Age | Commit message (Collapse) | Author | Files | Lines |
|
idle_balance() has been renamed to newidle_balance(). To differentiate
with nohz_idle_balance, it seems refining the comment will be helpful
for the readers of the code.
Signed-off-by: Barry Song <song.bao.hua@hisilicon.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Link: https://lkml.kernel.org/r/20201202220641.22752-1-song.bao.hua@hisilicon.com
|
|
The clearing of SMT siblings from the SIS mask before checking for an idle
core is a small but unnecessary cost. Defer the clearing of the siblings
until the scan moves to the next potential target. The cost of this was
not measured as it is borderline noise but it should be self-evident.
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Reviewed-by: Vincent Guittot <vincent.guittot@linaro.org>
Link: https://lkml.kernel.org/r/20201130144020.GS3371@techsingularity.net
|
|
Kernel-doc requires that a kernel-doc markup to be immediately
below the function prototype, as otherwise it will rename it.
So, move sys_sched_yield() markup to the right place.
Also fix the cpu_util() markup: Kernel-doc markups
should use this format:
identifier - description
Signed-off-by: Mauro Carvalho Chehab <mchehab+huawei@kernel.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Reviewed-by: Vincent Guittot <vincent.guittot@linaro.org>
Link: https://lkml.kernel.org/r/50cd6f460aeb872ebe518a8e9cfffda2df8bdb0a.1606823973.git.mchehab+huawei@kernel.org
|
|
The value freq_max/freq_base is a fundamental component of frequency
invariance calculations. It may come from a variety of sources such as MSRs
or ACPI data, tracking it down when troubleshooting a system could be
non-trivial. It is worth saving it in the kernel logs.
# dmesg | grep 'Estimated ratio of average max'
[ 14.024036] smpboot: Estimated ratio of average max frequency by base frequency (times 1024): 1289
Signed-off-by: Giovanni Gherdovich <ggherdovich@suse.cz>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Link: https://lkml.kernel.org/r/20201112182614.10700-4-ggherdovich@suse.cz
|
|
Frequency invariant accounting calculations need the ratio
freq_curr/freq_max, but freq_max is unknown as it depends on dynamic power
allocation between cores: AMD EPYC CPUs implement "Core Performance Boost".
Three candidates are considered to estimate this value:
- maximum non-boost frequency
- maximum boost frequency
- the mid point between the above two
Experimental data on an AMD EPYC Zen2 machine slightly favors the third
option, which is applied with this patch.
The analysis uses the ondemand cpufreq governor as baseline, and compares
it with schedutil in a number of configurations. Using the freq_max value
described above offers a moderate advantage in performance and efficiency:
sugov-max (freq_max=max_boost) performs the worst on tbench: less
throughput and reduced efficiency than the other invariant-schedutil
options (see "Data Overview" below). Consider that tbench is generally a
problematic case as no schedutil version currently is better than ondemand.
sugov-P0 (freq_max=max_P) is the worst on dbench, while the other sugov's
can surpass ondemand with less filesystem latency and slightly increased
efficiency.
1. DATA OVERVIEW
2. DETAILED PERFORMANCE TABLES
3. POWER CONSUMPTION TABLE
1. DATA OVERVIEW
================
sugov-noinv : non-invariant schedutil governor
sugov-max : invariant schedutil, freq_max=max_boost
sugov-mid : invariant schedutil, freq_max=midpoint
sugov-P0 : invariant schedutil, freq_max=max_P
perfgov : performance governor
driver : acpi_cpufreq
machine : AMD EPYC 7742 (Zen2, aka "Rome"), dual socket,
128 cores / 256 threads, SATA SSD storage, 250G of memory,
XFS filesystem
Benchmarks are described in the next section.
Tilde (~) means the value is the same as baseline.
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
ondemand perfgov sugov-noinv sugov-max sugov-mid sugov-P0 better if
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
PERFORMANCE RATIOS
tbench 1.00 1.44 0.90 0.87 0.93 0.93 higher
dbench 1.00 0.91 0.95 0.94 0.94 1.06 lower
kernbench 1.00 0.93 ~ ~ ~ 0.97 lower
gitsource 1.00 0.66 0.97 0.96 ~ 0.95 lower
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
PERFORMANCE-PER-WATT RATIOS
tbench 1.00 1.16 0.84 0.84 0.88 0.85 higher
dbench 1.00 1.03 1.02 1.02 1.02 0.93 higher
kernbench 1.00 1.05 ~ ~ ~ ~ higher
gitsource 1.00 1.46 1.04 1.04 ~ 1.05 higher
2. DETAILED PERFORMANCE TABLES
==============================
Benchmark : tbench4 (i.e. dbench4 over the network, actually loopback)
Varying parameter : number of clients
Unit : MB/sec (higher is better)
5.9.0-ondemand (BASELINE) 5.9.0-perfgov 5.9.0-sugov-noinv
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
Hmean 1 427.19 +- 0.16% ( ) 778.35 +- 0.10% ( 82.20%) 346.92 +- 0.14% ( -18.79%)
Hmean 2 853.82 +- 0.09% ( ) 1536.23 +- 0.03% ( 79.93%) 694.36 +- 0.05% ( -18.68%)
Hmean 4 1657.54 +- 0.12% ( ) 2938.18 +- 0.12% ( 77.26%) 1362.81 +- 0.11% ( -17.78%)
Hmean 8 3301.87 +- 0.06% ( ) 5679.10 +- 0.04% ( 72.00%) 2693.35 +- 0.04% ( -18.43%)
Hmean 16 6139.65 +- 0.05% ( ) 9498.81 +- 0.04% ( 54.71%) 4889.97 +- 0.17% ( -20.35%)
Hmean 32 11170.28 +- 0.09% ( ) 17393.25 +- 0.08% ( 55.71%) 9104.55 +- 0.09% ( -18.49%)
Hmean 64 19322.97 +- 0.17% ( ) 31573.91 +- 0.08% ( 63.40%) 18552.52 +- 0.40% ( -3.99%)
Hmean 128 30383.71 +- 0.11% ( ) 37416.91 +- 0.15% ( 23.15%) 25938.70 +- 0.41% ( -14.63%)
Hmean 256 31143.96 +- 0.41% ( ) 30908.76 +- 0.88% ( -0.76%) 29754.32 +- 0.24% ( -4.46%)
Hmean 512 30858.49 +- 0.26% ( ) 38524.60 +- 1.19% ( 24.84%) 42080.39 +- 0.56% ( 36.37%)
Hmean 1024 39187.37 +- 0.19% ( ) 36213.86 +- 0.26% ( -7.59%) 39555.98 +- 0.12% ( 0.94%)
5.9.0-sugov-max 5.9.0-sugov-mid 5.9.0-sugov-P0
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
Hmean 1 352.59 +- 1.03% ( -17.46%) 352.08 +- 0.75% ( -17.58%) 352.31 +- 1.48% ( -17.53%)
Hmean 2 697.32 +- 0.08% ( -18.33%) 700.16 +- 0.20% ( -18.00%) 696.79 +- 0.06% ( -18.39%)
Hmean 4 1369.88 +- 0.04% ( -17.35%) 1369.72 +- 0.07% ( -17.36%) 1365.91 +- 0.05% ( -17.59%)
Hmean 8 2696.79 +- 0.04% ( -18.33%) 2711.06 +- 0.04% ( -17.89%) 2715.10 +- 0.61% ( -17.77%)
Hmean 16 4725.03 +- 0.03% ( -23.04%) 4875.65 +- 0.02% ( -20.59%) 4953.05 +- 0.28% ( -19.33%)
Hmean 32 9231.65 +- 0.10% ( -17.36%) 8704.89 +- 0.27% ( -22.07%) 10562.02 +- 0.36% ( -5.45%)
Hmean 64 15364.27 +- 0.19% ( -20.49%) 17786.64 +- 0.15% ( -7.95%) 19665.40 +- 0.22% ( 1.77%)
Hmean 128 42100.58 +- 0.13% ( 38.56%) 34946.28 +- 0.13% ( 15.02%) 38635.79 +- 0.06% ( 27.16%)
Hmean 256 30660.23 +- 1.08% ( -1.55%) 32307.67 +- 0.54% ( 3.74%) 31153.27 +- 0.12% ( 0.03%)
Hmean 512 24604.32 +- 0.14% ( -20.27%) 40408.50 +- 1.10% ( 30.95%) 38800.29 +- 1.23% ( 25.74%)
Hmean 1024 35535.47 +- 0.28% ( -9.32%) 41070.38 +- 2.56% ( 4.81%) 31308.29 +- 2.52% ( -20.11%)
Benchmark : dbench (filesystem stressor)
Varying parameter : number of clients
Unit : seconds (lower is better)
NOTE-1: This dbench version measures the average latency of a set of filesystem
operations, as we found the traditional dbench metric (throughput) to be
misleading.
NOTE-2: Due to high variability, we partition the original dataset and apply
statistical bootrapping (a resampling method). Accuracy is reported in the
form of 95% confidence intervals.
5.9.0-ondemand (BASELINE) 5.9.0-perfgov 5.9.0-sugov-noinv
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
SubAmean 1 98.79 +- 0.92 ( ) 83.36 +- 0.82 ( 15.62%) 84.82 +- 0.92 ( 14.14%)
SubAmean 2 116.00 +- 0.89 ( ) 102.12 +- 0.77 ( 11.96%) 109.63 +- 0.89 ( 5.49%)
SubAmean 4 149.90 +- 1.03 ( ) 132.12 +- 0.91 ( 11.86%) 143.90 +- 1.15 ( 4.00%)
SubAmean 8 182.41 +- 1.13 ( ) 159.86 +- 0.93 ( 12.36%) 165.82 +- 1.03 ( 9.10%)
SubAmean 16 237.83 +- 1.23 ( ) 219.46 +- 1.14 ( 7.72%) 229.28 +- 1.19 ( 3.59%)
SubAmean 32 334.34 +- 1.49 ( ) 309.94 +- 1.42 ( 7.30%) 321.19 +- 1.36 ( 3.93%)
SubAmean 64 576.61 +- 2.16 ( ) 540.75 +- 2.00 ( 6.22%) 551.27 +- 1.99 ( 4.39%)
SubAmean 128 1350.07 +- 4.14 ( ) 1205.47 +- 3.20 ( 10.71%) 1280.26 +- 3.75 ( 5.17%)
SubAmean 256 3444.42 +- 7.97 ( ) 3698.00 +- 27.43 ( -7.36%) 3494.14 +- 7.81 ( -1.44%)
SubAmean 2048 39457.89 +- 29.01 ( ) 34105.33 +- 41.85 ( 13.57%) 39688.52 +- 36.26 ( -0.58%)
5.9.0-sugov-max 5.9.0-sugov-mid 5.9.0-sugov-P0
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
SubAmean 1 85.68 +- 1.04 ( 13.27%) 84.16 +- 0.84 ( 14.81%) 83.99 +- 0.90 ( 14.99%)
SubAmean 2 108.42 +- 0.95 ( 6.54%) 109.91 +- 1.39 ( 5.24%) 112.06 +- 0.91 ( 3.39%)
SubAmean 4 136.90 +- 1.04 ( 8.67%) 137.59 +- 0.93 ( 8.21%) 136.55 +- 0.95 ( 8.91%)
SubAmean 8 163.15 +- 0.96 ( 10.56%) 166.07 +- 1.02 ( 8.96%) 165.81 +- 0.99 ( 9.10%)
SubAmean 16 224.86 +- 1.12 ( 5.45%) 223.83 +- 1.06 ( 5.89%) 230.66 +- 1.19 ( 3.01%)
SubAmean 32 320.51 +- 1.38 ( 4.13%) 322.85 +- 1.49 ( 3.44%) 321.96 +- 1.46 ( 3.70%)
SubAmean 64 553.25 +- 1.93 ( 4.05%) 554.19 +- 2.08 ( 3.89%) 562.26 +- 2.22 ( 2.49%)
SubAmean 128 1264.35 +- 3.72 ( 6.35%) 1256.99 +- 3.46 ( 6.89%) 2018.97 +- 18.79 ( -49.55%)
SubAmean 256 3466.25 +- 8.25 ( -0.63%) 3450.58 +- 8.44 ( -0.18%) 5032.12 +- 38.74 ( -46.09%)
SubAmean 2048 39133.10 +- 45.71 ( 0.82%) 39905.95 +- 34.33 ( -1.14%) 53811.86 +-193.04 ( -36.38%)
Benchmark : kernbench (kernel compilation)
Varying parameter : number of jobs
Unit : seconds (lower is better)
5.9.0-ondemand (BASELINE) 5.9.0-perfgov 5.9.0-sugov-noinv
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
Amean 2 471.71 +- 26.61% ( ) 409.88 +- 16.99% ( 13.11%) 430.63 +- 0.18% ( 8.71%)
Amean 4 211.87 +- 0.58% ( ) 194.03 +- 0.74% ( 8.42%) 215.33 +- 0.64% ( -1.63%)
Amean 8 109.79 +- 1.27% ( ) 101.43 +- 1.53% ( 7.61%) 111.05 +- 1.95% ( -1.15%)
Amean 16 59.50 +- 1.28% ( ) 55.61 +- 1.35% ( 6.55%) 59.65 +- 1.78% ( -0.24%)
Amean 32 34.94 +- 1.22% ( ) 32.36 +- 1.95% ( 7.41%) 35.44 +- 0.63% ( -1.43%)
Amean 64 22.58 +- 0.38% ( ) 20.97 +- 1.28% ( 7.11%) 22.41 +- 1.73% ( 0.74%)
Amean 128 17.72 +- 0.44% ( ) 16.68 +- 0.32% ( 5.88%) 17.65 +- 0.96% ( 0.37%)
Amean 256 16.44 +- 0.53% ( ) 15.76 +- 0.32% ( 4.18%) 16.76 +- 0.60% ( -1.93%)
Amean 512 16.54 +- 0.21% ( ) 15.62 +- 0.41% ( 5.53%) 16.84 +- 0.85% ( -1.83%)
5.9.0-sugov-max 5.9.0-sugov-mid 5.9.0-sugov-P0
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
Amean 2 421.30 +- 0.24% ( 10.69%) 419.26 +- 0.15% ( 11.12%) 414.38 +- 0.33% ( 12.15%)
Amean 4 217.81 +- 5.53% ( -2.80%) 211.63 +- 0.99% ( 0.12%) 208.43 +- 0.47% ( 1.63%)
Amean 8 108.80 +- 0.43% ( 0.90%) 108.48 +- 1.44% ( 1.19%) 108.59 +- 3.08% ( 1.09%)
Amean 16 58.84 +- 0.74% ( 1.12%) 58.37 +- 0.94% ( 1.91%) 57.78 +- 0.78% ( 2.90%)
Amean 32 34.04 +- 2.00% ( 2.59%) 34.28 +- 1.18% ( 1.91%) 33.98 +- 2.21% ( 2.75%)
Amean 64 22.22 +- 1.69% ( 1.60%) 22.27 +- 1.60% ( 1.38%) 22.25 +- 1.41% ( 1.47%)
Amean 128 17.55 +- 0.24% ( 0.97%) 17.53 +- 0.94% ( 1.04%) 17.49 +- 0.43% ( 1.30%)
Amean 256 16.51 +- 0.46% ( -0.40%) 16.48 +- 0.48% ( -0.19%) 16.44 +- 1.21% ( 0.00%)
Amean 512 16.50 +- 0.35% ( 0.19%) 16.35 +- 0.42% ( 1.14%) 16.37 +- 0.33% ( 0.99%)
Benchmark : gitsource (time to run the git unit test suite)
Varying parameter : none
Unit : seconds (lower is better)
5.9.0-ondemand (BASELINE) 5.9.0-perfgov 5.9.0-sugov-noinv
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
Amean 1035.76 +- 0.30% ( ) 688.21 +- 0.04% ( 33.56%) 1003.85 +- 0.14% ( 3.08%)
5.9.0-sugov-max 5.9.0-sugov-mid 5.9.0-sugov-P0
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
Amean 995.82 +- 0.08% ( 3.86%) 1011.98 +- 0.03% ( 2.30%) 986.87 +- 0.19% ( 4.72%)
3. POWER CONSUMPTION TABLE
==========================
Average power consumption (watts).
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
ondemand perfgov sugov-noinv sugov-max sugov-mid sugov-P0
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
tbench4 227.25 281.83 244.17 236.76 241.50 247.99
dbench4 151.97 161.87 157.08 158.10 158.06 153.73
kernbench 162.78 167.22 162.90 164.19 164.65 164.72
gitsource 133.65 139.00 133.04 134.43 134.18 134.32
Signed-off-by: Giovanni Gherdovich <ggherdovich@suse.cz>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Link: https://lkml.kernel.org/r/20201112182614.10700-3-ggherdovich@suse.cz
|
|
This is the first pass in creating the ability to calculate the
frequency invariance on AMD systems. This approach uses the CPPC
highest performance and nominal performance values that range from
0 - 255 instead of a high and base frquency. This is because we do
not have the ability on AMD to get a highest frequency value.
On AMD systems the highest performance and nominal performance
vaues do correspond to the highest and base frequencies for the system
so using them should produce an appropriate ratio but some tweaking
is likely necessary.
Due to CPPC being initialized later in boot than when the frequency
invariant calculation is currently made, I had to create a callback
from the CPPC init code to do the calculation after we have CPPC
data.
Special thanks to "kernel test robot <lkp@intel.com>" for reporting that
compilation of drivers/acpi/cppc_acpi.c is conditional to
CONFIG_ACPI_CPPC_LIB, not just CONFIG_ACPI.
[ ggherdovich@suse.cz: made safe under CPU hotplug, edited changelog. ]
Signed-off-by: Nathan Fontenot <nathan.fontenot@amd.com>
Signed-off-by: Giovanni Gherdovich <ggherdovich@suse.cz>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Link: https://lkml.kernel.org/r/20201112182614.10700-2-ggherdovich@suse.cz
|
|
0day reported one -22.7% regression for will-it-scale page_fault2
case [1] on a 4 sockets 144 CPU platform, and bisected to it to be
caused by Waiman's optimization (commit bd0b230fe1) of saving one
'struct page_counter' space for 'struct mem_cgroup'.
Initially we thought it was due to the cache alignment change introduced
by the patch, but further debug shows that it is due to some hot data
members ('vmstats_local', 'vmstats_percpu', 'vmstats') sit in 2 adjacent
cacheline (2N and 2N+1 cacheline), and when adjacent cache line prefetch
is enabled, it triggers an "extended level" of cache false sharing for
2 adjacent cache lines.
So exchange the 2 member blocks, while keeping mostly the original
cache alignment, which can restore and even enhance the performance,
and save 64 bytes of space for 'struct mem_cgroup' (from 2880 to 2816,
with 0day's default RHEL-8.3 kernel config)
[1]. https://lore.kernel.org/lkml/20201102091543.GM31092@shao2-debian/
Fixes: bd0b230fe145 ("mm/memcg: unify swap and memsw page counters")
Reported-by: kernel test robot <rong.a.chen@intel.com>
Signed-off-by: Feng Tang <feng.tang@intel.com>
Acked-by: Waiman Long <longman@redhat.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Twice now, when exercising ext4 looped on shmem huge pages, I have crashed
on the PF_ONLY_HEAD check inside PageWaiters(): ext4_finish_bio() calling
end_page_writeback() calling wake_up_page() on tail of a shmem huge page,
no longer an ext4 page at all.
The problem is that PageWriteback is not accompanied by a page reference
(as the NOTE at the end of test_clear_page_writeback() acknowledges): as
soon as TestClearPageWriteback has been done, that page could be removed
from page cache, freed, and reused for something else by the time that
wake_up_page() is reached.
https://lore.kernel.org/linux-mm/20200827122019.GC14765@casper.infradead.org/
Matthew Wilcox suggested avoiding or weakening the PageWaiters() tail
check; but I'm paranoid about even looking at an unreferenced struct page,
lest its memory might itself have already been reused or hotremoved (and
wake_up_page_bit() may modify that memory with its ClearPageWaiters()).
Then on crashing a second time, realized there's a stronger reason against
that approach. If my testing just occasionally crashes on that check,
when the page is reused for part of a compound page, wouldn't it be much
more common for the page to get reused as an order-0 page before reaching
wake_up_page()? And on rare occasions, might that reused page already be
marked PageWriteback by its new user, and already be waited upon? What
would that look like?
It would look like BUG_ON(PageWriteback) after wait_on_page_writeback()
in write_cache_pages() (though I have never seen that crash myself).
Matthew Wilcox explaining this to himself:
"page is allocated, added to page cache, dirtied, writeback starts,
--- thread A ---
filesystem calls end_page_writeback()
test_clear_page_writeback()
--- context switch to thread B ---
truncate_inode_pages_range() finds the page, it doesn't have writeback set,
we delete it from the page cache. Page gets reallocated, dirtied, writeback
starts again. Then we call write_cache_pages(), see
PageWriteback() set, call wait_on_page_writeback()
--- context switch back to thread A ---
wake_up_page(page, PG_writeback);
... thread B is woken, but because the wakeup was for the old use of
the page, PageWriteback is still set.
Devious"
And prior to 2a9127fcf229 ("mm: rewrite wait_on_page_bit_common() logic")
this would have been much less likely: before that, wake_page_function()'s
non-exclusive case would stop walking and not wake if it found Writeback
already set again; whereas now the non-exclusive case proceeds to wake.
I have not thought of a fix that does not add a little overhead: the
simplest fix is for end_page_writeback() to get_page() before calling
test_clear_page_writeback(), then put_page() after wake_up_page().
Was there a chance of missed wakeups before, since a page freed before
reaching wake_up_page() would have PageWaiters cleared? I think not,
because each waiter does hold a reference on the page. This bug comes
when the old use of the page, the one we do TestClearPageWriteback on,
had *no* waiters, so no additional page reference beyond the page cache
(and whoever racily freed it). The reuse of the page has a waiter
holding a reference, and its own PageWriteback set; but the belated
wake_up_page() has woken the reuse to hit that BUG_ON(PageWriteback).
Reported-by: syzbot+3622cea378100f45d59f@syzkaller.appspotmail.com
Reported-by: Qian Cai <cai@lca.pw>
Fixes: 2a9127fcf229 ("mm: rewrite wait_on_page_bit_common() logic")
Signed-off-by: Hugh Dickins <hughd@google.com>
Cc: stable@vger.kernel.org # v5.8+
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Trade one atomic op for a full memory barrier.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Frederic Weisbecker <frederic@kernel.org>
|
|
Get rid of the __call_single_node union and cleanup the API a little
to avoid external code relying on the structure layout as much.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Frederic Weisbecker <frederic@kernel.org>
|
|
Get rid of the __call_single_node union and clean up the API a little
to avoid external code relying on the structure layout as much.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Frederic Weisbecker <frederic@kernel.org>
|
|
At fork time currently, a local node can be allowed to fill completely
and allow the periodic load balancer to fix the problem. This can be
problematic in cases where a task creates lots of threads that idle until
woken as part of a worker poll causing a memory bandwidth problem.
However, a "real" workload suffers badly from this behaviour. The workload
in question is mostly NUMA aware but spawns large numbers of threads
that act as a worker pool that can be called from anywhere. These need
to spread early to get reasonable behaviour.
This patch limits how much a local node can fill before spilling over
to another node and it will not be a universal win. Specifically,
very short-lived workloads that fit within a NUMA node would prefer
the memory bandwidth.
As I cannot describe the "real" workload, the best proxy measure I found
for illustration was a page fault microbenchmark. It's not representative
of the workload but demonstrates the hazard of the current behaviour.
pft timings
5.10.0-rc2 5.10.0-rc2
imbalancefloat-v2 forkspread-v2
Amean elapsed-1 46.37 ( 0.00%) 46.05 * 0.69%*
Amean elapsed-4 12.43 ( 0.00%) 12.49 * -0.47%*
Amean elapsed-7 7.61 ( 0.00%) 7.55 * 0.81%*
Amean elapsed-12 4.79 ( 0.00%) 4.80 ( -0.17%)
Amean elapsed-21 3.13 ( 0.00%) 2.89 * 7.74%*
Amean elapsed-30 3.65 ( 0.00%) 2.27 * 37.62%*
Amean elapsed-48 3.08 ( 0.00%) 2.13 * 30.69%*
Amean elapsed-79 2.00 ( 0.00%) 1.90 * 4.95%*
Amean elapsed-80 2.00 ( 0.00%) 1.90 * 4.70%*
This is showing the time to fault regions belonging to threads. The target
machine has 80 logical CPUs and two nodes. Note the ~30% gain when the
machine is approximately the point where one node becomes fully utilised.
The slower results are borderline noise.
Kernel building shows similar benefits around the same balance point.
Generally performance was either neutral or better in the tests conducted.
The main consideration with this patch is the point where fork stops
spreading a task so some workloads may benefit from different balance
points but it would be a risky tuning parameter.
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Vincent Guittot <vincent.guittot@linaro.org>
Link: https://lkml.kernel.org/r/20201120090630.3286-5-mgorman@techsingularity.net
|
|
Currently, an imbalance is only allowed when a destination node
is almost completely idle. This solved one basic class of problems
and was the cautious approach.
This patch revisits the possibility that NUMA nodes can be imbalanced
until 25% of the CPUs are occupied. The reasoning behind 25% is somewhat
superficial -- it's half the cores when HT is enabled. At higher
utilisations, balancing should continue as normal and keep things even
until scheduler domains are fully busy or over utilised.
Note that this is not expected to be a universal win. Any benchmark
that prefers spreading as wide as possible with limited communication
will favour the old behaviour as there is more memory bandwidth.
Workloads that communicate heavily in pairs such as netperf or tbench
benefit. For the tests I ran, the vast majority of workloads saw
a benefit so it seems to be a worthwhile trade-off.
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Vincent Guittot <vincent.guittot@linaro.org>
Link: https://lkml.kernel.org/r/20201120090630.3286-4-mgorman@techsingularity.net
|
|
In find_idlest_group(), the load imbalance is only relevant when the group
is either overloaded or fully busy but it is calculated unconditionally.
This patch moves the imbalance calculation to the context it is required.
Technically, it is a micro-optimisation but really the benefit is avoiding
confusing one type of imbalance with another depending on the group_type
in the next patch.
No functional change.
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Vincent Guittot <vincent.guittot@linaro.org>
Link: https://lkml.kernel.org/r/20201120090630.3286-3-mgorman@techsingularity.net
|
|
This is simply a preparation patch to make the following patches easier
to read. No functional change.
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Vincent Guittot <vincent.guittot@linaro.org>
Link: https://lkml.kernel.org/r/20201120090630.3286-2-mgorman@techsingularity.net
|
|
Now that the scheduler can deal with migrate disable properly, there is no
real compelling reason to make it only available for RT.
There are quite some code pathes which needlessly disable preemption in
order to prevent migration and some constructs like kmap_atomic() enforce
it implicitly.
Making it available independent of RT allows to provide a preemptible
variant of kmap_atomic() and makes the code more consistent in general.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Grudgingly-Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lore.kernel.org/r/20201118204007.269943012@linutronix.de
|
|
We need to disable interrupts in load_fpu_regs(). Otherwise an
interrupt might come in after the registers are loaded, but before
CIF_FPU is cleared in load_fpu_regs(). When the interrupt returns,
CIF_FPU will be cleared and the registers will never be restored.
The entry.S code usually saves the interrupt state in __SF_EMPTY on the
stack when disabling/restoring interrupts. sie64a however saves the pointer
to the sie control block in __SF_SIE_CONTROL, which references the same
location. This is non-obvious to the reader. To avoid thrashing the sie
control block pointer in load_fpu_regs(), move the __SIE_* offsets eight
bytes after __SF_EMPTY on the stack.
Cc: <stable@vger.kernel.org> # 5.8
Fixes: 0b0ed657fe00 ("s390: remove critical section cleanup from entry.S")
Reported-by: Pierre Morel <pmorel@linux.ibm.com>
Signed-off-by: Sven Schnelle <svens@linux.ibm.com>
Acked-by: Christian Borntraeger <borntraeger@de.ibm.com>
Reviewed-by: Heiko Carstens <hca@linux.ibm.com>
Signed-off-by: Heiko Carstens <hca@linux.ibm.com>
|
|
Commit 8410e7f3b31e ("cpufreq: scmi: Fix OPP addition failure with a
dummy clock provider") registers a dummy clock provider using
devm_of_clk_add_hw_provider. These *_hw_provider functions are defined
only when CONFIG_COMMON_CLK=y. One possible fix is to add the Kconfig
dependency, but since we plan to move away from the clock dependency
for scmi cpufreq, it is preferrable to avoid that.
Let us just conditionally compile out the offending call to
devm_of_clk_add_hw_provider. It also uses the variable 'dev' outside
of the #ifdef block to avoid build warning.
Fixes: 8410e7f3b31e ("cpufreq: scmi: Fix OPP addition failure with a dummy clock provider")
Cc: Rafael J. Wysocki <rjw@rjwysocki.net>
Cc: Viresh Kumar <viresh.kumar@linaro.org>
Signed-off-by: Sudeep Holla <sudeep.holla@arm.com>
Signed-off-by: Viresh Kumar <viresh.kumar@linaro.org>
|
|
|
|
When doing a lookup in a directory, the afs filesystem uses a bulk
status fetch to speculatively retrieve the statuses of up to 48 other
vnodes found in the same directory and it will then either update extant
inodes or create new ones - effectively doing 'lookup ahead'.
To avoid the possibility of deadlocking itself, however, the filesystem
doesn't lock all of those inodes; rather just the directory inode is
locked (by the VFS).
When the operation completes, afs_inode_init_from_status() or
afs_apply_status() is called, depending on whether the inode already
exists, to commit the new status.
A case exists, however, where the speculative status fetch operation may
straddle a modification operation on one of those vnodes. What can then
happen is that the speculative bulk status RPC retrieves the old status,
and whilst that is happening, the modification happens - which returns
an updated status, then the modification status is committed, then we
attempt to commit the speculative status.
This results in something like the following being seen in dmesg:
kAFS: vnode modified {100058:861} 8->9 YFS.InlineBulkStatus
showing that for vnode 861 on volume 100058, we saw YFS.InlineBulkStatus
say that the vnode had data version 8 when we'd already recorded version
9 due to a local modification. This was causing the cache to be
invalidated for that vnode when it shouldn't have been. If it happens
on a data file, this might lead to local changes being lost.
Fix this by ignoring speculative status updates if the data version
doesn't match the expected value.
Note that it is possible to get a DV regression if a volume gets
restored from a backup - but we should get a callback break in such a
case that should trigger a recheck anyway. It might be worth checking
the volume creation time in the volsync info and, if a change is
observed in that (as would happen on a restore), invalidate all caches
associated with the volume.
Fixes: 5cf9dd55a0ec ("afs: Prospectively look up extra files when doing a single lookup")
Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
The calculation of the end page index was incorrect, leading to a
regression of 70% when running stress-ng.
With this fix, we instead see a performance improvement of 3%.
Fixes: e6e88712e43b ("mm: optimise madvise WILLNEED")
Reported-by: kernel test robot <rong.a.chen@intel.com>
Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Tested-by: Xing Zhengjun <zhengjun.xing@linux.intel.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: William Kucharski <william.kucharski@oracle.com>
Cc: Feng Tang <feng.tang@intel.com>
Cc: "Chen, Rong A" <rong.a.chen@intel.com>
Link: https://lkml.kernel.org/r/20201109134851.29692-1-willy@infradead.org
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
The attr->set() receive a value of u64, but simple_strtoll() is used for
doing the conversion. It will lead to the error cast if user inputs a
negative value.
Use kstrtoull() instead of simple_strtoll() to convert a string got from
the user to an unsigned value. The former will return '-EINVAL' if it
gets a negetive value, but the latter can't handle the situation
correctly. Make 'val' unsigned long long as what kstrtoull() takes,
this will eliminate the compile warning on no 64-bit architectures.
Fixes: f7b88631a897 ("fs/libfs.c: fix simple_attr_write() on 32bit machines")
Signed-off-by: Yicong Yang <yangyicong@hisilicon.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Link: https://lkml.kernel.org/r/1605341356-11872-1-git-send-email-yangyicong@hisilicon.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Alexander reported a syzkaller / KASAN finding on s390, see below for
complete output.
In do_huge_pmd_anonymous_page(), the pre-allocated pagetable will be
freed in some cases. In the case of userfaultfd_missing(), this will
happen after calling handle_userfault(), which might have released the
mmap_lock. Therefore, the following pte_free(vma->vm_mm, pgtable) will
access an unstable vma->vm_mm, which could have been freed or re-used
already.
For all architectures other than s390 this will go w/o any negative
impact, because pte_free() simply frees the page and ignores the
passed-in mm. The implementation for SPARC32 would also access
mm->page_table_lock for pte_free(), but there is no THP support in
SPARC32, so the buggy code path will not be used there.
For s390, the mm->context.pgtable_list is being used to maintain the 2K
pagetable fragments, and operating on an already freed or even re-used
mm could result in various more or less subtle bugs due to list /
pagetable corruption.
Fix this by calling pte_free() before handle_userfault(), similar to how
it is already done in __do_huge_pmd_anonymous_page() for the WRITE /
non-huge_zero_page case.
Commit 6b251fc96cf2c ("userfaultfd: call handle_userfault() for
userfaultfd_missing() faults") actually introduced both, the
do_huge_pmd_anonymous_page() and also __do_huge_pmd_anonymous_page()
changes wrt to calling handle_userfault(), but only in the latter case
it put the pte_free() before calling handle_userfault().
BUG: KASAN: use-after-free in do_huge_pmd_anonymous_page+0xcda/0xd90 mm/huge_memory.c:744
Read of size 8 at addr 00000000962d6988 by task syz-executor.0/9334
CPU: 1 PID: 9334 Comm: syz-executor.0 Not tainted 5.10.0-rc1-syzkaller-07083-g4c9720875573 #0
Hardware name: IBM 3906 M04 701 (KVM/Linux)
Call Trace:
do_huge_pmd_anonymous_page+0xcda/0xd90 mm/huge_memory.c:744
create_huge_pmd mm/memory.c:4256 [inline]
__handle_mm_fault+0xe6e/0x1068 mm/memory.c:4480
handle_mm_fault+0x288/0x748 mm/memory.c:4607
do_exception+0x394/0xae0 arch/s390/mm/fault.c:479
do_dat_exception+0x34/0x80 arch/s390/mm/fault.c:567
pgm_check_handler+0x1da/0x22c arch/s390/kernel/entry.S:706
copy_from_user_mvcos arch/s390/lib/uaccess.c:111 [inline]
raw_copy_from_user+0x3a/0x88 arch/s390/lib/uaccess.c:174
_copy_from_user+0x48/0xa8 lib/usercopy.c:16
copy_from_user include/linux/uaccess.h:192 [inline]
__do_sys_sigaltstack kernel/signal.c:4064 [inline]
__s390x_sys_sigaltstack+0xc8/0x240 kernel/signal.c:4060
system_call+0xe0/0x28c arch/s390/kernel/entry.S:415
Allocated by task 9334:
slab_alloc_node mm/slub.c:2891 [inline]
slab_alloc mm/slub.c:2899 [inline]
kmem_cache_alloc+0x118/0x348 mm/slub.c:2904
vm_area_dup+0x9c/0x2b8 kernel/fork.c:356
__split_vma+0xba/0x560 mm/mmap.c:2742
split_vma+0xca/0x108 mm/mmap.c:2800
mlock_fixup+0x4ae/0x600 mm/mlock.c:550
apply_vma_lock_flags+0x2c6/0x398 mm/mlock.c:619
do_mlock+0x1aa/0x718 mm/mlock.c:711
__do_sys_mlock2 mm/mlock.c:738 [inline]
__s390x_sys_mlock2+0x86/0xa8 mm/mlock.c:728
system_call+0xe0/0x28c arch/s390/kernel/entry.S:415
Freed by task 9333:
slab_free mm/slub.c:3142 [inline]
kmem_cache_free+0x7c/0x4b8 mm/slub.c:3158
__vma_adjust+0x7b2/0x2508 mm/mmap.c:960
vma_merge+0x87e/0xce0 mm/mmap.c:1209
userfaultfd_release+0x412/0x6b8 fs/userfaultfd.c:868
__fput+0x22c/0x7a8 fs/file_table.c:281
task_work_run+0x200/0x320 kernel/task_work.c:151
tracehook_notify_resume include/linux/tracehook.h:188 [inline]
do_notify_resume+0x100/0x148 arch/s390/kernel/signal.c:538
system_call+0xe6/0x28c arch/s390/kernel/entry.S:416
The buggy address belongs to the object at 00000000962d6948 which belongs to the cache vm_area_struct of size 200
The buggy address is located 64 bytes inside of 200-byte region [00000000962d6948, 00000000962d6a10)
The buggy address belongs to the page: page:00000000313a09fe refcount:1 mapcount:0 mapping:0000000000000000 index:0x0 pfn:0x962d6 flags: 0x3ffff00000000200(slab)
raw: 3ffff00000000200 000040000257e080 0000000c0000000c 000000008020ba00
raw: 0000000000000000 000f001e00000000 ffffffff00000001 0000000096959501
page dumped because: kasan: bad access detected
page->mem_cgroup:0000000096959501
Memory state around the buggy address:
00000000962d6880: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00000000962d6900: 00 fc fc fc fc fc fc fc fc fa fb fb fb fb fb fb
>00000000962d6980: fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb
^
00000000962d6a00: fb fb fc fc fc fc fc fc fc fc 00 00 00 00 00 00
00000000962d6a80: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
==================================================================
Fixes: 6b251fc96cf2c ("userfaultfd: call handle_userfault() for userfaultfd_missing() faults")
Reported-by: Alexander Egorenkov <egorenar@linux.ibm.com>
Signed-off-by: Gerald Schaefer <gerald.schaefer@linux.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Heiko Carstens <hca@linux.ibm.com>
Cc: <stable@vger.kernel.org> [4.3+]
Link: https://lkml.kernel.org/r/20201110190329.11920-1-gerald.schaefer@linux.ibm.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
If we reparent the slab objects to the root memcg, when we free the slab
object, we need to update the per-memcg vmstats to keep it correct for
the root memcg. Now this at least affects the vmstat of
NR_KERNEL_STACK_KB for !CONFIG_VMAP_STACK when the thread stack size is
smaller than the PAGE_SIZE.
David said:
"I assume that without this fix that the root memcg's vmstat would
always be inflated if we reparented"
Fixes: ec9f02384f60 ("mm: workingset: fix vmstat counters for shadow nodes")
Signed-off-by: Muchun Song <songmuchun@bytedance.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Shakeel Butt <shakeelb@google.com>
Acked-by: Roman Gushchin <guro@fb.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: David Rientjes <rientjes@google.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Cc: Christopher Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Roman Gushchin <guro@fb.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Yafang Shao <laoar.shao@gmail.com>
Cc: Chris Down <chris@chrisdown.name>
Cc: <stable@vger.kernel.org> [5.3+]
Link: https://lkml.kernel.org/r/20201110031015.15715-1-songmuchun@bytedance.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Both btrfs and fuse have reported faults caused by seeing a retry entry
instead of the page they were looking for. This was caused by a missing
check in the iterator.
As can be seen in the below panic log, the accessing 0x402 causes a
panic. In the xarray.h, 0x402 means RETRY_ENTRY.
BUG: kernel NULL pointer dereference, address: 0000000000000402
CPU: 14 PID: 306003 Comm: as Not tainted 5.9.0-1-amd64 #1 Debian 5.9.1-1
Hardware name: Lenovo ThinkSystem SR665/7D2VCTO1WW, BIOS D8E106Q-1.01 05/30/2020
RIP: 0010:fuse_readahead+0x152/0x470 [fuse]
Code: 41 8b 57 18 4c 8d 54 10 ff 4c 89 d6 48 8d 7c 24 10 e8 d2 e3 28 f9 48 85 c0 0f 84 fe 00 00 00 44 89 f2 49 89 04 d4 44 8d 72 01 <48> 8b 10 41 8b 4f 1c 48 c1 ea 10 83 e2 01 80 fa 01 19 d2 81 e2 01
RSP: 0018:ffffad99ceaebc50 EFLAGS: 00010246
RAX: 0000000000000402 RBX: 0000000000000001 RCX: 0000000000000002
RDX: 0000000000000000 RSI: ffff94c5af90bd98 RDI: ffffad99ceaebc60
RBP: ffff94ddc1749a00 R08: 0000000000000402 R09: 0000000000000000
R10: 0000000000000000 R11: 0000000000000100 R12: ffff94de6c429ce0
R13: ffff94de6c4d3700 R14: 0000000000000001 R15: ffffad99ceaebd68
FS: 00007f228c5c7040(0000) GS:ffff94de8ed80000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 0000000000000402 CR3: 0000001dbd9b4000 CR4: 0000000000350ee0
Call Trace:
read_pages+0x83/0x270
page_cache_readahead_unbounded+0x197/0x230
generic_file_buffered_read+0x57a/0xa20
new_sync_read+0x112/0x1a0
vfs_read+0xf8/0x180
ksys_read+0x5f/0xe0
do_syscall_64+0x33/0x80
entry_SYSCALL_64_after_hwframe+0x44/0xa9
Fixes: 042124cc64c3 ("mm: add new readahead_control API")
Reported-by: David Sterba <dsterba@suse.com>
Reported-by: Wonhyuk Yang <vvghjk1234@gmail.com>
Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Cc: <stable@vger.kernel.org>
Link: https://lkml.kernel.org/r/20201103142852.8543-1-willy@infradead.org
Link: https://lkml.kernel.org/r/20201103124349.16722-1-vvghjk1234@gmail.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
The core-mm has a default __weak implementation of phys_to_target_node()
to mirror the weak definition of memory_add_physaddr_to_nid(). That
symbol is exported for modules. However, while the export in
mm/memory_hotplug.c exported the symbol in the configuration cases of:
CONFIG_NUMA_KEEP_MEMINFO=y
CONFIG_MEMORY_HOTPLUG=y
...and:
CONFIG_NUMA_KEEP_MEMINFO=n
CONFIG_MEMORY_HOTPLUG=y
...it failed to export the symbol in the case of:
CONFIG_NUMA_KEEP_MEMINFO=y
CONFIG_MEMORY_HOTPLUG=n
Not only is that broken, but Christoph points out that the kernel should
not be exporting any __weak symbol, which means that
memory_add_physaddr_to_nid() example that phys_to_target_node() copied
is broken too.
Rework the definition of phys_to_target_node() and
memory_add_physaddr_to_nid() to not require weak symbols. Move to the
common arch override design-pattern of an asm header defining a symbol
to replace the default implementation.
The only common header that all memory_add_physaddr_to_nid() producing
architectures implement is asm/sparsemem.h. In fact, powerpc already
defines its memory_add_physaddr_to_nid() helper in sparsemem.h.
Double-down on that observation and define phys_to_target_node() where
necessary in asm/sparsemem.h. An alternate consideration that was
discarded was to put this override in asm/numa.h, but that entangles
with the definition of MAX_NUMNODES relative to the inclusion of
linux/nodemask.h, and requires powerpc to grow a new header.
The dependency on NUMA_KEEP_MEMINFO for DEV_DAX_HMEM_DEVICES is invalid
now that the symbol is properly exported / stubbed in all combinations
of CONFIG_NUMA_KEEP_MEMINFO and CONFIG_MEMORY_HOTPLUG.
[dan.j.williams@intel.com: v4]
Link: https://lkml.kernel.org/r/160461461867.1505359.5301571728749534585.stgit@dwillia2-desk3.amr.corp.intel.com
[dan.j.williams@intel.com: powerpc: fix create_section_mapping compile warning]
Link: https://lkml.kernel.org/r/160558386174.2948926.2740149041249041764.stgit@dwillia2-desk3.amr.corp.intel.com
Fixes: a035b6bf863e ("mm/memory_hotplug: introduce default phys_to_target_node() implementation")
Reported-by: Randy Dunlap <rdunlap@infradead.org>
Reported-by: Thomas Gleixner <tglx@linutronix.de>
Reported-by: kernel test robot <lkp@intel.com>
Reported-by: Christoph Hellwig <hch@infradead.org>
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Tested-by: Randy Dunlap <rdunlap@infradead.org>
Tested-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Cc: Joao Martins <joao.m.martins@oracle.com>
Cc: Tony Luck <tony.luck@intel.com>
Cc: Fenghua Yu <fenghua.yu@intel.com>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Vishal Verma <vishal.l.verma@intel.com>
Cc: Stephen Rothwell <sfr@canb.auug.org.au>
Link: https://lkml.kernel.org/r/160447639846.1133764.7044090803980177548.stgit@dwillia2-desk3.amr.corp.intel.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
bpftrace parses the kernel headers and uses Clang under the hood.
Remove the version check when __BPF_TRACING__ is defined (as bpftrace
does) so that this tool can continue to parse kernel headers, even with
older clang sources.
Fixes: commit 1f7a44f63e6c ("compiler-clang: add build check for clang 10.0.1")
Reported-by: Chen Yu <yu.chen.surf@gmail.com>
Reported-by: Jarkko Sakkinen <jarkko@kernel.org>
Signed-off-by: Nick Desaulniers <ndesaulniers@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Tested-by: Jarkko Sakkinen <jarkko@kernel.org>
Acked-by: Jarkko Sakkinen <jarkko@kernel.org>
Acked-by: Song Liu <songliubraving@fb.com>
Acked-by: Nathan Chancellor <natechancellor@gmail.com>
Acked-by: Miguel Ojeda <ojeda@kernel.org>
Link: https://lkml.kernel.org/r/20201104191052.390657-1-ndesaulniers@google.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
The early return in process_madvise() will produce a memory leak.
Fix it.
Fixes: ecb8ac8b1f14 ("mm/madvise: introduce process_madvise() syscall: an external memory hinting API")
Signed-off-by: Eric Dumazet <edumazet@google.com>
Signed-off-by: Minchan Kim <minchan@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Link: https://lkml.kernel.org/r/20201116155132.GA3805951@google.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
It looks like the seccomp selftests was never actually built for sh.
This fixes it, though I don't have an environment to do a runtime test
of it yet.
Fixes: 0bb605c2c7f2b4b3 ("sh: Add SECCOMP_FILTER")
Tested-by: John Paul Adrian Glaubitz <glaubitz@physik.fu-berlin.de>
Link: https://lore.kernel.org/lkml/a36d7b48-6598-1642-e403-0c77a86f416d@physik.fu-berlin.de
Signed-off-by: Kees Cook <keescook@chromium.org>
|
|
A typo sneaked into the powerpc selftest. Fix the name so it builds again.
Fixes: 46138329faea ("selftests/seccomp: powerpc: Fix seccomp return value testing")
Acked-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/lkml/87y2ix2895.fsf@mpe.ellerman.id.au
Signed-off-by: Kees Cook <keescook@chromium.org>
|
|
x86 Hyper-V used to essentially always overwrite the effective cache type
of guest memory accesses to WB. This was problematic in cases where there
is a physical device assigned to the VM, since that often requires that
the VM should have control over cache types. Thus, on newer Hyper-V since
2018, Hyper-V always honors the VM's cache type, but unexpectedly Linux VM
users start to complain that Linux VM's VRAM becomes very slow, and it
turns out that Linux VM should not map the VRAM uncacheable by ioremap().
Fix this slowness issue by using ioremap_cache().
On ARM64, ioremap_cache() is also required as the host also maps the VRAM
cacheable, otherwise VM Connect can't display properly with ioremap() or
ioremap_wc().
With this change, the VRAM on new Hyper-V is as fast as regular RAM, so
it's no longer necessary to use the hacks we added to mitigate the
slowness, i.e. we no longer need to allocate physical memory and use
it to back up the VRAM in Generation-1 VM, and we also no longer need to
allocate physical memory to back up the framebuffer in a Generation-2 VM
and copy the framebuffer to the real VRAM. A further big change will
address these for v5.11.
Fixes: 68a2d20b79b1 ("drivers/video: add Hyper-V Synthetic Video Frame Buffer Driver")
Tested-by: Boqun Feng <boqun.feng@gmail.com>
Signed-off-by: Dexuan Cui <decui@microsoft.com>
Reviewed-by: Michael Kelley <mikelley@microsoft.com>
Reviewed-by: Haiyang Zhang <haiyangz@microsoft.com>
Link: https://lore.kernel.org/r/20201118000305.24797-1-decui@microsoft.com
Signed-off-by: Wei Liu <wei.liu@kernel.org>
|
|
The idea of the warning in ext4_update_dx_flag() is that we should warn
when we are clearing EXT4_INODE_INDEX on a filesystem with metadata
checksums enabled since after clearing the flag, checksums for internal
htree nodes will become invalid. So there's no need to warn (or actually
do anything) when EXT4_INODE_INDEX is not set.
Link: https://lore.kernel.org/r/20201118153032.17281-1-jack@suse.cz
Fixes: 48a34311953d ("ext4: fix checksum errors with indexed dirs")
Reported-by: Eric Biggers <ebiggers@kernel.org>
Reviewed-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: Jan Kara <jack@suse.cz>
Signed-off-by: Theodore Ts'o <tytso@mit.edu>
Cc: stable@kernel.org
|
|
Kernel-doc markup should use this format:
identifier - description
They should not have any type before that, as otherwise
the parser won't do the right thing.
Also, some identifiers have different names between their
prototypes and the kernel-doc markup.
Reviewed-by: Jan Kara <jack@suse.cz>
Signed-off-by: Mauro Carvalho Chehab <mchehab+huawei@kernel.org>
Link: https://lore.kernel.org/r/72f5c6628f5f278d67625f60893ffbc2ca28d46e.1605521731.git.mchehab+huawei@kernel.org
Signed-off-by: Theodore Ts'o <tytso@mit.edu>
|
|
This reverts commit 6ff646b2ceb0eec916101877f38da0b73e3a5b7f.
Your maintainer committed a major braino in the rmap code by adding the
attr fork, bmbt, and unwritten extent usage bits into rmap record key
comparisons. While XFS uses the usage bits *in the rmap records* for
cross-referencing metadata in xfs_scrub and xfs_repair, it only needs
the owner and offset information to distinguish between reverse mappings
of the same physical extent into the data fork of a file at multiple
offsets. The other bits are not important for key comparisons for index
lookups, and never have been.
Eric Sandeen reports that this causes regressions in generic/299, so
undo this patch before it does more damage.
Reported-by: Eric Sandeen <sandeen@sandeen.net>
Fixes: 6ff646b2ceb0 ("xfs: fix rmap key and record comparison functions")
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Eric Sandeen <sandeen@redhat.com>
|
|
The options in /proc/mounts must be valid mount options --- and
fast_commit is not a mount option. Otherwise, command sequences like
this will fail:
# mount /dev/vdc /vdc
# mkdir -p /vdc/phoronix_test_suite /pts
# mount --bind /vdc/phoronix_test_suite /pts
# mount -o remount,nodioread_nolock /pts
mount: /pts: mount point not mounted or bad option.
And in the system logs, you'll find:
EXT4-fs (vdc): Unrecognized mount option "fast_commit" or missing value
Fixes: 995a3ed67fc8 ("ext4: add fast_commit feature and handling for extended mount options")
Signed-off-by: Theodore Ts'o <tytso@mit.edu>
|
|
Forcing mocs:1 [used for our winsys follows-pte mode] to be cached
caused display glitches. Though it is documented as deprecated (and so
likely behaves as uncached) use the follow-pte bit and force it out of
L3 cache.
Testcase: igt/kms_frontbuffer_tracking
Testcase: igt/kms_big_fb
Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk>
Cc: Ayaz A Siddiqui <ayaz.siddiqui@intel.com>
Cc: Lucas De Marchi <lucas.demarchi@intel.com>
Cc: Matt Roper <matthew.d.roper@intel.com>
Cc: Ville Syrjälä <ville.syrjala@linux.intel.com>
Cc: Joonas Lahtinen <joonas.lahtinen@linux.intel.com>
Reviewed-by: Ville Syrjälä <ville.syrjala@linux.intel.com>
Link: https://patchwork.freedesktop.org/patch/msgid/20201015122138.30161-4-chris@chris-wilson.co.uk
(cherry picked from commit a04ac827366594c7244f60e9be79fcb404af69f0)
Fixes: 849c0fe9e831 ("drm/i915/gt: Initialize reserved and unspecified MOCS indices")
Signed-off-by: Rodrigo Vivi <rodrigo.vivi@intel.com>
[Rodrigo: Updated Fixes tag]
|
|
Fix a mutex_unlock() issue where before copy_from_user() is
not called mutex_locked.
Fixes: 4b1a29a7f542 ("error-injection: Support fault injection framework")
Reported-by: Hulk Robot <hulkci@huawei.com>
Signed-off-by: Luo Meng <luomeng12@huawei.com>
Signed-off-by: Masami Hiramatsu <mhiramat@kernel.org>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Masami Hiramatsu <mhiramat@kernel.org>
Link: https://lore.kernel.org/bpf/160570737118.263807.8358435412898356284.stgit@devnote2
|
|
Previously, bpf_probe_read_user_str() could potentially overcopy the
trailing bytes after the NUL due to how do_strncpy_from_user() does the
copy in long-sized strides. The issue has been fixed in the previous
commit.
This commit adds a selftest that ensures we don't regress
bpf_probe_read_user_str() again.
Signed-off-by: Daniel Xu <dxu@dxuuu.xyz>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Song Liu <songliubraving@fb.com>
Acked-by: Andrii Nakryiko <andrii@kernel.org>
Link: https://lore.kernel.org/bpf/4d977508fab4ec5b7b574b85bdf8b398868b6ee9.1605642949.git.dxu@dxuuu.xyz
|
|
do_strncpy_from_user() may copy some extra bytes after the NUL
terminator into the destination buffer. This usually does not matter for
normal string operations. However, when BPF programs key BPF maps with
strings, this matters a lot.
A BPF program may read strings from user memory by calling the
bpf_probe_read_user_str() helper which eventually calls
do_strncpy_from_user(). The program can then key a map with the
destination buffer. BPF map keys are fixed-width and string-agnostic,
meaning that map keys are treated as a set of bytes.
The issue is when do_strncpy_from_user() overcopies bytes after the NUL
terminator, it can result in seemingly identical strings occupying
multiple slots in a BPF map. This behavior is subtle and totally
unexpected by the user.
This commit masks out the bytes following the NUL while preserving
long-sized stride in the fast path.
Fixes: 6ae08ae3dea2 ("bpf: Add probe_read_{user, kernel} and probe_read_{user, kernel}_str helpers")
Signed-off-by: Daniel Xu <dxu@dxuuu.xyz>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Link: https://lore.kernel.org/bpf/21efc982b3e9f2f7b0379eed642294caaa0c27a7.1605642949.git.dxu@dxuuu.xyz
|
|
Commit 7053e0eab473 ("drm/vram-helper: stop using TTM placement flags")
cleared the BO placement flags if top-down placement had been selected.
Hence, BOs that were supposed to go into VRAM are now placed in a default
location in system memory.
Trying to scanout the incorrectly pinned BO results in displayed garbage
and an error message.
[ 146.108127] ------------[ cut here ]------------
[ 146.1V08180] WARNING: CPU: 0 PID: 152 at drivers/gpu/drm/drm_gem_vram_helper.c:284 drm_gem_vram_offset+0x59/0x60 [drm_vram_helper]
...
[ 146.108591] ast_cursor_page_flip+0x3e/0x150 [ast]
[ 146.108622] ast_cursor_plane_helper_atomic_update+0x8a/0xc0 [ast]
[ 146.108654] drm_atomic_helper_commit_planes+0x197/0x4c0
[ 146.108699] drm_atomic_helper_commit_tail_rpm+0x59/0xa0
[ 146.108718] commit_tail+0x103/0x1c0
...
[ 146.109302] ---[ end trace d901a1ba1d949036 ]---
Fix the bug by keeping the placement flags. The top-down placement flag
is stored in a separate variable.
Signed-off-by: Thomas Zimmermann <tzimmermann@suse.de>
Reviewed-by: Christian König <christian.koenig@amd.com>
Fixes: 7053e0eab473 ("drm/vram-helper: stop using TTM placement flags")
Reported-by: Pu Wen <puwen@hygon.cn> [for 5.10-rc1]
Tested-by: Pu Wen <puwen@hygon.cn>
Cc: Christian König <christian.koenig@amd.com>
Cc: Dave Airlie <airlied@redhat.com>
Cc: Maarten Lankhorst <maarten.lankhorst@linux.intel.com>
Cc: Maxime Ripard <mripard@kernel.org>
Cc: Thomas Zimmermann <tzimmermann@suse.de>
Cc: David Airlie <airlied@linux.ie>
Cc: Daniel Vetter <daniel@ffwll.ch>
Cc: dri-devel@lists.freedesktop.org
Link: https://patchwork.freedesktop.org/patch/msgid/20200921142536.4392-1-tzimmermann@suse.de
(cherry picked from commit b8f8dbf6495850b0babc551377bde754b7bc0eea)
[pulled into fixes from drm-next]
Signed-off-by: Dave Airlie <airlied@redhat.com>
|
|
Sparse complaints 3 times about:
net/smc/smc_ib.c:203:52: warning: incorrect type in argument 1 (different address spaces)
net/smc/smc_ib.c:203:52: expected struct net_device const *dev
net/smc/smc_ib.c:203:52: got struct net_device [noderef] __rcu *const ndev
Fix that by using the existing and validated ndev variable instead of
accessing attr->ndev directly.
Fixes: 5102eca9039b ("net/smc: Use rdma_read_gid_l2_fields to L2 fields")
Signed-off-by: Karsten Graul <kgraul@linux.ibm.com>
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
|
|
With the multi-subnet support of SMC-Dv2 the match for existing link
groups should not include the vlanid of the network device.
Set ini->smcd_version accordingly before the call to smc_conn_create()
and use this value in smc_conn_create() to skip the vlanid check.
Fixes: 5c21c4ccafe8 ("net/smc: determine accepted ISM devices")
Signed-off-by: Karsten Graul <kgraul@linux.ibm.com>
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
|
|
IPV6=m
NF_DEFRAG_IPV6=y
ld: net/ipv6/netfilter/nf_conntrack_reasm.o: in function
`nf_ct_frag6_gather':
net/ipv6/netfilter/nf_conntrack_reasm.c:462: undefined reference to
`ipv6_frag_thdr_truncated'
Netfilter is depending on ipv6 symbol ipv6_frag_thdr_truncated. This
dependency is forcing IPV6=y.
Remove this dependency by moving ipv6_frag_thdr_truncated out of ipv6. This
is the same solution as used with a similar issues: Referring to
commit 70b095c843266 ("ipv6: remove dependency of nf_defrag_ipv6 on ipv6
module")
Fixes: 9d9e937b1c8b ("ipv6/netfilter: Discard first fragment not including all headers")
Reported-by: Randy Dunlap <rdunlap@infradead.org>
Reported-by: kernel test robot <lkp@intel.com>
Signed-off-by: Georg Kohmann <geokohma@cisco.com>
Acked-by: Pablo Neira Ayuso <pablo@netfilter.org>
Acked-by: Randy Dunlap <rdunlap@infradead.org> # build-tested
Link: https://lore.kernel.org/r/20201119095833.8409-1-geokohma@cisco.com
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
|
|
The code change for switching to non-atomic mode brought the
unexpected mutex deadlock in get_msg(). It converted the spinlock
with the existing mutex, but there were calls with the already holding
the mutex. Since the only place that needs the extra lock is the code
path from snd_mixart_send_msg(), remove the mutex lock in get_msg()
and apply in the caller side for fixing the mutex deadlock.
Fixes: 8d3a8b5cb57d ("ALSA: mixart: Use nonatomic PCM ops")
Reported-by: Dan Carpenter <dan.carpenter@oracle.com>
Cc: <stable@vger.kernel.org>
Link: https://lore.kernel.org/r/20201119121440.18945-1-tiwai@suse.de
Signed-off-by: Takashi Iwai <tiwai@suse.de>
|
|
Jens has reported a situation where partial direct IOs can be issued
and completed yet still return -EAGAIN. We don't want this to report
a short IO as we want XFS to complete user DIO entirely or not at
all.
This partial IO situation can occur on a write IO that is split
across an allocated extent and a hole, and the second mapping is
returning EAGAIN because allocation would be required.
The trivial reproducer:
$ sudo xfs_io -fdt -c "pwrite 0 4k" -c "pwrite -V 1 -b 8k -N 0 8k" /mnt/scr/foo
wrote 4096/4096 bytes at offset 0
4 KiB, 1 ops; 0.0001 sec (27.509 MiB/sec and 7042.2535 ops/sec)
pwrite: Resource temporarily unavailable
$
The pwritev2(0, 8kB, RWF_NOWAIT) call returns EAGAIN having done
the first 4kB write:
xfs_file_direct_write: dev 259:1 ino 0x83 size 0x1000 offset 0x0 count 0x2000
iomap_apply: dev 259:1 ino 0x83 pos 0 length 8192 flags WRITE|DIRECT|NOWAIT (0x31) ops xfs_direct_write_iomap_ops caller iomap_dio_rw actor iomap_dio_actor
xfs_ilock_nowait: dev 259:1 ino 0x83 flags ILOCK_SHARED caller xfs_ilock_for_iomap
xfs_iunlock: dev 259:1 ino 0x83 flags ILOCK_SHARED caller xfs_direct_write_iomap_begin
xfs_iomap_found: dev 259:1 ino 0x83 size 0x1000 offset 0x0 count 8192 fork data startoff 0x0 startblock 24 blockcount 0x1
iomap_apply_dstmap: dev 259:1 ino 0x83 bdev 259:1 addr 102400 offset 0 length 4096 type MAPPED flags DIRTY
Here the first iomap loop has mapped the first 4kB of the file and
issued the IO, and we enter the second iomap_apply loop:
iomap_apply: dev 259:1 ino 0x83 pos 4096 length 4096 flags WRITE|DIRECT|NOWAIT (0x31) ops xfs_direct_write_iomap_ops caller iomap_dio_rw actor iomap_dio_actor
xfs_ilock_nowait: dev 259:1 ino 0x83 flags ILOCK_SHARED caller xfs_ilock_for_iomap
xfs_iunlock: dev 259:1 ino 0x83 flags ILOCK_SHARED caller xfs_direct_write_iomap_begin
And we exit with -EAGAIN out because we hit the allocate case trying
to make the second 4kB block.
Then IO completes on the first 4kB and the original IO context
completes and unlocks the inode, returning -EAGAIN to userspace:
xfs_end_io_direct_write: dev 259:1 ino 0x83 isize 0x1000 disize 0x1000 offset 0x0 count 4096
xfs_iunlock: dev 259:1 ino 0x83 flags IOLOCK_SHARED caller xfs_file_dio_aio_write
There are other vectors to the same problem when we re-enter the
mapping code if we have to make multiple mappinfs under NOWAIT
conditions. e.g. failing trylocks, COW extents being found,
allocation being required, and so on.
Avoid all these potential problems by only allowing IOMAP_NOWAIT IO
to go ahead if the mapping we retrieve for the IO spans an entire
allocated extent. This avoids the possibility of subsequent mappings
to complete the IO from triggering NOWAIT semantics by any means as
NOWAIT IO will now only enter the mapping code once per NOWAIT IO.
Reported-and-tested-by: Jens Axboe <axboe@kernel.dk>
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
|
|
We remove "other info" from "readelf -s --wide" output when
parsing GLOBAL_SYM_COUNT variable, which was added in [1].
But we don't do that for VERSIONED_SYM_COUNT and it's failing
the check_abi target on powerpc Fedora 33.
The extra "other info" wasn't problem for VERSIONED_SYM_COUNT
parsing until commit [2] added awk in the pipe, which assumes
that the last column is symbol, but it can be "other info".
Adding "other info" removal for VERSIONED_SYM_COUNT the same
way as we did for GLOBAL_SYM_COUNT parsing.
[1] aa915931ac3e ("libbpf: Fix readelf output parsing for Fedora")
[2] 746f534a4809 ("tools/libbpf: Avoid counting local symbols in ABI check")
Fixes: 746f534a4809 ("tools/libbpf: Avoid counting local symbols in ABI check")
Signed-off-by: Jiri Olsa <jolsa@kernel.org>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Andrii Nakryiko <andrii@kernel.org>
Link: https://lore.kernel.org/bpf/20201118211350.1493421-1-jolsa@kernel.org
|
|
Some users are pairing the Dinovo keyboards with the MX5000 or MX5500
receivers, instead of with the Dinovo receivers. The receivers are
mostly the same (and the air protocol obviously is compatible) but
currently the Dinovo receivers are handled by hid-lg.c while the
MX5x00 receivers are handled by logitech-dj.c.
When using a Dinovo keyboard, with its builtin touchpad, through
logitech-dj.c then the touchpad stops working because when asking the
receiver for paired devices, we get only 1 paired device with
a device_type of REPORT_TYPE_KEYBOARD. And since we don't see a paired
mouse, we have nowhere to send mouse-events to, so we drop them.
Extend the existing fix for the Dinovo Edge for this to also cover the
Dinovo Mini keyboard and also add a mapping to logitech-hidpp for the
Media key on the Dinovo Mini, so that that keeps working too.
BugLink: https://bugzilla.redhat.com/show_bug.cgi?id=1811424
Fixes: f2113c3020ef ("HID: logitech-dj: add support for Logitech Bluetooth Mini-Receiver")
Signed-off-by: Hans de Goede <hdegoede@redhat.com>
Signed-off-by: Benjamin Tissoires <benjamin.tissoires@redhat.com>
|
|
Fix an error in the mouse / INPUT(2) descriptor used for quad/bt2.0 combo
receivers. Replace INPUT with INPUT (Data,Var,Abs) for the field for the
4 extra buttons which share their report-byte with the low-res hwheel.
This is likely a copy and paste error. I've verified that the new
0x81, 0x02 value matches both the mouse descriptor for the currently
supported MX5000 / MX5500 receivers, as well as the INPUT(2) mouse
descriptors for the Dinovo receivers for which support is being
worked on.
Cc: stable@vger.kernel.org
Fixes: f2113c3020ef ("HID: logitech-dj: add support for Logitech Bluetooth Mini-Receiver")
Signed-off-by: Hans de Goede <hdegoede@redhat.com>
Signed-off-by: Benjamin Tissoires <benjamin.tissoires@redhat.com>
|
|
This reverts commit 8986f223bd777a73119f5d593c15b4d630ff49bb.
The proper fix is queued in Will's tree now
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
|
|
pseries|pnv_setup_rfi_flush already does the count cache flush setup, and
we just added entry and uaccess flushes. So the name is not very accurate
any more. In both platforms we then also immediately setup the STF flush.
Rename them to _setup_security_mitigations and fold the STF flush in.
Signed-off-by: Daniel Axtens <dja@axtens.net>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
|