Age | Commit message (Collapse) | Author | Files | Lines |
|
Add guest_tsc_protected member to struct kvm_arch_vcpu and prohibit
changing TSC offset/multiplier when guest_tsc_protected is true.
X86 confidential computing technology defines protected guest TSC so that
the VMM can't change the TSC offset/multiplier once vCPU is initialized.
SEV-SNP defines Secure TSC as optional, whereas TDX mandates it.
KVM has common logic on x86 that tries to guess or adjust TSC
offset/multiplier for better guest TSC and TSC interrupt latency
at KVM vCPU creation (kvm_arch_vcpu_postcreate()), vCPU migration
over pCPU (kvm_arch_vcpu_load()), vCPU TSC device attributes
(kvm_arch_tsc_set_attr()) and guest/host writing to TSC or TSC adjust MSR
(kvm_set_msr_common()).
The current x86 KVM implementation conflicts with protected TSC because the
VMM can't change the TSC offset/multiplier.
Because KVM emulates the TSC timer or the TSC deadline timer with the TSC
offset/multiplier, the TSC timer interrupts is injected to the guest at the
wrong time if the KVM TSC offset is different from what the TDX module
determined.
Originally this issue was found by cyclic test of rt-test [1] as the
latency in TDX case is worse than VMX value + TDX SEAMCALL overhead. It
turned out that the KVM TSC offset is different from what the TDX module
determines.
Disable or ignore the KVM logic to change/adjust the TSC offset/multiplier
somehow, thus keeping the KVM TSC offset/multiplier the same as the
value of the TDX module. Writes to MSR_IA32_TSC are also blocked as
they amount to a change in the TSC offset.
[1] https://git.kernel.org/pub/scm/utils/rt-tests/rt-tests.git
Reported-by: Marcelo Tosatti <mtosatti@redhat.com>
Signed-off-by: Isaku Yamahata <isaku.yamahata@intel.com>
Message-ID: <3a7444aec08042fe205666864b6858910e86aa98.1728719037.git.isaku.yamahata@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
Push down setting vcpu.arch.user_set_tsc to true from kvm_synchronize_tsc()
to __kvm_synchronize_tsc() so that the two callers don't have to modify
user_set_tsc directly as preparation.
Later, prohibit changing TSC synchronization for TDX guests to modify
__kvm_synchornize_tsc() change. We don't want to touch caller sites not to
change user_set_tsc.
Signed-off-by: Isaku Yamahata <isaku.yamahata@intel.com>
Message-ID: <62b1a7a35d6961844786b6e47e8ecb774af7a228.1728719037.git.isaku.yamahata@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
TDX needs to free the TDR control structures last, after all paging structures
have been torn down; move the vm_destroy callback at a suitable place.
The new place is also okay for AMD; the main difference is that the
MMU has been torn down and, if anything, that is better done before
the SNP ASID is released.
Extracted from a patch by Yan Zhao.
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
Fix a goof where KVM sets CPUID.0x80000022.EAX to CPUID.0x80000022.EBX
instead of zeroing both when PERFMON_V2 isn't supported by KVM. In
practice, barring a buggy CPU (or vCPU model when running nested) only the
!enable_pmu case is affected, as KVM always supports PERFMON_V2 if it's
available in hardware, i.e. CPUID.0x80000022.EBX will be '0' if PERFMON_V2
is unsupported.
For the !enable_pmu case, the bug is relatively benign as KVM will refuse
to enable PMU capabilities, but a VMM that reflects KVM's supported CPUID
into the guest could inadvertently induce #GPs in the guest due to
advertising support for MSRs that KVM refuses to emulate.
Fixes: 94cdeebd8211 ("KVM: x86/cpuid: Add AMD CPUID ExtPerfMonAndDbg leaf 0x80000022")
Signed-off-by: Xiaoyao Li <xiaoyao.li@intel.com>
Link: https://lore.kernel.org/r/20250304082314.472202-3-xiaoyao.li@intel.com
[sean: massage shortlog and changelog, tag for stable]
Cc: stable@vger.kernel.org
Signed-off-by: Sean Christopherson <seanjc@google.com>
|
|
Print out the index of mismatching XSAVE bytes using unsigned decimal
format. Some versions of clang complain about trying to print an integer
as an unsigned char.
x86/sev_smoke_test.c:55:51: error: format specifies type 'unsigned char'
but the argument has type 'int' [-Werror,-Wformat]
Fixes: 8c53183dbaa2 ("selftests: kvm: add test for transferring FPU state into VMSA")
Link: https://lore.kernel.org/r/20250228233852.3855676-1-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
|
|
During the initial mprotect(RO) stage of mmu_stress_test, keep vCPUs
spinning until all vCPUs have hit -EFAULT, i.e. until all vCPUs have tried
to write to a read-only page. If a vCPU manages to complete an entire
iteration of the loop without hitting a read-only page, *and* the vCPU
observes mprotect_ro_done before starting a second iteration, then the
vCPU will prematurely fall through to GUEST_SYNC(3) (on x86 and arm64) and
get out of sequence.
Replace the "do-while (!r)" loop around the associated _vcpu_run() with
a single invocation, as barring a KVM bug, the vCPU is guaranteed to hit
-EFAULT, and retrying on success is super confusion, hides KVM bugs, and
complicates this fix. The do-while loop was semi-unintentionally added
specifically to fudge around a KVM x86 bug, and said bug is unhittable
without modifying the test to force x86 down the !(x86||arm64) path.
On x86, if forced emulation is enabled, vcpu_arch_put_guest() may trigger
emulation of the store to memory. Due a (very, very) longstanding bug in
KVM x86's emulator, emulate writes to guest memory that fail during
__kvm_write_guest_page() unconditionally return KVM_EXIT_MMIO. While that
is desirable in the !memslot case, it's wrong in this case as the failure
happens due to __copy_to_user() hitting a read-only page, not an emulated
MMIO region.
But as above, x86 only uses vcpu_arch_put_guest() if the __x86_64__ guards
are clobbered to force x86 down the common path, and of course the
unexpected MMIO is a KVM bug, i.e. *should* cause a test failure.
Fixes: b6c304aec648 ("KVM: selftests: Verify KVM correctly handles mprotect(PROT_READ)")
Reported-by: Yan Zhao <yan.y.zhao@intel.com>
Closes: https://lore.kernel.org/all/20250208105318.16861-1-yan.y.zhao@intel.com
Debugged-by: Yan Zhao <yan.y.zhao@intel.com>
Reviewed-by: Yan Zhao <yan.y.zhao@intel.com>
Tested-by: Yan Zhao <yan.y.zhao@intel.com>
Link: https://lore.kernel.org/r/20250228230804.3845860-1-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
|
|
Never rely on the CPU to restore/load host DR0..DR3 values, even if the
CPU supports DebugSwap, as there are no guarantees that SNP guests will
actually enable DebugSwap on APs. E.g. if KVM were to rely on the CPU to
load DR0..DR3 and skipped them during hw_breakpoint_restore(), KVM would
run with clobbered-to-zero DRs if an SNP guest created APs without
DebugSwap enabled.
Update the comment to explain the dangers, and hopefully prevent breaking
KVM in the future.
Reviewed-by: Tom Lendacky <thomas.lendacky@amd.com>
Link: https://lore.kernel.org/r/20250227012541.3234589-3-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
|
|
When running SEV-SNP guests on a CPU that supports DebugSwap, always save
the host's DR0..DR3 mask MSR values irrespective of whether or not
DebugSwap is enabled, to ensure the host values aren't clobbered by the
CPU. And for now, also save DR0..DR3, even though doing so isn't
necessary (see below).
SVM_VMGEXIT_AP_CREATE is deeply flawed in that it allows the *guest* to
create a VMSA with guest-controlled SEV_FEATURES. A well behaved guest
can inform the hypervisor, i.e. KVM, of its "requested" features, but on
CPUs without ALLOWED_SEV_FEATURES support, nothing prevents the guest from
lying about which SEV features are being enabled (or not!).
If a misbehaving guest enables DebugSwap in a secondary vCPU's VMSA, the
CPU will load the DR0..DR3 mask MSRs on #VMEXIT, i.e. will clobber the
MSRs with '0' if KVM doesn't save its desired value.
Note, DR0..DR3 themselves are "ok", as DR7 is reset on #VMEXIT, and KVM
restores all DRs in common x86 code as needed via hw_breakpoint_restore().
I.e. there is no risk of host DR0..DR3 being clobbered (when it matters).
However, there is a flaw in the opposite direction; because the guest can
lie about enabling DebugSwap, i.e. can *disable* DebugSwap without KVM's
knowledge, KVM must not rely on the CPU to restore DRs. Defer fixing
that wart, as it's more of a documentation issue than a bug in the code.
Note, KVM added support for DebugSwap on commit d1f85fbe836e ("KVM: SEV:
Enable data breakpoints in SEV-ES"), but that is not an appropriate Fixes,
as the underlying flaw exists in hardware, not in KVM. I.e. all kernels
that support SEV-SNP need to be patched, not just kernels with KVM's full
support for DebugSwap (ignoring that DebugSwap support landed first).
Opportunistically fix an incorrect statement in the comment; on CPUs
without DebugSwap, the CPU does NOT save or load debug registers, i.e.
Fixes: e366f92ea99e ("KVM: SEV: Support SEV-SNP AP Creation NAE event")
Cc: stable@vger.kernel.org
Cc: Naveen N Rao <naveen@kernel.org>
Cc: Kim Phillips <kim.phillips@amd.com>
Cc: Tom Lendacky <thomas.lendacky@amd.com>
Cc: Alexey Kardashevskiy <aik@amd.com>
Reviewed-by: Tom Lendacky <thomas.lendacky@amd.com>
Link: https://lore.kernel.org/r/20250227012541.3234589-2-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
|
|
When KVM is in protected mode, host calls to PSCI are proxied via EL2,
and cold entries from CPU_ON, CPU_SUSPEND, and SYSTEM_SUSPEND bounce
through __kvm_hyp_init_cpu() at EL2 before entering the host kernel's
entry point at EL1. While __kvm_hyp_init_cpu() initializes SPSR_EL2 for
the exception return to EL1, it does not initialize SCTLR_EL1.
Due to this, it's possible to enter EL1 with SCTLR_EL1 in an UNKNOWN
state. In practice this has been seen to result in kernel crashes after
CPU_ON as a result of SCTLR_EL1.M being 1 in violation of the initial
core configuration specified by PSCI.
Fix this by initializing SCTLR_EL1 for cold entry to the host kernel.
As it's necessary to write to SCTLR_EL12 in VHE mode, this
initialization is moved into __kvm_host_psci_cpu_entry() where we can
use write_sysreg_el1().
The remnants of the '__init_el2_nvhe_prepare_eret' macro are folded into
its only caller, as this is clearer than having the macro.
Fixes: cdf367192766ad11 ("KVM: arm64: Intercept host's CPU_ON SMCs")
Reported-by: Leo Yan <leo.yan@arm.com>
Signed-off-by: Ahmed Genidi <ahmed.genidi@arm.com>
[ Mark: clarify commit message, handle E2H, move to C, remove macro ]
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Cc: Ahmed Genidi <ahmed.genidi@arm.com>
Cc: Ben Horgan <ben.horgan@arm.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Leo Yan <leo.yan@arm.com>
Cc: Marc Zyngier <maz@kernel.org>
Cc: Oliver Upton <oliver.upton@linux.dev>
Cc: Will Deacon <will@kernel.org>
Reviewed-by: Leo Yan <leo.yan@arm.com>
Link: https://lore.kernel.org/r/20250227180526.1204723-3-mark.rutland@arm.com
Signed-off-by: Marc Zyngier <maz@kernel.org>
|
|
On CPUs without FEAT_E2H0, HCR_EL2.E2H is RES1, but may reset to an
UNKNOWN value out of reset and consequently may not read as 1 unless it
has been explicitly initialized.
We handled this for the head.S boot code in commits:
3944382fa6f22b54 ("arm64: Treat HCR_EL2.E2H as RES1 when ID_AA64MMFR4_EL1.E2H0 is negative")
b3320142f3db9b3f ("arm64: Fix early handling of FEAT_E2H0 not being implemented")
Unfortunately, we forgot to apply a similar fix to the KVM PSCI entry
points used when relaying CPU_ON, CPU_SUSPEND, and SYSTEM SUSPEND. When
KVM is entered via these entry points, the value of HCR_EL2.E2H may be
consumed before it has been initialized (e.g. by the 'init_el2_state'
macro).
Initialize HCR_EL2.E2H early in these paths such that it can be consumed
reliably. The existing code in head.S is factored out into a new
'init_el2_hcr' macro, and this is used in the __kvm_hyp_init_cpu()
function common to all the relevant PSCI entry points.
For clarity, I've tweaked the assembly used to check whether
ID_AA64MMFR4_EL1.E2H0 is negative. The bitfield is extracted as a signed
value, and this is checked with a signed-greater-or-equal (GE) comparison.
As the hyp code will reconfigure HCR_EL2 later in ___kvm_hyp_init(), all
bits other than E2H are initialized to zero in __kvm_hyp_init_cpu().
Fixes: 3944382fa6f22b54 ("arm64: Treat HCR_EL2.E2H as RES1 when ID_AA64MMFR4_EL1.E2H0 is negative")
Fixes: b3320142f3db9b3f ("arm64: Fix early handling of FEAT_E2H0 not being implemented")
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Cc: Ahmed Genidi <ahmed.genidi@arm.com>
Cc: Ben Horgan <ben.horgan@arm.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Leo Yan <leo.yan@arm.com>
Cc: Marc Zyngier <maz@kernel.org>
Cc: Oliver Upton <oliver.upton@linux.dev>
Cc: Will Deacon <will@kernel.org>
Link: https://lore.kernel.org/r/20250227180526.1204723-2-mark.rutland@arm.com
[maz: fixed LT->GE thinko]
Signed-off-by: Marc Zyngier <maz@kernel.org>
|
|
A VMM may send a non-fatal signal to its threads, including vCPU tasks,
at any time, and thus may signal vCPU tasks during KVM_RUN. If a vCPU
task receives the signal while its trying to spawn the huge page recovery
vhost task, then KVM_RUN will fail due to copy_process() returning
-ERESTARTNOINTR.
Rework call_once() to mark the call complete if and only if the called
function succeeds, and plumb the function's true error code back to the
call_once() invoker. This provides userspace with the correct, non-fatal
error code so that the VMM doesn't terminate the VM on -ENOMEM, and allows
subsequent KVM_RUN a succeed by virtue of retrying creation of the NX huge
page task.
Co-developed-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
[implemented the kvm user side]
Signed-off-by: Keith Busch <kbusch@kernel.org>
Message-ID: <20250227230631.303431-3-kbusch@meta.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
Lets callers distinguish why the vhost task creation failed. No one
currently cares why it failed, so no real runtime change from this
patch, but that will not be the case for long.
Signed-off-by: Keith Busch <kbusch@kernel.org>
Message-ID: <20250227230631.303431-2-kbusch@meta.com>
Reviewed-by: Mike Christie <michael.christie@oracle.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
Snapshot the host's DEBUGCTL after disabling IRQs, as perf can toggle
debugctl bits from IRQ context, e.g. when enabling/disabling events via
smp_call_function_single(). Taking the snapshot (long) before IRQs are
disabled could result in KVM effectively clobbering DEBUGCTL due to using
a stale snapshot.
Cc: stable@vger.kernel.org
Reviewed-and-tested-by: Ravi Bangoria <ravi.bangoria@amd.com>
Link: https://lore.kernel.org/r/20250227222411.3490595-6-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
|
|
Manually load the guest's DEBUGCTL prior to VMRUN (and restore the host's
value on #VMEXIT) if it diverges from the host's value and LBR
virtualization is disabled, as hardware only context switches DEBUGCTL if
LBR virtualization is fully enabled. Running the guest with the host's
value has likely been mildly problematic for quite some time, e.g. it will
result in undesirable behavior if BTF diverges (with the caveat that KVM
now suppresses guest BTF due to lack of support).
But the bug became fatal with the introduction of Bus Lock Trap ("Detect"
in kernel paralance) support for AMD (commit 408eb7417a92
("x86/bus_lock: Add support for AMD")), as a bus lock in the guest will
trigger an unexpected #DB.
Note, suppressing the bus lock #DB, i.e. simply resuming the guest without
injecting a #DB, is not an option. It wouldn't address the general issue
with DEBUGCTL, e.g. for things like BTF, and there are other guest-visible
side effects if BusLockTrap is left enabled.
If BusLockTrap is disabled, then DR6.BLD is reserved-to-1; any attempts to
clear it by software are ignored. But if BusLockTrap is enabled, software
can clear DR6.BLD:
Software enables bus lock trap by setting DebugCtl MSR[BLCKDB] (bit 2)
to 1. When bus lock trap is enabled, ... The processor indicates that
this #DB was caused by a bus lock by clearing DR6[BLD] (bit 11). DR6[11]
previously had been defined to be always 1.
and clearing DR6.BLD is "sticky" in that it's not set (i.e. lowered) by
other #DBs:
All other #DB exceptions leave DR6[BLD] unmodified
E.g. leaving BusLockTrap enable can confuse a legacy guest that writes '0'
to reset DR6.
Reported-by: rangemachine@gmail.com
Reported-by: whanos@sergal.fun
Closes: https://bugzilla.kernel.org/show_bug.cgi?id=219787
Closes: https://lore.kernel.org/all/bug-219787-28872@https.bugzilla.kernel.org%2F
Cc: Ravi Bangoria <ravi.bangoria@amd.com>
Cc: stable@vger.kernel.org
Reviewed-and-tested-by: Ravi Bangoria <ravi.bangoria@amd.com>
Link: https://lore.kernel.org/r/20250227222411.3490595-5-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
|
|
Move KVM's snapshot of DEBUGCTL to kvm_vcpu_arch and take the snapshot in
common x86, so that SVM can also use the snapshot.
Opportunistically change the field to a u64. While bits 63:32 are reserved
on AMD, not mentioned at all in Intel's SDM, and managed as an "unsigned
long" by the kernel, DEBUGCTL is an MSR and therefore a 64-bit value.
Reviewed-by: Xiaoyao Li <xiaoyao.li@intel.com>
Cc: stable@vger.kernel.org
Reviewed-and-tested-by: Ravi Bangoria <ravi.bangoria@amd.com>
Link: https://lore.kernel.org/r/20250227222411.3490595-4-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
|
|
Mark BTF as reserved in DEBUGCTL on AMD, as KVM doesn't actually support
BTF, and fully enabling BTF virtualization is non-trivial due to
interactions with the emulator, guest_debug, #DB interception, nested SVM,
etc.
Don't inject #GP if the guest attempts to set BTF, as there's no way to
communicate lack of support to the guest, and instead suppress the flag
and treat the WRMSR as (partially) unsupported.
In short, make KVM behave the same on AMD and Intel (VMX already squashes
BTF).
Note, due to other bugs in KVM's handling of DEBUGCTL, the only way BTF
has "worked" in any capacity is if the guest simultaneously enables LBRs.
Reported-by: Ravi Bangoria <ravi.bangoria@amd.com>
Cc: stable@vger.kernel.org
Reviewed-and-tested-by: Ravi Bangoria <ravi.bangoria@amd.com>
Link: https://lore.kernel.org/r/20250227222411.3490595-3-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
|
|
Drop bits 5:2 from the guest's effective DEBUGCTL value, as AMD changed
the architectural behavior of the bits and broke backwards compatibility.
On CPUs without BusLockTrap (or at least, in APMs from before ~2023),
bits 5:2 controlled the behavior of external pins:
Performance-Monitoring/Breakpoint Pin-Control (PBi)—Bits 5:2, read/write.
Software uses thesebits to control the type of information reported by
the four external performance-monitoring/breakpoint pins on the
processor. When a PBi bit is cleared to 0, the corresponding external pin
(BPi) reports performance-monitor information. When a PBi bit is set to
1, the corresponding external pin (BPi) reports breakpoint information.
With the introduction of BusLockTrap, presumably to be compatible with
Intel CPUs, AMD redefined bit 2 to be BLCKDB:
Bus Lock #DB Trap (BLCKDB)—Bit 2, read/write. Software sets this bit to
enable generation of a #DB trap following successful execution of a bus
lock when CPL is > 0.
and redefined bits 5:3 (and bit 6) as "6:3 Reserved MBZ".
Ideally, KVM would treat bits 5:2 as reserved. Defer that change to a
feature cleanup to avoid breaking existing guest in LTS kernels. For now,
drop the bits to retain backwards compatibility (of a sort).
Note, dropping bits 5:2 is still a guest-visible change, e.g. if the guest
is enabling LBRs *and* the legacy PBi bits, then the state of the PBi bits
is visible to the guest, whereas now the guest will always see '0'.
Reported-by: Ravi Bangoria <ravi.bangoria@amd.com>
Cc: stable@vger.kernel.org
Reviewed-and-tested-by: Ravi Bangoria <ravi.bangoria@amd.com>
Link: https://lore.kernel.org/r/20250227222411.3490595-2-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
|
|
Add an L1 (guest) assert to the nested exceptions test to verify that KVM
doesn't put VMRUN in an STI shadow (AMD CPUs bleed the shadow into the
guest's int_state if a #VMEXIT occurs before VMRUN fully completes).
Add a similar assert to the VMX side as well, because why not.
Reviewed-by: Jim Mattson <jmattson@google.com>
Link: https://lore.kernel.org/r/20250224165442.2338294-3-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
|
|
Enable/disable local IRQs, i.e. set/clear RFLAGS.IF, in the common
svm_vcpu_enter_exit() just after/before guest_state_{enter,exit}_irqoff()
so that VMRUN is not executed in an STI shadow. AMD CPUs have a quirk
(some would say "bug"), where the STI shadow bleeds into the guest's
intr_state field if a #VMEXIT occurs during injection of an event, i.e. if
the VMRUN doesn't complete before the subsequent #VMEXIT.
The spurious "interrupts masked" state is relatively benign, as it only
occurs during event injection and is transient. Because KVM is already
injecting an event, the guest can't be in HLT, and if KVM is querying IRQ
blocking for injection, then KVM would need to force an immediate exit
anyways since injecting multiple events is impossible.
However, because KVM copies int_state verbatim from vmcb02 to vmcb12, the
spurious STI shadow is visible to L1 when running a nested VM, which can
trip sanity checks, e.g. in VMware's VMM.
Hoist the STI+CLI all the way to C code, as the aforementioned calls to
guest_state_{enter,exit}_irqoff() already inform lockdep that IRQs are
enabled/disabled, and taking a fault on VMRUN with RFLAGS.IF=1 is already
possible. I.e. if there's kernel code that is confused by running with
RFLAGS.IF=1, then it's already a problem. In practice, since GIF=0 also
blocks NMIs, the only change in exposure to non-KVM code (relative to
surrounding VMRUN with STI+CLI) is exception handling code, and except for
the kvm_rebooting=1 case, all exception in the core VM-Enter/VM-Exit path
are fatal.
Use the "raw" variants to enable/disable IRQs to avoid tracing in the
"no instrumentation" code; the guest state helpers also take care of
tracing IRQ state.
Oppurtunstically document why KVM needs to do STI in the first place.
Reported-by: Doug Covelli <doug.covelli@broadcom.com>
Closes: https://lore.kernel.org/all/CADH9ctBs1YPmE4aCfGPNBwA10cA8RuAk2gO7542DjMZgs4uzJQ@mail.gmail.com
Fixes: f14eec0a3203 ("KVM: SVM: move more vmentry code to assembly")
Cc: stable@vger.kernel.org
Reviewed-by: Jim Mattson <jmattson@google.com>
Link: https://lore.kernel.org/r/20250224165442.2338294-2-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
|
|
Process pending events on nested VM-Exit if the vCPU has an injectable IRQ
or NMI, as the event may have become pending while L2 was active, i.e. may
not be tracked in the context of vmcs01. E.g. if L1 has passed its APIC
through to L2 and an IRQ arrives while L2 is active, then KVM needs to
request an IRQ window prior to running L1, otherwise delivery of the IRQ
will be delayed until KVM happens to process events for some other reason.
The missed failure is detected by vmx_apic_passthrough_tpr_threshold_test
in KVM-Unit-Tests, but has effectively been masked due to a flaw in KVM's
PIC emulation that causes KVM to make spurious KVM_REQ_EVENT requests (and
apparently no one ever ran the test with split IRQ chips).
Cc: stable@vger.kernel.org
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-ID: <20250224235542.2562848-3-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
Free vCPUs before freeing any VM state, as both SVM and VMX may access
VM state when "freeing" a vCPU that is currently "in" L2, i.e. that needs
to be kicked out of nested guest mode.
Commit 6fcee03df6a1 ("KVM: x86: avoid loading a vCPU after .vm_destroy was
called") partially fixed the issue, but for unknown reasons only moved the
MMU unloading before VM destruction. Complete the change, and free all
vCPU state prior to destroying VM state, as nVMX accesses even more state
than nSVM.
In addition to the AVIC, KVM can hit a use-after-free on MSR filters:
kvm_msr_allowed+0x4c/0xd0
__kvm_set_msr+0x12d/0x1e0
kvm_set_msr+0x19/0x40
load_vmcs12_host_state+0x2d8/0x6e0 [kvm_intel]
nested_vmx_vmexit+0x715/0xbd0 [kvm_intel]
nested_vmx_free_vcpu+0x33/0x50 [kvm_intel]
vmx_free_vcpu+0x54/0xc0 [kvm_intel]
kvm_arch_vcpu_destroy+0x28/0xf0
kvm_vcpu_destroy+0x12/0x50
kvm_arch_destroy_vm+0x12c/0x1c0
kvm_put_kvm+0x263/0x3c0
kvm_vm_release+0x21/0x30
and an upcoming fix to process injectable interrupts on nested VM-Exit
will access the PIC:
BUG: kernel NULL pointer dereference, address: 0000000000000090
#PF: supervisor read access in kernel mode
#PF: error_code(0x0000) - not-present page
CPU: 23 UID: 1000 PID: 2658 Comm: kvm-nx-lpage-re
RIP: 0010:kvm_cpu_has_extint+0x2f/0x60 [kvm]
Call Trace:
<TASK>
kvm_cpu_has_injectable_intr+0xe/0x60 [kvm]
nested_vmx_vmexit+0x2d7/0xdf0 [kvm_intel]
nested_vmx_free_vcpu+0x40/0x50 [kvm_intel]
vmx_vcpu_free+0x2d/0x80 [kvm_intel]
kvm_arch_vcpu_destroy+0x2d/0x130 [kvm]
kvm_destroy_vcpus+0x8a/0x100 [kvm]
kvm_arch_destroy_vm+0xa7/0x1d0 [kvm]
kvm_destroy_vm+0x172/0x300 [kvm]
kvm_vcpu_release+0x31/0x50 [kvm]
Inarguably, both nSVM and nVMX need to be fixed, but punt on those
cleanups for the moment. Conceptually, vCPUs should be freed before VM
state. Assets like the I/O APIC and PIC _must_ be allocated before vCPUs
are created, so it stands to reason that they must be freed _after_ vCPUs
are destroyed.
Reported-by: Aaron Lewis <aaronlewis@google.com>
Closes: https://lore.kernel.org/all/20240703175618.2304869-2-aaronlewis@google.com
Cc: Jim Mattson <jmattson@google.com>
Cc: Yan Zhao <yan.y.zhao@intel.com>
Cc: Rick P Edgecombe <rick.p.edgecombe@intel.com>
Cc: Kai Huang <kai.huang@intel.com>
Cc: Isaku Yamahata <isaku.yamahata@intel.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-ID: <20250224235542.2562848-2-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
Remove the unnecessary kick to the vCPU after writing to the vs_file
of IMSIC in kvm_riscv_vcpu_aia_imsic_inject.
For vCPUs that are running, writing to the vs_file directly forwards
the interrupt as an MSI to them and does not need an extra kick.
For vCPUs that are descheduled after emulating WFI, KVM will enable
the guest external interrupt for that vCPU in
kvm_riscv_aia_wakeon_hgei. This means that writing to the vs_file
will cause a guest external interrupt, which will cause KVM to wake
up the vCPU in hgei_interrupt to handle the interrupt properly.
Signed-off-by: BillXiang <xiangwencheng@lanxincomputing.com>
Reviewed-by: Andrew Jones <ajones@ventanamicro.com>
Reviewed-by: Radim Krčmář <rkrcmar@ventanamicro.com>
Link: https://lore.kernel.org/r/20250221104538.2147-1-xiangwencheng@lanxincomputing.com
Signed-off-by: Anup Patel <anup@brainfault.org>
|
|
Vladimir reports that a race condition to attach a VMID to a stage-2 MMU
sometimes results in a vCPU entering the guest with a VMID of 0:
| CPU1 | CPU2
| |
| | kvm_arch_vcpu_ioctl_run
| | vcpu_load <= load VTTBR_EL2
| | kvm_vmid->id = 0
| |
| kvm_arch_vcpu_ioctl_run |
| vcpu_load <= load VTTBR_EL2 |
| with kvm_vmid->id = 0|
| kvm_arm_vmid_update <= allocates fresh |
| kvm_vmid->id and |
| reload VTTBR_EL2 |
| |
| | kvm_arm_vmid_update <= observes that kvm_vmid->id
| | already allocated,
| | skips reload VTTBR_EL2
Oh yeah, it's as bad as it looks. Remember that VHE loads the stage-2
MMU eagerly but a VMID only gets attached to the MMU later on in the
KVM_RUN loop.
Even in the "best case" where VTTBR_EL2 correctly gets reprogrammed
before entering the EL1&0 regime, there is a period of time where
hardware is configured with VMID 0. That's completely insane. So, rather
than decorating the 'late' binding with another hack, just allocate the
damn thing up front.
Attaching a VMID from vcpu_load() is still rollover safe since
(surprise!) it'll always get called after a vCPU was preempted.
Excuse me while I go find a brown paper bag.
Cc: stable@vger.kernel.org
Fixes: 934bf871f011 ("KVM: arm64: Load the stage-2 MMU context in kvm_vcpu_load_vhe()")
Reported-by: Vladimir Murzin <vladimir.murzin@arm.com>
Signed-off-by: Oliver Upton <oliver.upton@linux.dev>
Link: https://lore.kernel.org/r/20250219220737.130842-1-oliver.upton@linux.dev
Signed-off-by: Marc Zyngier <maz@kernel.org>
|
|
When not running in VHE mode, cpu_prepare_hyp_mode() computes the value
of TCR_EL2 using the host's TCR_EL1 settings as a starting point. For
nVHE, this amounts to masking out everything apart from the TG0, SH0,
ORGN0, IRGN0 and T0SZ fields before setting the RES1 bits, shifting the
IPS field down to the PS field and setting DS if LPA2 is enabled.
Unfortunately, for hVHE, things go slightly wonky: EPD1 is correctly set
to disable walks via TTBR1_EL2 but then the T1SZ and IPS fields are
corrupted when we mistakenly attempt to initialise the PS and DS fields
in their E2H=0 positions. Furthermore, many fields are retained from
TCR_EL1 which should not be propagated to TCR_EL2. Notably, this means
we can end up with A1 set despite not initialising TTBR1_EL2 at all.
This has been shown to cause unexpected translation faults at EL2 with
pKVM due to TLB invalidation not taking effect when running with a
non-zero ASID.
Fix the TCR_EL2 initialisation code to set PS and DS only when E2H=0,
masking out HD, HA and A1 when E2H=1.
Cc: Marc Zyngier <maz@kernel.org>
Cc: Oliver Upton <oliver.upton@linux.dev>
Fixes: ad744e8cb346 ("arm64: Allow arm64_sw.hvhe on command line")
Signed-off-by: Will Deacon <will@kernel.org>
Link: https://lore.kernel.org/r/20250214133724.13179-1-will@kernel.org
Signed-off-by: Marc Zyngier <maz@kernel.org>
|
|
The spec says sleep_type is 32 bits wide and "In case the data is
defined as 32bit wide, higher privilege software must ensure that it
only uses 32 bit data." Mask off upper bits of sleep_type before
using it.
Fixes: 023c15151fbb ("RISC-V: KVM: Add SBI system suspend support")
Signed-off-by: Andrew Jones <ajones@ventanamicro.com>
Reviewed-by: Anup Patel <anup@brainfault.org>
Link: https://lore.kernel.org/r/20250217084506.18763-12-ajones@ventanamicro.com
Signed-off-by: Anup Patel <anup@brainfault.org>
|
|
When an invalid function ID of an SBI extension is used we should
return not-supported, not invalid-param.
Fixes: 5f862df5585c ("RISC-V: KVM: Add v0.1 replacement SBI extensions defined in v0.2")
Signed-off-by: Andrew Jones <ajones@ventanamicro.com>
Reviewed-by: Anup Patel <anup@brainfault.org>
Link: https://lore.kernel.org/r/20250217084506.18763-11-ajones@ventanamicro.com
Signed-off-by: Anup Patel <anup@brainfault.org>
|
|
When an invalid function ID of an SBI extension is used we should
return not-supported, not invalid-param. Also, when we see that at
least one hartid constructed from the base and mask parameters is
invalid, then we should return invalid-param. Finally, rather than
relying on overflowing a left shift to result in zero and then using
that zero in a condition which [correctly] skips sending an IPI (but
loops unnecessarily), explicitly check for overflow and exit the loop
immediately.
Fixes: 5f862df5585c ("RISC-V: KVM: Add v0.1 replacement SBI extensions defined in v0.2")
Signed-off-by: Andrew Jones <ajones@ventanamicro.com>
Reviewed-by: Anup Patel <anup@brainfault.org>
Link: https://lore.kernel.org/r/20250217084506.18763-10-ajones@ventanamicro.com
Signed-off-by: Anup Patel <anup@brainfault.org>
|
|
The spec says suspend_type is 32 bits wide and "In case the data is
defined as 32bit wide, higher privilege software must ensure that it
only uses 32 bit data." Mask off upper bits of suspend_type before
using it.
Fixes: 763c8bed8c05 ("RISC-V: KVM: Implement SBI HSM suspend call")
Signed-off-by: Andrew Jones <ajones@ventanamicro.com>
Reviewed-by: Anup Patel <anup@brainfault.org>
Link: https://lore.kernel.org/r/20250217084506.18763-9-ajones@ventanamicro.com
Signed-off-by: Anup Patel <anup@brainfault.org>
|
|
"Not stopped" means started or suspended so we need to check for
a single state in order to have a chance to check for each state.
Also, we need to use target_vcpu when checking for the suspend
state.
Fixes: 763c8bed8c05 ("RISC-V: KVM: Implement SBI HSM suspend call")
Signed-off-by: Andrew Jones <ajones@ventanamicro.com>
Reviewed-by: Anup Patel <anup@brainfault.org>
Link: https://lore.kernel.org/r/20250217084506.18763-8-ajones@ventanamicro.com
Signed-off-by: Anup Patel <anup@brainfault.org>
|
|
|
|
The pages_touched field represents the number of subbuffers in the ring
buffer that have content that can be read. This is used in accounting of
"dirty_pages" and "buffer_percent" to allow the user to wait for the
buffer to be filled to a certain amount before it reads the buffer in
blocking mode.
The persistent buffer never updated this value so it was set to zero, and
this accounting would take it as it had no content. This would cause user
space to wait for content even though there's enough content in the ring
buffer that satisfies the buffer_percent.
Cc: stable@vger.kernel.org
Cc: Masami Hiramatsu <mhiramat@kernel.org>
Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Cc: Vincent Donnefort <vdonnefort@google.com>
Link: https://lore.kernel.org/20250214123512.0631436e@gandalf.local.home
Fixes: 5f3b6e839f3ce ("ring-buffer: Validate boot range memory events")
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
|
|
When trying to mmap a trace instance buffer that is attached to
reserve_mem, it would crash:
BUG: unable to handle page fault for address: ffffe97bd00025c8
#PF: supervisor read access in kernel mode
#PF: error_code(0x0000) - not-present page
PGD 2862f3067 P4D 2862f3067 PUD 0
Oops: Oops: 0000 [#1] PREEMPT_RT SMP PTI
CPU: 4 UID: 0 PID: 981 Comm: mmap-rb Not tainted 6.14.0-rc2-test-00003-g7f1a5e3fbf9e-dirty #233
Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 1.16.3-debian-1.16.3-2 04/01/2014
RIP: 0010:validate_page_before_insert+0x5/0xb0
Code: e2 01 89 d0 c3 cc cc cc cc 66 66 2e 0f 1f 84 00 00 00 00 00 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 0f 1f 44 00 00 <48> 8b 46 08 a8 01 75 67 66 90 48 89 f0 8b 50 34 85 d2 74 76 48 89
RSP: 0018:ffffb148c2f3f968 EFLAGS: 00010246
RAX: ffff9fa5d3322000 RBX: ffff9fa5ccff9c08 RCX: 00000000b879ed29
RDX: ffffe97bd00025c0 RSI: ffffe97bd00025c0 RDI: ffff9fa5ccff9c08
RBP: ffffb148c2f3f9f0 R08: 0000000000000004 R09: 0000000000000004
R10: 0000000000000000 R11: 0000000000000200 R12: 0000000000000000
R13: 00007f16a18d5000 R14: ffff9fa5c48db6a8 R15: 0000000000000000
FS: 00007f16a1b54740(0000) GS:ffff9fa73df00000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: ffffe97bd00025c8 CR3: 00000001048c6006 CR4: 0000000000172ef0
Call Trace:
<TASK>
? __die_body.cold+0x19/0x1f
? __die+0x2e/0x40
? page_fault_oops+0x157/0x2b0
? search_module_extables+0x53/0x80
? validate_page_before_insert+0x5/0xb0
? kernelmode_fixup_or_oops.isra.0+0x5f/0x70
? __bad_area_nosemaphore+0x16e/0x1b0
? bad_area_nosemaphore+0x16/0x20
? do_kern_addr_fault+0x77/0x90
? exc_page_fault+0x22b/0x230
? asm_exc_page_fault+0x2b/0x30
? validate_page_before_insert+0x5/0xb0
? vm_insert_pages+0x151/0x400
__rb_map_vma+0x21f/0x3f0
ring_buffer_map+0x21b/0x2f0
tracing_buffers_mmap+0x70/0xd0
__mmap_region+0x6f0/0xbd0
mmap_region+0x7f/0x130
do_mmap+0x475/0x610
vm_mmap_pgoff+0xf2/0x1d0
ksys_mmap_pgoff+0x166/0x200
__x64_sys_mmap+0x37/0x50
x64_sys_call+0x1670/0x1d70
do_syscall_64+0xbb/0x1d0
entry_SYSCALL_64_after_hwframe+0x77/0x7f
The reason was that the code that maps the ring buffer pages to user space
has:
page = virt_to_page((void *)cpu_buffer->subbuf_ids[s]);
And uses that in:
vm_insert_pages(vma, vma->vm_start, pages, &nr_pages);
But virt_to_page() does not work with vmap()'d memory which is what the
persistent ring buffer has. It is rather trivial to allow this, but for
now just disable mmap() of instances that have their ring buffer from the
reserve_mem option.
If an mmap() is performed on a persistent buffer it will return -ENODEV
just like it would if the .mmap field wasn't defined in the
file_operations structure.
Cc: stable@vger.kernel.org
Cc: Masami Hiramatsu <mhiramat@kernel.org>
Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Cc: Vincent Donnefort <vdonnefort@google.com>
Link: https://lore.kernel.org/20250214115547.0d7287d3@gandalf.local.home
Fixes: 9b7bdf6f6ece6 ("tracing: Have trace_printk not use binary prints if boot buffer")
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
|
|
Namely: s/becasue/because/ and s/wiht/with/ plus an added article.
Signed-off-by: Uwe Kleine-König <u.kleine-koenig@baylibre.com>
Signed-off-by: Masahiro Yamada <masahiroy@kernel.org>
|
|
scripts/Makefile.clang was changed in the linked commit to move --target from
KBUILD_CFLAGS to KBUILD_CPPFLAGS, as that generally has a broader scope.
However that variable is not inspected by the userprogs logic,
breaking cross compilation on clang.
Use both variables to detect bitsize and target arguments for userprogs.
Fixes: feb843a469fb ("kbuild: add $(CLANG_FLAGS) to KBUILD_CPPFLAGS")
Cc: stable@vger.kernel.org
Signed-off-by: Thomas Weißschuh <thomas.weissschuh@linutronix.de>
Reviewed-by: Nathan Chancellor <nathan@kernel.org>
Signed-off-by: Masahiro Yamada <masahiroy@kernel.org>
|
|
The Tegra210 Audio DMA controller driver did a plain divide:
page_no = (res_page->start - res_base->start) / cdata->ch_base_offset;
which causes problems on 32-bit x86 configurations that have 64-bit
resource sizes:
x86_64-linux-ld: drivers/dma/tegra210-adma.o: in function `tegra_adma_probe':
tegra210-adma.c:(.text+0x1322): undefined reference to `__udivdi3'
because gcc doesn't generate the trivial code for a 64-by-32 divide,
turning it into a function call to do a full 64-by-64 divide. And the
kernel intentionally doesn't provide that helper function, because 99%
of the time all you want is the narrower version.
Of course, tegra210 is a 64-bit architecture and the 32-bit x86 build is
purely for build testing, so this really is just about build coverage
failure.
But build coverage is good.
Side note: div_u64() would be suboptimal if you actually have a 32-bit
resource_t, so our "helper" for divides are admittedly making it harder
than it should be to generate good code for all the possible cases.
At some point, I'll consider 32-bit x86 so entirely legacy that I can't
find it in myself to care any more, and we'll just add the __udivdi3
library function.
But for now, the right thing to do is to use "div_u64()" to show that
you know that you are doing the simpler divide with a 32-bit number.
And the build error enforces that.
While fixing the build issue, also check for division-by-zero, and for
overflow. Which hopefully cannot happen on real production hardware,
but the value of 'ch_base_offset' can definitely be zero in other
places.
Reported-by: Guenter Roeck <linux@roeck-us.net>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Since commit 5f73e7d0386d ("kbuild: refactor cross-compiling
linux-headers package"), the linux-headers Debian package fails to
build when $(CC) cannot build userspace applications, for example,
when using toolchains installed by the 0day bot.
The host programs in the linux-headers package should be rebuilt using
the disto's cross-compiler, ${DEB_HOST_GNU_TYPE}-gcc instead of $(CC).
Hence, the variable 'CC' must be expanded in this shell script instead
of in the top-level Makefile.
Commit f354fc88a72a ("kbuild: install-extmod-build: add missing
quotation marks for CC variable") was not a correct fix because
CC="ccache gcc" should be unrelated when rebuilding userspace tools.
Fixes: 5f73e7d0386d ("kbuild: refactor cross-compiling linux-headers package")
Reported-by: Jeff Johnson <jeff.johnson@oss.qualcomm.com>
Closes: https://lore.kernel.org/linux-kbuild/CAK7LNARb3xO3ptBWOMpwKcyf3=zkfhMey5H2KnB1dOmUwM79dA@mail.gmail.com/T/#t
Signed-off-by: Masahiro Yamada <masahiroy@kernel.org>
Tested-by: Jeff Johnson <jeff.johnson@oss.qualcomm.com>
|
|
When CONFIG_OBJTOOL=y or CONFIG_DEBUG_INFO_BTF=y, parallel builds
show awkward "mkdir -p ..." logs.
$ make -j16
[ snip ]
mkdir -p /home/masahiro/ref/linux/tools/objtool && make O=/home/masahiro/ref/linux subdir=tools/objtool --no-print-directory -C objtool
mkdir -p /home/masahiro/ref/linux/tools/bpf/resolve_btfids && make O=/home/masahiro/ref/linux subdir=tools/bpf/resolve_btfids --no-print-directory -C bpf/resolve_btfids
Defining MAKEFLAGS=<value> on the command line wipes out command line
switches from the resultant MAKEFLAGS definition, even though the command
line switches are active. [1]
MAKEFLAGS puts all single-letter options into the first word, and that
word will be empty if no single-letter options were given. [2]
However, this breaks if MAKEFLAGS=<value> is given on the command line.
The tools/ and tools/% targets set MAKEFLAGS=<value> on the command
line, which breaks the following code in tools/scripts/Makefile.include:
short-opts := $(firstword -$(MAKEFLAGS))
If MAKEFLAGS really needs modification, it should be done through the
environment variable, as follows:
MAKEFLAGS=<value> $(MAKE) ...
That said, I question whether modifying MAKEFLAGS is necessary here.
The only flag we might want to exclude is --no-print-directory, as the
tools build system changes the working directory. However, people might
find the "Entering/Leaving directory" logs annoying.
I simply removed the offending MAKEFLAGS=<value>.
[1]: https://savannah.gnu.org/bugs/?62469
[2]: https://www.gnu.org/software/make/manual/make.html#Testing-Flags
Fixes: ea01fa9f63ae ("tools: Connect to the kernel build system")
Fixes: a50e43332756 ("perf tools: Honor parallel jobs")
Signed-off-by: Masahiro Yamada <masahiroy@kernel.org>
Tested-by: Daniel Xu <dxu@dxuuu.xyz>
|
|
Fix issues with enabling SNP host support and effectively SNP support
which is broken with respect to the KVM module being built-in.
SNP host support is enabled in snp_rmptable_init() which is invoked as
device_initcall(). SNP check on IOMMU is done during IOMMU PCI init
(IOMMU_PCI_INIT stage). And for that reason snp_rmptable_init() is
currently invoked via device_initcall() and cannot be invoked via
subsys_initcall() as core IOMMU subsystem gets initialized via
subsys_initcall().
Now, if kvm_amd module is built-in, it gets initialized before SNP host
support is enabled in snp_rmptable_init() :
[ 10.131811] kvm_amd: TSC scaling supported
[ 10.136384] kvm_amd: Nested Virtualization enabled
[ 10.141734] kvm_amd: Nested Paging enabled
[ 10.146304] kvm_amd: LBR virtualization supported
[ 10.151557] kvm_amd: SEV enabled (ASIDs 100 - 509)
[ 10.156905] kvm_amd: SEV-ES enabled (ASIDs 1 - 99)
[ 10.162256] kvm_amd: SEV-SNP enabled (ASIDs 1 - 99)
[ 10.171508] kvm_amd: Virtual VMLOAD VMSAVE supported
[ 10.177052] kvm_amd: Virtual GIF supported
...
...
[ 10.201648] kvm_amd: in svm_enable_virtualization_cpu
And then svm_x86_ops->enable_virtualization_cpu()
(svm_enable_virtualization_cpu) programs MSR_VM_HSAVE_PA as following:
wrmsrl(MSR_VM_HSAVE_PA, sd->save_area_pa);
So VM_HSAVE_PA is non-zero before SNP support is enabled on all CPUs.
snp_rmptable_init() gets invoked after svm_enable_virtualization_cpu()
as following :
...
[ 11.256138] kvm_amd: in svm_enable_virtualization_cpu
...
[ 11.264918] SEV-SNP: in snp_rmptable_init
This triggers a #GP exception in snp_rmptable_init() when snp_enable()
is invoked to set SNP_EN in SYSCFG MSR:
[ 11.294289] unchecked MSR access error: WRMSR to 0xc0010010 (tried to write 0x0000000003fc0000) at rIP: 0xffffffffaf5d5c28 (native_write_msr+0x8/0x30)
...
[ 11.294404] Call Trace:
[ 11.294482] <IRQ>
[ 11.294513] ? show_stack_regs+0x26/0x30
[ 11.294522] ? ex_handler_msr+0x10f/0x180
[ 11.294529] ? search_extable+0x2b/0x40
[ 11.294538] ? fixup_exception+0x2dd/0x340
[ 11.294542] ? exc_general_protection+0x14f/0x440
[ 11.294550] ? asm_exc_general_protection+0x2b/0x30
[ 11.294557] ? __pfx_snp_enable+0x10/0x10
[ 11.294567] ? native_write_msr+0x8/0x30
[ 11.294570] ? __snp_enable+0x5d/0x70
[ 11.294575] snp_enable+0x19/0x20
[ 11.294578] __flush_smp_call_function_queue+0x9c/0x3a0
[ 11.294586] generic_smp_call_function_single_interrupt+0x17/0x20
[ 11.294589] __sysvec_call_function+0x20/0x90
[ 11.294596] sysvec_call_function+0x80/0xb0
[ 11.294601] </IRQ>
[ 11.294603] <TASK>
[ 11.294605] asm_sysvec_call_function+0x1f/0x30
...
[ 11.294631] arch_cpu_idle+0xd/0x20
[ 11.294633] default_idle_call+0x34/0xd0
[ 11.294636] do_idle+0x1f1/0x230
[ 11.294643] ? complete+0x71/0x80
[ 11.294649] cpu_startup_entry+0x30/0x40
[ 11.294652] start_secondary+0x12d/0x160
[ 11.294655] common_startup_64+0x13e/0x141
[ 11.294662] </TASK>
This #GP exception is getting triggered due to the following errata for
AMD family 19h Models 10h-1Fh Processors:
Processor may generate spurious #GP(0) Exception on WRMSR instruction:
Description:
The Processor will generate a spurious #GP(0) Exception on a WRMSR
instruction if the following conditions are all met:
- the target of the WRMSR is a SYSCFG register.
- the write changes the value of SYSCFG.SNPEn from 0 to 1.
- One of the threads that share the physical core has a non-zero
value in the VM_HSAVE_PA MSR.
The document being referred to above:
https://www.amd.com/content/dam/amd/en/documents/processor-tech-docs/revision-guides/57095-PUB_1_01.pdf
To summarize, with kvm_amd module being built-in, KVM/SVM initialization
happens before host SNP is enabled and this SVM initialization
sets VM_HSAVE_PA to non-zero, which then triggers a #GP when
SYSCFG.SNPEn is being set and this will subsequently cause
SNP_INIT(_EX) to fail with INVALID_CONFIG error as SYSCFG[SnpEn] is not
set on all CPUs.
Essentially SNP host enabling code should be invoked before KVM
initialization, which is currently not the case when KVM is built-in.
Add fix to call snp_rmptable_init() early from iommu_snp_enable()
directly and not invoked via device_initcall() which enables SNP host
support before KVM initialization with kvm_amd module built-in.
Add additional handling for `iommu=off` or `amd_iommu=off` options.
Note that IOMMUs need to be enabled for SNP initialization, therefore,
if host SNP support is enabled but late IOMMU initialization fails
then that will cause PSP driver's SNP_INIT to fail as IOMMU SNP sanity
checks in SNP firmware will fail with invalid configuration error as
below:
[ 9.723114] ccp 0000:23:00.1: sev enabled
[ 9.727602] ccp 0000:23:00.1: psp enabled
[ 9.732527] ccp 0000:a2:00.1: enabling device (0000 -> 0002)
[ 9.739098] ccp 0000:a2:00.1: no command queues available
[ 9.745167] ccp 0000:a2:00.1: psp enabled
[ 9.805337] ccp 0000:23:00.1: SEV-SNP: failed to INIT rc -5, error 0x3
[ 9.866426] ccp 0000:23:00.1: SEV API:1.53 build:5
Fixes: c3b86e61b756 ("x86/cpufeatures: Enable/unmask SEV-SNP CPU feature")
Co-developed-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Co-developed-by: Vasant Hegde <vasant.hegde@amd.com>
Signed-off-by: Vasant Hegde <vasant.hegde@amd.com>
Cc: <Stable@vger.kernel.org>
Signed-off-by: Ashish Kalra <ashish.kalra@amd.com>
Acked-by: Joerg Roedel <jroedel@suse.de>
Message-ID: <138b520fb83964782303b43ade4369cd181fdd9c.1739226950.git.ashish.kalra@amd.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
The kernel's initcall infrastructure lacks the ability to express
dependencies between initcalls, whereas the modules infrastructure
automatically handles dependencies via symbol loading. Ensure the
PSP SEV driver is initialized before proceeding in sev_hardware_setup()
if KVM is built-in as the dependency isn't handled by the initcall
infrastructure.
Signed-off-by: Sean Christopherson <seanjc@google.com>
Reviewed-by: Tom Lendacky <thomas.lendacky@amd.com>
Signed-off-by: Ashish Kalra <ashish.kalra@amd.com>
Message-ID: <f78ddb64087df27e7bcb1ae0ab53f55aa0804fab.1739226950.git.ashish.kalra@amd.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
KVM is dependent on the PSP SEV driver and PSP SEV driver needs to be
loaded before KVM module. In case of module loading any dependent
modules are automatically loaded but in case of built-in modules there
is no inherent mechanism available to specify dependencies between
modules and ensure that any dependent modules are loaded implicitly.
Add a new external API interface for PSP module initialization which
allows PSP SEV driver to be loaded explicitly if KVM is built-in.
Signed-off-by: Sean Christopherson <seanjc@google.com>
Co-developed-by: Ashish Kalra <ashish.kalra@amd.com>
Signed-off-by: Ashish Kalra <ashish.kalra@amd.com>
Reviewed-by: Tom Lendacky <thomas.lendacky@amd.com>
Message-ID: <15279ca0cad56a07cf12834ec544310f85ff5edc.1739226950.git.ashish.kalra@amd.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
Remove hard-coded strings by using the str_yes_no() helper function.
Reviewed-by: Geert Uytterhoeven <geert@linux-m68k.org>
Signed-off-by: Thorsten Blum <thorsten.blum@linux.dev>
Signed-off-by: Matt Turner <mattst88@gmail.com>
|
|
Replace the deprecated one-element array with a modern flexible array
member in the struct crb_struct.
Reviewed-by: Kees Cook <kees@kernel.org>
Signed-off-by: Thorsten Blum <thorsten.blum@linux.dev>
Signed-off-by: Matt Turner <mattst88@gmail.com>
|
|
do_page_fault() and do_entUna() are special because they use
non-standard stack frame layout. Fix them manually.
Cc: stable@vger.kernel.org
Tested-by: Maciej W. Rozycki <macro@orcam.me.uk>
Tested-by: Magnus Lindholm <linmag7@gmail.com>
Tested-by: Matt Turner <mattst88@gmail.com>
Reviewed-by: Maciej W. Rozycki <macro@orcam.me.uk>
Suggested-by: Maciej W. Rozycki <macro@orcam.me.uk>
Signed-off-by: Ivan Kokshaysky <ink@unseen.parts>
Signed-off-by: Matt Turner <mattst88@gmail.com>
|
|
The problem is that GCC expects 16-byte alignment of the incoming stack
since early 2004, as Maciej found out [1]:
Having actually dug speculatively I can see that the psABI was changed in
GCC 3.5 with commit e5e10fb4a350 ("re PR target/14539 (128-bit long double
improperly aligned)") back in Mar 2004, when the stack pointer alignment
was increased from 8 bytes to 16 bytes, and arch/alpha/kernel/entry.S has
various suspicious stack pointer adjustments, starting with SP_OFF which
is not a whole multiple of 16.
Also, as Magnus noted, "ALPHA Calling Standard" [2] required the same:
D.3.1 Stack Alignment
This standard requires that stacks be octaword aligned at the time a
new procedure is invoked.
However:
- the "normal" kernel stack is always misaligned by 8 bytes, thanks to
the odd number of 64-bit words in 'struct pt_regs', which is the very
first thing pushed onto the kernel thread stack;
- syscall, fault, interrupt etc. handlers may, or may not, receive aligned
stack depending on numerous factors.
Somehow we got away with it until recently, when we ended up with
a stack corruption in kernel/smp.c:smp_call_function_single() due to
its use of 32-byte aligned local data and the compiler doing clever
things allocating it on the stack.
This adds padding between the PAL-saved and kernel-saved registers
so that 'struct pt_regs' have an even number of 64-bit words.
This makes the stack properly aligned for most of the kernel
code, except two handlers which need special threatment.
Note: struct pt_regs doesn't belong in uapi/asm; this should be fixed,
but let's put this off until later.
Link: https://lore.kernel.org/rcu/alpine.DEB.2.21.2501130248010.18889@angie.orcam.me.uk/ [1]
Link: https://bitsavers.org/pdf/dec/alpha/Alpha_Calling_Standard_Rev_2.0_19900427.pdf [2]
Cc: stable@vger.kernel.org
Tested-by: Maciej W. Rozycki <macro@orcam.me.uk>
Tested-by: Magnus Lindholm <linmag7@gmail.com>
Tested-by: Matt Turner <mattst88@gmail.com>
Reviewed-by: Maciej W. Rozycki <macro@orcam.me.uk>
Signed-off-by: Ivan Kokshaysky <ink@unseen.parts>
Signed-off-by: Matt Turner <mattst88@gmail.com>
|
|
This allows the assembly in entry.S to automatically keep in sync with
changes in the stack layout (struct pt_regs and struct switch_stack).
Cc: stable@vger.kernel.org
Tested-by: Maciej W. Rozycki <macro@orcam.me.uk>
Tested-by: Matt Turner <mattst88@gmail.com>
Reviewed-by: Maciej W. Rozycki <macro@orcam.me.uk>
Signed-off-by: Ivan Kokshaysky <ink@unseen.parts>
Signed-off-by: Matt Turner <mattst88@gmail.com>
|
|
The meta data for a mapped ring buffer contains an array of indexes of all
the subbuffers. The first entry is the reader page, and the rest of the
entries lay out the order of the subbuffers in how the ring buffer link
list is to be created.
The validator currently makes sure that all the entries are within the
range of 0 and nr_subbufs. But it does not check if there are any
duplicates.
While working on the ring buffer, I corrupted this array, where I added
duplicates. The validator did not catch it and created the ring buffer
link list on top of it. Luckily, the corruption was only that the reader
page was also in the writer path and only presented corrupted data but did
not crash the kernel. But if there were duplicates in the writer side,
then it could corrupt the ring buffer link list and cause a crash.
Create a bitmask array with the size of the number of subbuffers. Then
clear it. When walking through the subbuf array checking to see if the
entries are within the range, test if its bit is already set in the
subbuf_mask. If it is, then there is duplicates and fail the validation.
If not, set the corresponding bit and continue.
Cc: stable@vger.kernel.org
Cc: Masami Hiramatsu <mhiramat@kernel.org>
Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Cc: Vincent Donnefort <vdonnefort@google.com>
Link: https://lore.kernel.org/20250214102820.7509ddea@gandalf.local.home
Fixes: c76883f18e59b ("ring-buffer: Add test if range of boot buffer is valid")
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
|
|
Currently if __tracing_resize_ring_buffer() returns an error, the
tracing_resize_ringbuffer() returns -ENOMEM. But it may not be a memory
issue that caused the function to fail. If the ring buffer is memory
mapped, then the resizing of the ring buffer will be disabled. But if the
user tries to resize the buffer, it will get an -ENOMEM returned, which is
confusing because there is plenty of memory. The actual error returned was
-EBUSY, which would make much more sense to the user.
Cc: stable@vger.kernel.org
Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Cc: Vincent Donnefort <vdonnefort@google.com>
Link: https://lore.kernel.org/20250213134132.7e4505d7@gandalf.local.home
Fixes: 117c39200d9d7 ("ring-buffer: Introducing ring-buffer mapping functions")
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
Reviewed-by: Masami Hiramatsu (Google) <mhiramat@kernel.org>
|
|
Memory mapping the tracing ring buffer will disable resizing the buffer.
But if there's an error in the memory mapping like an invalid parameter,
the function exits out without re-enabling the resizing of the ring
buffer, preventing the ring buffer from being resized after that.
Cc: stable@vger.kernel.org
Cc: Masami Hiramatsu <mhiramat@kernel.org>
Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Cc: Vincent Donnefort <vdonnefort@google.com>
Link: https://lore.kernel.org/20250213131957.530ec3c5@gandalf.local.home
Fixes: 117c39200d9d7 ("ring-buffer: Introducing ring-buffer mapping functions")
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
|
|
Fix several issues in partition probing:
- The bailout for a bad partoffset must use put_dev_sector(), since the
preceding read_part_sector() succeeded.
- If the partition table claims a silly sector size like 0xfff bytes
(which results in partition table entries straddling sector boundaries),
bail out instead of accessing out-of-bounds memory.
- We must not assume that the partition table contains proper NUL
termination - use strnlen() and strncmp() instead of strlen() and
strcmp().
Cc: stable@vger.kernel.org
Signed-off-by: Jann Horn <jannh@google.com>
Link: https://lore.kernel.org/r/20250214-partition-mac-v1-1-c1c626dffbd5@google.com
Signed-off-by: Jens Axboe <axboe@kernel.dk>
|
|
When flushing the serial port's buffer, uart_flush_buffer() calls
kfifo_reset() but if there is an outstanding DMA transfer then the
completion function will consume data from the kfifo via
uart_xmit_advance(), underflowing and leading to ongoing DMA as the
driver tries to transmit another 2^32 bytes.
This is readily reproduced with serial-generic and amidi sending even
short messages as closing the device on exit will wait for the fifo to
drain and in the underflow case amidi hangs for 30 seconds on exit in
tty_wait_until_sent(). A trace of that gives:
kworker/1:1-84 [001] 51.769423: bprint: serial8250_tx_dma: tx_size=3 fifo_len=3
amidi-763 [001] 51.769460: bprint: uart_flush_buffer: resetting fifo
irq/21-fe530000-76 [000] 51.769474: bprint: __dma_tx_complete: tx_size=3
irq/21-fe530000-76 [000] 51.769479: bprint: serial8250_tx_dma: tx_size=4096 fifo_len=4294967293
irq/21-fe530000-76 [000] 51.781295: bprint: __dma_tx_complete: tx_size=4096
irq/21-fe530000-76 [000] 51.781301: bprint: serial8250_tx_dma: tx_size=4096 fifo_len=4294963197
irq/21-fe530000-76 [000] 51.793131: bprint: __dma_tx_complete: tx_size=4096
irq/21-fe530000-76 [000] 51.793135: bprint: serial8250_tx_dma: tx_size=4096 fifo_len=4294959101
irq/21-fe530000-76 [000] 51.804949: bprint: __dma_tx_complete: tx_size=4096
Since the port lock is held in when the kfifo is reset in
uart_flush_buffer() and in __dma_tx_complete(), adding a flush_buffer
hook to adjust the outstanding DMA byte count is sufficient to avoid the
kfifo underflow.
Fixes: 9ee4b83e51f74 ("serial: 8250: Add support for dmaengine")
Cc: stable <stable@kernel.org>
Signed-off-by: John Keeping <jkeeping@inmusicbrands.com>
Link: https://lore.kernel.org/r/20250208124148.1189191-1-jkeeping@inmusicbrands.com
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|