ra_unbounded+0x1ac/0x2d8 [ 57.597580] filemap_get_pages+0x188/0x984 [ 57.597588] filemap_read+0x13c/0x4bc [ 57.597596] xfs_file_buffered_read+0x88/0x17c [ 57.597605] xfs_file_read_iter+0xac/0x158 [ 57.597614] vfs_read+0x2d4/0x3b4 [ 57.597622] ksys_read+0x84/0x144 [ 57.597629] system_call_exception+0x130/0x360 [ 57.597637] system_call_common+0x160/0x2c4 [ 57.597647] -> #1 (mapping.invalidate_lock#2){++++}-{4:4}: [ 57.597661] down_read+0x6c/0x220 [ 57.597669] filemap_fault+0x870/0x100c [ 57.597677] xfs_filemap_fault+0xc4/0x18c [ 57.597684] __do_fault+0x64/0x164 [ 57.597693] __handle_mm_fault+0x1274/0x1dac [ 57.597702] handle_mm_fault+0x248/0x484 [ 57.597711] ___do_page_fault+0x428/0xc0c [ 57.597719] hash__do_page_fault+0x30/0x68 [ 57.597727] do_hash_fault+0x90/0x35c [ 57.597736] data_access_common_virt+0x210/0x220 [ 57.597745] _copy_from_user+0xf8/0x19c [ 57.597754] sel_write_load+0x178/0xd54 [ 57.597762] vfs_write+0x108/0x6e8 [ 57.597769] ksys_write+0x84/0x140 [ 57.597777] system_call_exception+0x130/0x360 [ 57.597785] system_call_common+0x160/0x2c4 [ 57.597794] -> #0 (&mm->mmap_lock){++++}-{4:4}: [ 57.597806] __lock_acquire+0x17cc/0x2330 [ 57.597814] lock_acquire+0x138/0x400 [ 57.597822] __might_fault+0x7c/0xc0 [ 57.597830] filldir64+0xe8/0x390 [ 57.597839] dcache_readdir+0x80/0x2d4 [ 57.597846] iterate_dir+0xd8/0x1d4 [ 57.597855] sys_getdents64+0x88/0x2d4 [ 57.597864] system_call_exception+0x130/0x360 [ 57.597872] system_call_common+0x160/0x2c4 [ 57.597881] other info that might help us debug this: [ 57.597888] Chain exists of: &mm->mmap_lock --> &q->debugfs_mutex --> &sb->s_type->i_mutex_key#3 [ 57.597905] Possible unsafe locking scenario: [ 57.597911] CPU0 CPU1 [ 57.597917] ---- ---- [ 57.597922] rlock(&sb->s_type->i_mutex_key#3); [ 57.597932] lock(&q->debugfs_mutex); [ 57.597940] lock(&sb->s_type->i_mutex_key#3); [ 57.597950] rlock(&mm->mmap_lock); [ 57.597958] *** DEADLOCK *** [ 57.597965] 2 locks held by ls/4605: [ 57.597971] #0: c0000000137c12f8 (&f->f_pos_lock){+.+.}-{4:4}, at: fdget_pos+0xcc/0x154 [ 57.597989] #1: c0000018e27c6810 (&sb->s_type->i_mutex_key#3){++++}-{4:4}, at: iterate_dir+0x94/0x1d4 Prevent the above lockdep warning by acquiring ->sysfs_lock before freezing the queue while storing a queue attribute in queue_attr_store function. Later, we also found[1] another function __blk_mq_update_nr_ hw_queues where we first freeze queue and then acquire the ->sysfs_lock. So we've also updated lock ordering in __blk_mq_update_nr_hw_queues function and ensured that in all code paths we follow the correct lock ordering i.e. acquire ->sysfs_lock before freezing the queue. [1] https://lore.kernel.org/all/CAFj5m9Ke8+EHKQBs_Nk6hqd=LGXtk4mUxZUN5==ZcCjnZSBwHw@mail.gmail.com/ Reported-by: kjain@linux.ibm.com Fixes: af2814149883 ("block: freeze the queue in queue_attr_store") Tested-by: kjain@linux.ibm.com Cc: hch@lst.de Cc: axboe@kernel.dk Cc: ritesh.list@gmail.com Cc: ming.lei@redhat.com Cc: gjoyce@linux.ibm.com Signed-off-by: Nilay Shroff <nilay@linux.ibm.com> Reviewed-by: Ming Lei <ming.lei@redhat.com> Link: https://lore.kernel.org/r/20241210144222.1066229-1-nilay@linux.ibm.com Signed-off-by: Jens Axboe <axboe@kernel.dk>
2024-12-13irqchip/gic-v3: Work around insecure GIC integrationsMarc Zyngier1-1/+16
It appears that the relatively popular RK3399 SoC has been put together using a large amount of illicit substances, as experiments reveal that its integration of GIC500 exposes the *secure* programming interface to non-secure. This has some pretty bad effects on the way priorities are handled, and results in a dead machine if booting with pseudo-NMI enabled (irqchip.gicv3_pseudo_nmi=1) if the kernel contains 18fdb6348c480 ("arm64: irqchip/gic-v3: Select priorities at boot time"), which relies on the priorities being programmed using the NS view. Let's restore some sanity by going one step further and disable security altogether in this case. This is not any worse, and puts us in a mode where priorities actually make some sense. Huge thanks to Mark Kettenis who initially identified this issue on OpenBSD, and to Chen-Yu Tsai who reported the problem in Linux. Fixes: 18fdb6348c480 ("arm64: irqchip/gic-v3: Select priorities at boot time") Reported-by: Mark Kettenis <mark.kettenis@xs4all.nl> Reported-by: Chen-Yu Tsai <wens@csie.org> Signed-off-by: Marc Zyngier <maz@kernel.org> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Tested-by: Chen-Yu Tsai <wens@csie.org> Cc: stable@vger.kernel.org Link: https://lore.kernel.org/all/20241213141037.3995049-1-maz@kernel.org
2024-12-13irqchip/gic: Correct declaration of *percpu_base pointer in union gic_baseUros Bizjak1-1/+1
percpu_base is used in various percpu functions that expect variable in __percpu address space. Correct the declaration of percpu_base to void __iomem * __percpu *percpu_base; to declare the variable as __percpu pointer. The patch fixes several sparse warnings: irq-gic.c:1172:44: warning: incorrect type in assignment (different address spaces) irq-gic.c:1172:44: expected void [noderef] __percpu *[noderef] __iomem *percpu_base irq-gic.c:1172:44: got void [noderef] __iomem *[noderef] __percpu * ... irq-gic.c:1231:43: warning: incorrect type in argument 1 (different address spaces) irq-gic.c:1231:43: expected void [noderef] __percpu *__pdata irq-gic.c:1231:43: got void [noderef] __percpu *[noderef] __iomem *percpu_base There were no changes in the resulting object files. Signed-off-by: Uros Bizjak <ubizjak@gmail.com> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Acked-by: Marc Zyngier <maz@kernel.org> Link: https://lore.kernel.org/all/20241213145809.2918-2-ubizjak@gmail.com
2024-12-13block: Fix queue_iostats_passthrough_show()Bart Van Assche1-1/+1
Make queue_iostats_passthrough_show() report 0/1 in sysfs instead of 0/4. This patch fixes the following sparse warning: block/blk-sysfs.c:266:31: warning: incorrect type in argument 1 (different base types) block/blk-sysfs.c:266:31: expected unsigned long var block/blk-sysfs.c:266:31: got restricted blk_flags_t Cc: Keith Busch <kbusch@kernel.org> Cc: Christoph Hellwig <hch@lst.de> Fixes: 110234da18ab ("block: enable passthrough command statistics") Signed-off-by: Bart Van Assche <bvanassche@acm.org> Link: https://lore.kernel.org/r/20241212212941.1268662-4-bvanassche@acm.org Signed-off-by: Jens Axboe <axboe@kernel.dk>
2024-12-13blk-mq: Clean up blk_mq_requeue_work()Bart Van Assche1-6/+4
Move a statement that occurs in both branches of an if-statement in front of the if-statement. Fix a typo in a source code comment. No functionality has been changed. Reviewed-by: Damien Le Moal <dlemoal@kernel.org> Cc: Christoph Hellwig <hch@lst.de> Signed-off-by: Bart Van Assche <bvanassche@acm.org> Reviewed-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Nitesh Shetty <nj.shetty@samsung.com> Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com> Link: https://lore.kernel.org/r/20241212212941.1268662-3-bvanassche@acm.org Signed-off-by: Jens Axboe <axboe@kernel.dk>
2024-12-13mq-deadline: Remove a local variableBart Van Assche1-4/+1
Since commit fde02699c242 ("block: mq-deadline: Remove support for zone write locking"), the local variable 'insert_before' is assigned once and is used once. Hence remove this local variable. Reviewed-by: Damien Le Moal <dlemoal@kernel.org> Cc: Christoph Hellwig <hch@lst.de> Signed-off-by: Bart Van Assche <bvanassche@acm.org> Reviewed-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Nitesh Shetty <nj.shetty@samsung.com> Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com> Link: https://lore.kernel.org/r/20241212212941.1268662-2-bvanassche@acm.org Signed-off-by: Jens Axboe <axboe@kernel.dk>
2024-12-13kselftest/arm64: abi: fix SVCR detectionWeizhao Ouyang1-17/+15
When using svcr_in to check ZA and Streaming Mode, we should make sure that the value in x2 is correct, otherwise it may trigger an Illegal instruction if FEAT_SVE and !FEAT_SME. Fixes: 43e3f85523e4 ("kselftest/arm64: Add SME support to syscall ABI test") Signed-off-by: Weizhao Ouyang <o451686892@gmail.com> Reviewed-by: Mark Brown <broonie@kernel.org> Link: https://lore.kernel.org/r/20241211111639.12344-1-o451686892@gmail.com Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
2024-12-13iommu/vt-d: Avoid draining PRQ in sva mm release pathLu Baolu1-1/+2
When a PASID is used for SVA by a device, it's possible that the PASID entry is cleared before the device flushes all ongoing DMA requests and removes the SVA domain. This can occur when an exception happens and the process terminates before the device driver stops DMA and calls the iommu driver to unbind the PASID. There's no need to drain the PRQ in the mm release path. Instead, the PRQ will be drained in the SVA unbind path. Unfortunately, commit c43e1ccdebf2 ("iommu/vt-d: Drain PRQs when domain removed from RID") changed this behavior by unconditionally draining the PRQ in intel_pasid_tear_down_entry(). This can lead to a potential sleeping-in-atomic-context issue. Smatch static checker warning: drivers/iommu/intel/prq.c:95 intel_iommu_drain_pasid_prq() warn: sleeping in atomic context To avoid this issue, prevent draining the PRQ in the SVA mm release path and restore the previous behavior. Fixes: c43e1ccdebf2 ("iommu/vt-d: Drain PRQs when domain removed from RID") Reported-by: Dan Carpenter <dan.carpenter@linaro.org> Closes: https://lore.kernel.org/linux-iommu/c5187676-2fa2-4e29-94e0-4a279dc88b49@stanley.mountain/ Signed-off-by: Lu Baolu <baolu.lu@linux.intel.com> Reviewed-by: Kevin Tian <kevin.tian@intel.com> Link: https://lore.kernel.org/r/20241212021529.1104745-1-baolu.lu@linux.intel.com Signed-off-by: Joerg Roedel <jroedel@suse.de>
2024-12-13iommu/vt-d: Fix qi_batch NULL pointer with nested parent domainYi Liu1-7/+27
The qi_batch is allocated when assigning cache tag for a domain. While for nested parent domain, it is missed. Hence, when trying to map pages to the nested parent, NULL dereference occurred. Also, there is potential memleak since there is no lock around domain->qi_batch allocation. To solve it, add a helper for qi_batch allocation, and call it in both the __cache_tag_assign_domain() and __cache_tag_assign_parent_domain(). BUG: kernel NULL pointer dereference, address: 0000000000000200 #PF: supervisor read access in kernel mode #PF: error_code(0x0000) - not-present page PGD 8104795067 P4D 0 Oops: Oops: 0000 [#1] PREEMPT SMP NOPTI CPU: 223 UID: 0 PID: 4357 Comm: qemu-system-x86 Not tainted 6.13.0-rc1-00028-g4b50c3c3b998-dirty #2632 Call Trace: ? __die+0x24/0x70 ? page_fault_oops+0x80/0x150 ? do_user_addr_fault+0x63/0x7b0 ? exc_page_fault+0x7c/0x220 ? asm_exc_page_fault+0x26/0x30 ? cache_tag_flush_range_np+0x13c/0x260 intel_iommu_iotlb_sync_map+0x1a/0x30 iommu_map+0x61/0xf0 batch_to_domain+0x188/0x250 iopt_area_fill_domains+0x125/0x320 ? rcu_is_watching+0x11/0x50 iopt_map_pages+0x63/0x100 iopt_map_common.isra.0+0xa7/0x190 iopt_map_user_pages+0x6a/0x80 iommufd_ioas_map+0xcd/0x1d0 iommufd_fops_ioctl+0x118/0x1c0 __x64_sys_ioctl+0x93/0xc0 do_syscall_64+0x71/0x140 entry_SYSCALL_64_after_hwframe+0x76/0x7e Fixes: 705c1cdf1e73 ("iommu/vt-d: Introduce batched cache invalidation") Cc: stable@vger.kernel.org Co-developed-by: Lu Baolu <baolu.lu@linux.intel.com> Signed-off-by: Lu Baolu <baolu.lu@linux.intel.com> Signed-off-by: Yi Liu <yi.l.liu@intel.com> Reviewed-by: Kevin Tian <kevin.tian@intel.com> Link: https://lore.kernel.org/r/20241210130322.17175-1-yi.l.liu@intel.com Signed-off-by: Joerg Roedel <jroedel@suse.de>
2024-12-13iommu/vt-d: Remove cache tags before disabling ATSLu Baolu1-1/+3
The current implementation removes cache tags after disabling ATS, leading to potential memory leaks and kernel crashes. Specifically, CACHE_TAG_DEVTLB type cache tags may still remain in the list even after the domain is freed, causing a use-after-free condition. This issue really shows up when multiple VFs from different PFs passed through to a single user-space process via vfio-pci. In such cases, the kernel may crash with kernel messages like: BUG: kernel NULL pointer dereference, address: 0000000000000014 PGD 19036a067 P4D 1940a3067 PUD 136c9b067 PMD 0 Oops: Oops: 0000 [#1] PREEMPT SMP NOPTI CPU: 74 UID: 0 PID: 3183 Comm: testCli Not tainted 6.11.9 #2 RIP: 0010:cache_tag_flush_range+0x9b/0x250 Call Trace: <TASK> ? __die+0x1f/0x60 ? page_fault_oops+0x163/0x590 ? exc_page_fault+0x72/0x190 ? asm_exc_page_fault+0x22/0x30 ? cache_tag_flush_range+0x9b/0x250 ? cache_tag_flush_range+0x5d/0x250 intel_iommu_tlb_sync+0x29/0x40 intel_iommu_unmap_pages+0xfe/0x160 __iommu_unmap+0xd8/0x1a0 vfio_unmap_unpin+0x182/0x340 [vfio_iommu_type1] vfio_remove_dma+0x2a/0xb0 [vfio_iommu_type1] vfio_iommu_type1_ioctl+0xafa/0x18e0 [vfio_iommu_type1] Move cache_tag_unassign_domain() before iommu_disable_pci_caps() to fix it. Fixes: 3b1d9e2b2d68 ("iommu/vt-d: Add cache tag assignment interface") Cc: stable@vger.kernel.org Signed-off-by: Lu Baolu <baolu.lu@linux.intel.com> Reviewed-by: Kevin Tian <kevin.tian@intel.com> Link: https://lore.kernel.org/r/20241129020506.576413-1-baolu.lu@linux.intel.com Signed-off-by: Joerg Roedel <jroedel@suse.de>
2024-12-13arm64: signal: Ensure signal delivery failure is recoverableKevin Brodsky1-15/+33
Commit eaf62ce1563b ("arm64/signal: Set up and restore the GCS context for signal handlers") introduced a potential failure point at the end of setup_return(). This is unfortunate as it is too late to deliver a SIGSEGV: if that SIGSEGV is handled, the subsequent sigreturn will end up returning to the original handler, which is not the intention (since we failed to deliver that signal). Make sure this does not happen by calling gcs_signal_entry() at the very beginning of setup_return(), and add a comment just after to discourage error cases being introduced from that point onwards. While at it, also take care of copy_siginfo_to_user(): since it may fail, we shouldn't be calling it after setup_return() either. Call it before setup_return() instead, and move the setting of X1/X2 inside setup_return() where it belongs (after the "point of no failure"). Background: the first part of setup_rt_frame(), including setup_sigframe(), has no impact on the execution of the interrupted thread. The signal frame is written to the stack, but the stack pointer remains unchanged. Failure at this stage can be recovered by a SIGSEGV handler, and sigreturn will restore the original context, at the point where the original signal occurred. On the other hand, once setup_return() has updated registers including SP, the thread's control flow has been modified and we must deliver the original signal. Fixes: eaf62ce1563b ("arm64/signal: Set up and restore the GCS context for signal handlers") Signed-off-by: Kevin Brodsky <kevin.brodsky@arm.com> Reviewed-by: Dave Martin <Dave.Martin@arm.com> Reviewed-by: Mark Brown <broonie@kernel.org> Link: https://lore.kernel.org/r/20241210160940.2031997-1-kevin.brodsky@arm.com Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
2024-12-13sched/dlserver: Fix dlserver time accountingVineeth Pillai (Google)1-6/+9
dlserver time is accounted when: - dlserver is active and the dlserver proxies the cfs task. - dlserver is active but deferred and cfs task runs after being picked through the normal fair class pick. dl_server_update is called in two places to make sure that both the above times are accounted for. But it doesn't check if dlserver is active or not. Now that we have this dl_server_active flag, we can consolidate dl_server_update into one place and all we need to check is whether dlserver is active or not. When dlserver is active there is only two possible conditions: - dlserver is deferred. - cfs task is running on behalf of dlserver. Fixes: a110a81c52a9 ("sched/deadline: Deferrable dl server") Signed-off-by: "Vineeth Pillai (Google)" <vineeth@bitbyteword.org> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Tested-by: Marcel Ziswiler <marcel.ziswiler@codethink.co.uk> # ROCK 5B Link: https://lore.kernel.org/r/20241213032244.877029-2-vineeth@bitbyteword.org
2024-12-13sched/dlserver: Fix dlserver double enqueueVineeth Pillai (Google)3-2/+18
dlserver can get dequeued during a dlserver pick_task due to the delayed deueue feature and this can lead to issues with dlserver logic as it still thinks that dlserver is on the runqueue. The dlserver throttling and replenish logic gets confused and can lead to double enqueue of dlserver. Double enqueue of dlserver could happend due to couple of reasons: Case 1 ------ Delayed dequeue feature[1] can cause dlserver being stopped during a pick initiated by dlserver: __pick_next_task pick_task_dl -> server_pick_task pick_task_fair pick_next_entity (if (sched_delayed)) dequeue_entities dl_server_stop server_pick_task goes ahead with update_curr_dl_se without knowing that dlserver is dequeued and this confuses the logic and may lead to unintended enqueue while the server is stopped. Case 2 ------ A race condition between a task dequeue on one cpu and same task's enqueue on this cpu by a remote cpu while the lock is released causing dlserver double enqueue. One cpu would be in the schedule() and releasing RQ-lock: current->state = TASK_INTERRUPTIBLE(); schedule(); deactivate_task() dl_stop_server(); pick_next_task() pick_next_task_fair() sched_balance_newidle() rq_unlock(this_rq) at which point another CPU can take our RQ-lock and do: try_to_wake_up() ttwu_queue() rq_lock() ... activate_task() dl_server_start() --> first enqueue wakeup_preempt() := check_preempt_wakeup_fair() update_curr() update_curr_task() if (current->dl_server) dl_server_update() enqueue_dl_entity() --> second enqueue This bug was not apparent as the enqueue in dl_server_start doesn't usually happen because of the defer logic. But as a side effect of the first case(dequeue during dlserver pick), dl_throttled and dl_yield will be set and this causes the time accounting of dlserver to messup and then leading to a enqueue in dl_server_start. Have an explicit flag representing the status of dlserver to avoid the confusion. This is set in dl_server_start and reset in dlserver_stop. Fixes: 63ba8422f876 ("sched/deadline: Introduce deadline servers") Suggested-by: Peter Zijlstra <peterz@infradead.org> Signed-off-by: "Vineeth Pillai (Google)" <vineeth@bitbyteword.org> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Tested-by: Marcel Ziswiler <marcel.ziswiler@codethink.co.uk> # ROCK 5B Link: https://lkml.kernel.org/r/20241213032244.877029-1-vineeth@bitbyteword.org
2024-12-13efi/esrt: remove esre_attribute::store()Jiri Slaby (SUSE)1-2/+0
esre_attribute::store() is not needed since commit af97a77bc01c (efi: Move some sysfs files to be read-only by root). Drop it. Found by https://github.com/jirislaby/clang-struct. Signed-off-by: Jiri Slaby (SUSE) <jirislaby@kernel.org> Cc: Ard Biesheuvel <ardb@kernel.org> Cc: linux-efi@vger.kernel.org Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
2024-12-12xfs: port xfs_ioc_start_commit to multigrain timestampsDarrick J. Wong1-7/+7
Take advantage of the multigrain timestamp APIs to ensure that nobody can sneak in and write things to a file between starting a file update operation and committing the results. This should have been part of the multigrain timestamp merge, but I forgot to fling it at jlayton when he resubmitted the patchset due to developer bandwidth problems. Cc: <stable@vger.kernel.org> # v6.13-rc1 Fixes: 4e40eff0b5737c ("fs: add infrastructure for multigrain timestamps") Signed-off-by: Darrick J. Wong <djwong@kernel.org> Reviewed-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Jeff Layton <jlayton@kernel.org>
2024-12-12xfs: return from xfs_symlink_verify early on V4 filesystemsDarrick J. Wong1-1/+3
V4 symlink blocks didn't have headers, so return early if this is a V4 filesystem. Cc: <stable@vger.kernel.org> # v5.1 Fixes: 39708c20ab5133 ("xfs: miscellaneous verifier magic value fixups") Signed-off-by: "Darrick J. Wong" <djwong@kernel.org> Reviewed-by: Christoph Hellwig <hch@lst.de>