Age | Commit message (Collapse) | Author | Files | Lines |
|
Use KVM_SET_USER_MEMORY_REGION2 throughout KVM's selftests library so that
support for guest private memory can be added without needing an entirely
separate set of helpers.
Note, this obviously makes selftests backwards-incompatible with older KVM
versions from this point forward.
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20231027182217.3615211-26-seanjc@google.com>
Reviewed-by: Fuad Tabba <tabba@google.com>
Tested-by: Fuad Tabba <tabba@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
Drop kvm_userspace_memory_region_find(), it's unused and a terrible API
(probably why it's unused). If anything outside of kvm_util.c needs to
get at the memslot, userspace_mem_region_find() can be exposed to give
others full access to all memory region/slot information.
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20231027182217.3615211-25-seanjc@google.com>
Reviewed-by: Fuad Tabba <tabba@google.com>
Tested-by: Fuad Tabba <tabba@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
Add a new x86 VM type, KVM_X86_SW_PROTECTED_VM, to serve as a development
and testing vehicle for Confidential (CoCo) VMs, and potentially to even
become a "real" product in the distant future, e.g. a la pKVM.
The private memory support in KVM x86 is aimed at AMD's SEV-SNP and
Intel's TDX, but those technologies are extremely complex (understatement),
difficult to debug, don't support running as nested guests, and require
hardware that's isn't universally accessible. I.e. relying SEV-SNP or TDX
for maintaining guest private memory isn't a realistic option.
At the very least, KVM_X86_SW_PROTECTED_VM will enable a variety of
selftests for guest_memfd and private memory support without requiring
unique hardware.
Signed-off-by: Sean Christopherson <seanjc@google.com>
Reviewed-by: Paolo Bonzini <pbonzini@redhat.com>
Message-Id: <20231027182217.3615211-24-seanjc@google.com>
Reviewed-by: Fuad Tabba <tabba@google.com>
Tested-by: Fuad Tabba <tabba@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
Let x86 track the number of address spaces on a per-VM basis so that KVM
can disallow SMM memslots for confidential VMs. Confidentials VMs are
fundamentally incompatible with emulating SMM, which as the name suggests
requires being able to read and write guest memory and register state.
Disallowing SMM will simplify support for guest private memory, as KVM
will not need to worry about tracking memory attributes for multiple
address spaces (SMM is the only "non-default" address space across all
architectures).
Signed-off-by: Sean Christopherson <seanjc@google.com>
Reviewed-by: Paolo Bonzini <pbonzini@redhat.com>
Reviewed-by: Fuad Tabba <tabba@google.com>
Tested-by: Fuad Tabba <tabba@google.com>
Message-Id: <20231027182217.3615211-23-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
Drop __KVM_VCPU_MULTIPLE_ADDRESS_SPACE and instead check the value of
KVM_ADDRESS_SPACE_NUM.
No functional change intended.
Reviewed-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Reviewed-by: Fuad Tabba <tabba@google.com>
Tested-by: Fuad Tabba <tabba@google.com>
Message-Id: <20231027182217.3615211-22-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
Add support for resolving page faults on guest private memory for VMs
that differentiate between "shared" and "private" memory. For such VMs,
KVM_MEM_GUEST_MEMFD memslots can include both fd-based private memory and
hva-based shared memory, and KVM needs to map in the "correct" variant,
i.e. KVM needs to map the gfn shared/private as appropriate based on the
current state of the gfn's KVM_MEMORY_ATTRIBUTE_PRIVATE flag.
For AMD's SEV-SNP and Intel's TDX, the guest effectively gets to request
shared vs. private via a bit in the guest page tables, i.e. what the guest
wants may conflict with the current memory attributes. To support such
"implicit" conversion requests, exit to user with KVM_EXIT_MEMORY_FAULT
to forward the request to userspace. Add a new flag for memory faults,
KVM_MEMORY_EXIT_FLAG_PRIVATE, to communicate whether the guest wants to
map memory as shared vs. private.
Like KVM_MEMORY_ATTRIBUTE_PRIVATE, use bit 3 for flagging private memory
so that KVM can use bits 0-2 for capturing RWX behavior if/when userspace
needs such information, e.g. a likely user of KVM_EXIT_MEMORY_FAULT is to
exit on missing mappings when handling guest page fault VM-Exits. In
that case, userspace will want to know RWX information in order to
correctly/precisely resolve the fault.
Note, private memory *must* be backed by guest_memfd, i.e. shared mappings
always come from the host userspace page tables, and private mappings
always come from a guest_memfd instance.
Co-developed-by: Yu Zhang <yu.c.zhang@linux.intel.com>
Signed-off-by: Yu Zhang <yu.c.zhang@linux.intel.com>
Signed-off-by: Chao Peng <chao.p.peng@linux.intel.com>
Co-developed-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Reviewed-by: Fuad Tabba <tabba@google.com>
Tested-by: Fuad Tabba <tabba@google.com>
Message-Id: <20231027182217.3615211-21-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
Disallow creating hugepages with mixed memory attributes, e.g. shared
versus private, as mapping a hugepage in this case would allow the guest
to access memory with the wrong attributes, e.g. overlaying private memory
with a shared hugepage.
Tracking whether or not attributes are mixed via the existing
disallow_lpage field, but use the most significant bit in 'disallow_lpage'
to indicate a hugepage has mixed attributes instead using the normal
refcounting. Whether or not attributes are mixed is binary; either they
are or they aren't. Attempting to squeeze that info into the refcount is
unnecessarily complex as it would require knowing the previous state of
the mixed count when updating attributes. Using a flag means KVM just
needs to ensure the current status is reflected in the memslots.
Signed-off-by: Chao Peng <chao.p.peng@linux.intel.com>
Co-developed-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20231027182217.3615211-20-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
Initialize run->exit_reason to KVM_EXIT_UNKNOWN early in KVM_RUN to reduce
the probability of exiting to userspace with a stale run->exit_reason that
*appears* to be valid.
To support fd-based guest memory (guest memory without a corresponding
userspace virtual address), KVM will exit to userspace for various memory
related errors, which userspace *may* be able to resolve, instead of using
e.g. BUS_MCEERR_AR. And in the more distant future, KVM will also likely
utilize the same functionality to let userspace "intercept" and handle
memory faults when the userspace mapping is missing, i.e. when fast gup()
fails.
Because many of KVM's internal APIs related to guest memory use '0' to
indicate "success, continue on" and not "exit to userspace", reporting
memory faults/errors to userspace will set run->exit_reason and
corresponding fields in the run structure fields in conjunction with a
a non-zero, negative return code, e.g. -EFAULT or -EHWPOISON. And because
KVM already returns -EFAULT in many paths, there's a relatively high
probability that KVM could return -EFAULT without setting run->exit_reason,
in which case reporting KVM_EXIT_UNKNOWN is much better than reporting
whatever exit reason happened to be in the run structure.
Note, KVM must wait until after run->immediate_exit is serviced to
sanitize run->exit_reason as KVM's ABI is that run->exit_reason is
preserved across KVM_RUN when run->immediate_exit is true.
Link: https://lore.kernel.org/all/20230908222905.1321305-1-amoorthy@google.com
Link: https://lore.kernel.org/all/ZFFbwOXZ5uI%2Fgdaf@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
Reviewed-by: Paolo Bonzini <pbonzini@redhat.com>
Reviewed-by: Fuad Tabba <tabba@google.com>
Tested-by: Fuad Tabba <tabba@google.com>
Message-Id: <20231027182217.3615211-19-seanjc@google.com>
Reviewed-by: Xiaoyao Li <xiaoyao.li@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
Introduce an ioctl(), KVM_CREATE_GUEST_MEMFD, to allow creating file-based
memory that is tied to a specific KVM virtual machine and whose primary
purpose is to serve guest memory.
A guest-first memory subsystem allows for optimizations and enhancements
that are kludgy or outright infeasible to implement/support in a generic
memory subsystem. With guest_memfd, guest protections and mapping sizes
are fully decoupled from host userspace mappings. E.g. KVM currently
doesn't support mapping memory as writable in the guest without it also
being writable in host userspace, as KVM's ABI uses VMA protections to
define the allow guest protection. Userspace can fudge this by
establishing two mappings, a writable mapping for the guest and readable
one for itself, but that’s suboptimal on multiple fronts.
Similarly, KVM currently requires the guest mapping size to be a strict
subset of the host userspace mapping size, e.g. KVM doesn’t support
creating a 1GiB guest mapping unless userspace also has a 1GiB guest
mapping. Decoupling the mappings sizes would allow userspace to precisely
map only what is needed without impacting guest performance, e.g. to
harden against unintentional accesses to guest memory.
Decoupling guest and userspace mappings may also allow for a cleaner
alternative to high-granularity mappings for HugeTLB, which has reached a
bit of an impasse and is unlikely to ever be merged.
A guest-first memory subsystem also provides clearer line of sight to
things like a dedicated memory pool (for slice-of-hardware VMs) and
elimination of "struct page" (for offload setups where userspace _never_
needs to mmap() guest memory).
More immediately, being able to map memory into KVM guests without mapping
said memory into the host is critical for Confidential VMs (CoCo VMs), the
initial use case for guest_memfd. While AMD's SEV and Intel's TDX prevent
untrusted software from reading guest private data by encrypting guest
memory with a key that isn't usable by the untrusted host, projects such
as Protected KVM (pKVM) provide confidentiality and integrity *without*
relying on memory encryption. And with SEV-SNP and TDX, accessing guest
private memory can be fatal to the host, i.e. KVM must be prevent host
userspace from accessing guest memory irrespective of hardware behavior.
Attempt #1 to support CoCo VMs was to add a VMA flag to mark memory as
being mappable only by KVM (or a similarly enlightened kernel subsystem).
That approach was abandoned largely due to it needing to play games with
PROT_NONE to prevent userspace from accessing guest memory.
Attempt #2 to was to usurp PG_hwpoison to prevent the host from mapping
guest private memory into userspace, but that approach failed to meet
several requirements for software-based CoCo VMs, e.g. pKVM, as the kernel
wouldn't easily be able to enforce a 1:1 page:guest association, let alone
a 1:1 pfn:gfn mapping. And using PG_hwpoison does not work for memory
that isn't backed by 'struct page', e.g. if devices gain support for
exposing encrypted memory regions to guests.
Attempt #3 was to extend the memfd() syscall and wrap shmem to provide
dedicated file-based guest memory. That approach made it as far as v10
before feedback from Hugh Dickins and Christian Brauner (and others) led
to it demise.
Hugh's objection was that piggybacking shmem made no sense for KVM's use
case as KVM didn't actually *want* the features provided by shmem. I.e.
KVM was using memfd() and shmem to avoid having to manage memory directly,
not because memfd() and shmem were the optimal solution, e.g. things like
read/write/mmap in shmem were dead weight.
Christian pointed out flaws with implementing a partial overlay (wrapping
only _some_ of shmem), e.g. poking at inode_operations or super_operations
would show shmem stuff, but address_space_operations and file_operations
would show KVM's overlay. Paraphrashing heavily, Christian suggested KVM
stop being lazy and create a proper API.
Link: https://lore.kernel.org/all/20201020061859.18385-1-kirill.shutemov@linux.intel.com
Link: https://lore.kernel.org/all/20210416154106.23721-1-kirill.shutemov@linux.intel.com
Link: https://lore.kernel.org/all/20210824005248.200037-1-seanjc@google.com
Link: https://lore.kernel.org/all/20211111141352.26311-1-chao.p.peng@linux.intel.com
Link: https://lore.kernel.org/all/20221202061347.1070246-1-chao.p.peng@linux.intel.com
Link: https://lore.kernel.org/all/ff5c5b97-acdf-9745-ebe5-c6609dd6322e@google.com
Link: https://lore.kernel.org/all/20230418-anfallen-irdisch-6993a61be10b@brauner
Link: https://lore.kernel.org/all/ZEM5Zq8oo+xnApW9@google.com
Link: https://lore.kernel.org/linux-mm/20230306191944.GA15773@monkey
Link: https://lore.kernel.org/linux-mm/ZII1p8ZHlHaQ3dDl@casper.infradead.org
Cc: Fuad Tabba <tabba@google.com>
Cc: Vishal Annapurve <vannapurve@google.com>
Cc: Ackerley Tng <ackerleytng@google.com>
Cc: Jarkko Sakkinen <jarkko@kernel.org>
Cc: Maciej Szmigiero <mail@maciej.szmigiero.name>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: David Hildenbrand <david@redhat.com>
Cc: Quentin Perret <qperret@google.com>
Cc: Michael Roth <michael.roth@amd.com>
Cc: Wang <wei.w.wang@intel.com>
Cc: Liam Merwick <liam.merwick@oracle.com>
Cc: Isaku Yamahata <isaku.yamahata@gmail.com>
Co-developed-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Co-developed-by: Yu Zhang <yu.c.zhang@linux.intel.com>
Signed-off-by: Yu Zhang <yu.c.zhang@linux.intel.com>
Co-developed-by: Chao Peng <chao.p.peng@linux.intel.com>
Signed-off-by: Chao Peng <chao.p.peng@linux.intel.com>
Co-developed-by: Ackerley Tng <ackerleytng@google.com>
Signed-off-by: Ackerley Tng <ackerleytng@google.com>
Co-developed-by: Isaku Yamahata <isaku.yamahata@intel.com>
Signed-off-by: Isaku Yamahata <isaku.yamahata@intel.com>
Co-developed-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Co-developed-by: Michael Roth <michael.roth@amd.com>
Signed-off-by: Michael Roth <michael.roth@amd.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20231027182217.3615211-17-seanjc@google.com>
Reviewed-by: Fuad Tabba <tabba@google.com>
Tested-by: Fuad Tabba <tabba@google.com>
Reviewed-by: Xiaoyao Li <xiaoyao.li@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
The call to the inode_init_security_anon() LSM hook is not the sole
reason to use anon_inode_getfile_secure() or anon_inode_getfd_secure().
For example, the functions also allow one to create a file with non-zero
size, without needing a full-blown filesystem. In this case, you don't
need a "secure" version, just unique inodes; the current name of the
functions is confusing and does not explain well the difference with
the more "standard" anon_inode_getfile() and anon_inode_getfd().
Of course, there is another side of the coin; neither io_uring nor
userfaultfd strictly speaking need distinct inodes, and it is not
that clear anymore that anon_inode_create_get{file,fd}() allow the LSM
to intercept and block the inode's creation. If one was so inclined,
anon_inode_getfile_secure() and anon_inode_getfd_secure() could be kept,
using the shared inode or a new one depending on CONFIG_SECURITY.
However, this is probably overkill, and potentially a cause of bugs in
different configurations. Therefore, just add a comment to io_uring
and userfaultfd explaining the choice of the function.
While at it, remove the export for what is now anon_inode_create_getfd().
There is no in-tree module that uses it, and the old name is gone anyway.
If anybody actually needs the symbol, they can ask or they can just use
anon_inode_create_getfile(), which will be exported very soon for use
in KVM.
Suggested-by: Christian Brauner <brauner@kernel.org>
Reviewed-by: Christian Brauner <brauner@kernel.org>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
Add an "unmovable" flag for mappings that cannot be migrated under any
circumstance. KVM will use the flag for its upcoming GUEST_MEMFD support,
which will not support compaction/migration, at least not in the
foreseeable future.
Test AS_UNMOVABLE under folio lock as already done for the async
compaction/dirty folio case, as the mapping can be removed by truncation
while compaction is running. To avoid having to lock every folio with a
mapping, assume/require that unmovable mappings are also unevictable, and
have mapping_set_unmovable() also set AS_UNEVICTABLE.
Cc: Matthew Wilcox <willy@infradead.org>
Co-developed-by: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20231027182217.3615211-15-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
In confidential computing usages, whether a page is private or shared is
necessary information for KVM to perform operations like page fault
handling, page zapping etc. There are other potential use cases for
per-page memory attributes, e.g. to make memory read-only (or no-exec,
or exec-only, etc.) without having to modify memslots.
Introduce the KVM_SET_MEMORY_ATTRIBUTES ioctl, advertised by
KVM_CAP_MEMORY_ATTRIBUTES, to allow userspace to set the per-page memory
attributes to a guest memory range.
Use an xarray to store the per-page attributes internally, with a naive,
not fully optimized implementation, i.e. prioritize correctness over
performance for the initial implementation.
Use bit 3 for the PRIVATE attribute so that KVM can use bits 0-2 for RWX
attributes/protections in the future, e.g. to give userspace fine-grained
control over read, write, and execute protections for guest memory.
Provide arch hooks for handling attribute changes before and after common
code sets the new attributes, e.g. x86 will use the "pre" hook to zap all
relevant mappings, and the "post" hook to track whether or not hugepages
can be used to map the range.
To simplify the implementation wrap the entire sequence with
kvm_mmu_invalidate_{begin,end}() even though the operation isn't strictly
guaranteed to be an invalidation. For the initial use case, x86 *will*
always invalidate memory, and preventing arch code from creating new
mappings while the attributes are in flux makes it much easier to reason
about the correctness of consuming attributes.
It's possible that future usages may not require an invalidation, e.g.
if KVM ends up supporting RWX protections and userspace grants _more_
protections, but again opt for simplicity and punt optimizations to
if/when they are needed.
Suggested-by: Sean Christopherson <seanjc@google.com>
Link: https://lore.kernel.org/all/Y2WB48kD0J4VGynX@google.com
Cc: Fuad Tabba <tabba@google.com>
Cc: Xu Yilun <yilun.xu@intel.com>
Cc: Mickaël Salaün <mic@digikod.net>
Signed-off-by: Chao Peng <chao.p.peng@linux.intel.com>
Co-developed-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20231027182217.3615211-14-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
Drop the .on_unlock() mmu_notifer hook now that it's no longer used for
notifying arch code that memory has been reclaimed. Adding .on_unlock()
and invoking it *after* dropping mmu_lock was a terrible idea, as doing so
resulted in .on_lock() and .on_unlock() having divergent and asymmetric
behavior, and set future developers up for failure, i.e. all but asked for
bugs where KVM relied on using .on_unlock() to try to run a callback while
holding mmu_lock.
Opportunistically add a lockdep assertion in kvm_mmu_invalidate_end() to
guard against future bugs of this nature.
Reported-by: Isaku Yamahata <isaku.yamahata@intel.com>
Link: https://lore.kernel.org/all/20230802203119.GB2021422@ls.amr.corp.intel.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
Reviewed-by: Paolo Bonzini <pbonzini@redhat.com>
Reviewed-by: Fuad Tabba <tabba@google.com>
Tested-by: Fuad Tabba <tabba@google.com>
Message-Id: <20231027182217.3615211-12-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
Handle AMD SEV's kvm_arch_guest_memory_reclaimed() hook by having
__kvm_handle_hva_range() return whether or not an overlapping memslot
was found, i.e. mmu_lock was acquired. Using the .on_unlock() hook
works, but kvm_arch_guest_memory_reclaimed() needs to run after dropping
mmu_lock, which makes .on_lock() and .on_unlock() asymmetrical.
Use a small struct to return the tuple of the notifier-specific return,
plus whether or not overlap was found. Because the iteration helpers are
__always_inlined, practically speaking, the struct will never actually be
returned from a function call (not to mention the size of the struct will
be two bytes in practice).
Signed-off-by: Sean Christopherson <seanjc@google.com>
Reviewed-by: Paolo Bonzini <pbonzini@redhat.com>
Reviewed-by: Fuad Tabba <tabba@google.com>
Tested-by: Fuad Tabba <tabba@google.com>
Message-Id: <20231027182217.3615211-11-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
Add a new KVM exit type to allow userspace to handle memory faults that
KVM cannot resolve, but that userspace *may* be able to handle (without
terminating the guest).
KVM will initially use KVM_EXIT_MEMORY_FAULT to report implicit
conversions between private and shared memory. With guest private memory,
there will be two kind of memory conversions:
- explicit conversion: happens when the guest explicitly calls into KVM
to map a range (as private or shared)
- implicit conversion: happens when the guest attempts to access a gfn
that is configured in the "wrong" state (private vs. shared)
On x86 (first architecture to support guest private memory), explicit
conversions will be reported via KVM_EXIT_HYPERCALL+KVM_HC_MAP_GPA_RANGE,
but reporting KVM_EXIT_HYPERCALL for implicit conversions is undesriable
as there is (obviously) no hypercall, and there is no guarantee that the
guest actually intends to convert between private and shared, i.e. what
KVM thinks is an implicit conversion "request" could actually be the
result of a guest code bug.
KVM_EXIT_MEMORY_FAULT will be used to report memory faults that appear to
be implicit conversions.
Note! To allow for future possibilities where KVM reports
KVM_EXIT_MEMORY_FAULT and fills run->memory_fault on _any_ unresolved
fault, KVM returns "-EFAULT" (-1 with errno == EFAULT from userspace's
perspective), not '0'! Due to historical baggage within KVM, exiting to
userspace with '0' from deep callstacks, e.g. in emulation paths, is
infeasible as doing so would require a near-complete overhaul of KVM,
whereas KVM already propagates -errno return codes to userspace even when
the -errno originated in a low level helper.
Report the gpa+size instead of a single gfn even though the initial usage
is expected to always report single pages. It's entirely possible, likely
even, that KVM will someday support sub-page granularity faults, e.g.
Intel's sub-page protection feature allows for additional protections at
128-byte granularity.
Link: https://lore.kernel.org/all/20230908222905.1321305-5-amoorthy@google.com
Link: https://lore.kernel.org/all/ZQ3AmLO2SYv3DszH@google.com
Cc: Anish Moorthy <amoorthy@google.com>
Cc: David Matlack <dmatlack@google.com>
Suggested-by: Sean Christopherson <seanjc@google.com>
Co-developed-by: Yu Zhang <yu.c.zhang@linux.intel.com>
Signed-off-by: Yu Zhang <yu.c.zhang@linux.intel.com>
Signed-off-by: Chao Peng <chao.p.peng@linux.intel.com>
Co-developed-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Reviewed-by: Paolo Bonzini <pbonzini@redhat.com>
Message-Id: <20231027182217.3615211-10-seanjc@google.com>
Reviewed-by: Fuad Tabba <tabba@google.com>
Tested-by: Fuad Tabba <tabba@google.com>
Reviewed-by: Xiaoyao Li <xiaoyao.li@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
Introduce a "version 2" of KVM_SET_USER_MEMORY_REGION so that additional
information can be supplied without setting userspace up to fail. The
padding in the new kvm_userspace_memory_region2 structure will be used to
pass a file descriptor in addition to the userspace_addr, i.e. allow
userspace to point at a file descriptor and map memory into a guest that
is NOT mapped into host userspace.
Alternatively, KVM could simply add "struct kvm_userspace_memory_region2"
without a new ioctl(), but as Paolo pointed out, adding a new ioctl()
makes detection of bad flags a bit more robust, e.g. if the new fd field
is guarded only by a flag and not a new ioctl(), then a userspace bug
(setting a "bad" flag) would generate out-of-bounds access instead of an
-EINVAL error.
Cc: Jarkko Sakkinen <jarkko@kernel.org>
Reviewed-by: Paolo Bonzini <pbonzini@redhat.com>
Reviewed-by: Xiaoyao Li <xiaoyao.li@intel.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Reviewed-by: Fuad Tabba <tabba@google.com>
Tested-by: Fuad Tabba <tabba@google.com>
Message-Id: <20231027182217.3615211-9-seanjc@google.com>
Acked-by: Kai Huang <kai.huang@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
Convert KVM_ARCH_WANT_MMU_NOTIFIER into a Kconfig and select it where
appropriate to effectively maintain existing behavior. Using a proper
Kconfig will simplify building more functionality on top of KVM's
mmu_notifier infrastructure.
Add a forward declaration of kvm_gfn_range to kvm_types.h so that
including arch/powerpc/include/asm/kvm_ppc.h's with CONFIG_KVM=n doesn't
generate warnings due to kvm_gfn_range being undeclared. PPC defines
hooks for PR vs. HV without guarding them via #ifdeffery, e.g.
bool (*unmap_gfn_range)(struct kvm *kvm, struct kvm_gfn_range *range);
bool (*age_gfn)(struct kvm *kvm, struct kvm_gfn_range *range);
bool (*test_age_gfn)(struct kvm *kvm, struct kvm_gfn_range *range);
bool (*set_spte_gfn)(struct kvm *kvm, struct kvm_gfn_range *range);
Alternatively, PPC could forward declare kvm_gfn_range, but there's no
good reason not to define it in common KVM.
Acked-by: Anup Patel <anup@brainfault.org>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Reviewed-by: Paolo Bonzini <pbonzini@redhat.com>
Reviewed-by: Fuad Tabba <tabba@google.com>
Tested-by: Fuad Tabba <tabba@google.com>
Message-Id: <20231027182217.3615211-8-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
Advertise that KVM's MMU is synchronized with the primary MMU for all
flavors of PPC KVM support, i.e. advertise that the MMU is synchronized
when CONFIG_KVM_BOOK3S_HV_POSSIBLE=y but the VM is not using hypervisor
mode (a.k.a. PR VMs). PR VMs, via kvm_unmap_gfn_range_pr(), do the right
thing for mmu_notifier invalidation events, and more tellingly, KVM
returns '1' for KVM_CAP_SYNC_MMU when CONFIG_KVM_BOOK3S_HV_POSSIBLE=n
and CONFIG_KVM_BOOK3S_PR_POSSIBLE=y, i.e. KVM already advertises a
synchronized MMU for PR VMs, just not when CONFIG_KVM_BOOK3S_HV_POSSIBLE=y.
Suggested-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20231027182217.3615211-7-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
Assert that both KVM_ARCH_WANT_MMU_NOTIFIER and CONFIG_MMU_NOTIFIER are
defined when KVM is enabled, and return '1' unconditionally for the
CONFIG_KVM_BOOK3S_HV_POSSIBLE=n path. All flavors of PPC support for KVM
select MMU_NOTIFIER, and KVM_ARCH_WANT_MMU_NOTIFIER is unconditionally
defined by arch/powerpc/include/asm/kvm_host.h.
Effectively dropping use of KVM_ARCH_WANT_MMU_NOTIFIER will simplify a
future cleanup to turn KVM_ARCH_WANT_MMU_NOTIFIER into a Kconfig, i.e.
will allow combining all of the
#if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
checks into a single
#ifdef CONFIG_KVM_GENERIC_MMU_NOTIFIER
without having to worry about PPC's "bare" usage of
KVM_ARCH_WANT_MMU_NOTIFIER.
Signed-off-by: Sean Christopherson <seanjc@google.com>
Reviewed-by: Paolo Bonzini <pbonzini@redhat.com>
Reviewed-by: Fuad Tabba <tabba@google.com>
Message-Id: <20231027182217.3615211-6-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
Add an assertion that there are no in-progress MMU invalidations when a
VM is being destroyed, with the exception of the scenario where KVM
unregisters its MMU notifier between an .invalidate_range_start() call and
the corresponding .invalidate_range_end().
KVM can't detect unpaired calls from the mmu_notifier due to the above
exception waiver, but the assertion can detect KVM bugs, e.g. such as the
bug that *almost* escaped initial guest_memfd development.
Link: https://lore.kernel.org/all/e397d30c-c6af-e68f-d18e-b4e3739c5389@linux.intel.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
Reviewed-by: Paolo Bonzini <pbonzini@redhat.com>
Reviewed-by: Fuad Tabba <tabba@google.com>
Tested-by: Fuad Tabba <tabba@google.com>
Message-Id: <20231027182217.3615211-5-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
Currently in mmu_notifier invalidate path, hva range is recorded and then
checked against by mmu_invalidate_retry_hva() in the page fault handling
path. However, for the soon-to-be-introduced private memory, a page fault
may not have a hva associated, checking gfn(gpa) makes more sense.
For existing hva based shared memory, gfn is expected to also work. The
only downside is when aliasing multiple gfns to a single hva, the
current algorithm of checking multiple ranges could result in a much
larger range being rejected. Such aliasing should be uncommon, so the
impact is expected small.
Suggested-by: Sean Christopherson <seanjc@google.com>
Cc: Xu Yilun <yilun.xu@intel.com>
Signed-off-by: Chao Peng <chao.p.peng@linux.intel.com>
Reviewed-by: Fuad Tabba <tabba@google.com>
Tested-by: Fuad Tabba <tabba@google.com>
[sean: convert vmx_set_apic_access_page_addr() to gfn-based API]
Signed-off-by: Sean Christopherson <seanjc@google.com>
Reviewed-by: Paolo Bonzini <pbonzini@redhat.com>
Reviewed-by: Xu Yilun <yilun.xu@linux.intel.com>
Message-Id: <20231027182217.3615211-4-seanjc@google.com>
Reviewed-by: Kai Huang <kai.huang@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
Move the assertion on the in-progress invalidation count from the primary
MMU's notifier path to KVM's common notification path, i.e. assert that
the count doesn't go negative even when the invalidation is coming from
KVM itself.
Opportunistically convert the assertion to a KVM_BUG_ON(), i.e. kill only
the affected VM, not the entire kernel. A corrupted count is fatal to the
VM, e.g. the non-zero (negative) count will cause mmu_invalidate_retry()
to block any and all attempts to install new mappings. But it's far from
guaranteed that an end() without a start() is fatal or even problematic to
anything other than the target VM, e.g. the underlying bug could simply be
a duplicate call to end(). And it's much more likely that a missed
invalidation, i.e. a potential use-after-free, would manifest as no
notification whatsoever, not an end() without a start().
Signed-off-by: Sean Christopherson <seanjc@google.com>
Reviewed-by: Paolo Bonzini <pbonzini@redhat.com>
Reviewed-by: Fuad Tabba <tabba@google.com>
Tested-by: Fuad Tabba <tabba@google.com>
Message-Id: <20231027182217.3615211-3-seanjc@google.com>
Reviewed-by: Kai Huang <kai.huang@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
Rework and rename "struct kvm_hva_range" into "kvm_mmu_notifier_range" so
that the structure can be used to handle notifications that operate on gfn
context, i.e. that aren't tied to a host virtual address. Rename the
handler typedef too (arguably it should always have been gfn_handler_t).
Practically speaking, this is a nop for 64-bit kernels as the only
meaningful change is to store start+end as u64s instead of unsigned longs.
Reviewed-by: Paolo Bonzini <pbonzini@redhat.com>
Reviewed-by: Xiaoyao Li <xiaoyao.li@intel.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Reviewed-by: Fuad Tabba <tabba@google.com>
Tested-by: Fuad Tabba <tabba@google.com>
Message-Id: <20231027182217.3615211-2-seanjc@google.com>
Reviewed-by: Kai Huang <kai.huang@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
This function does the same but makes it clearer why one would use
the "____"-prefixed version of vm_create().
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
The 'prepare' target that generates the arm64 sysreg headers had no
prerequisites, so it wound up forcing a rebuild of all KVM selftests
each invocation. Add a rule for the generated headers and just have
dependents use that for a prerequisite.
Reported-by: Nina Schoetterl-Glausch <nsg@linux.ibm.com>
Fixes: 9697d84cc3b6 ("KVM: selftests: Generate sysreg-defs.h and add to include path")
Tested-by: Nina Schoetterl-Glausch <nsg@linux.ibm.com>
Link: https://lore.kernel.org/r/20231027005439.3142015-3-oliver.upton@linux.dev
Signed-off-by: Oliver Upton <oliver.upton@linux.dev>
|
|
Aishwarya reports that KVM selftests for arm64 fail with the following
error:
| make[4]: Entering directory '/tmp/kci/linux/tools/testing/selftests/kvm'
| Makefile:270: warning: overriding recipe for target
| '/tmp/kci/linux/build/kselftest/kvm/get-reg-list'
| Makefile:265: warning: ignoring old recipe for target
| '/tmp/kci/linux/build/kselftest/kvm/get-reg-list'
| make -C ../../../../tools/arch/arm64/tools/
| make[5]: Entering directory '/tmp/kci/linux/tools/arch/arm64/tools'
| Makefile:10: ../tools/scripts/Makefile.include: No such file or directory
| make[5]: *** No rule to make target '../tools/scripts/Makefile.include'.
| Stop.
It would appear that this only affects builds from the top-level
Makefile (e.g. make kselftest-all), as $(srctree) is set to ".". Work
around the issue by shadowing the kselftest naming scheme for the source
tree variable.
Reported-by: Aishwarya TCV <aishwarya.tcv@arm.com>
Fixes: 0359c946b131 ("tools headers arm64: Update sysreg.h with kernel sources")
Link: https://lore.kernel.org/r/20231027005439.3142015-2-oliver.upton@linux.dev
Signed-off-by: Oliver Upton <oliver.upton@linux.dev>
|
|
It is a pretty well known fact that KVM does not support MMIO emulation
without valid instruction syndrome information (ESR_EL2.ISV == 0). The
current kvm_pr_unimpl() is pretty useless, as it contains zero context
to relate the event to a vCPU.
Replace it with a precise tracepoint that dumps the relevant context
so the user can make sense of what the guest is doing.
Acked-by: Zenghui Yu <yuzenghui@huawei.com>
Acked-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20231026205306.3045075-1-oliver.upton@linux.dev
Signed-off-by: Oliver Upton <oliver.upton@linux.dev>
|
|
It looks like a mistake to issue ISB *after* reading PAR_EL1, we should
instead perform it between the AT instruction and the reads of PAR_EL1.
As according to DDI0487J.a IJTYVP,
"When an address translation instruction is executed, explicit
synchronization is required to guarantee the result is visible to
subsequent direct reads of PAR_EL1."
Otherwise all guest_at testcases fail on my box with
==== Test Assertion Failure ====
aarch64/page_fault_test.c:142: par & 1 == 0
pid=1355864 tid=1355864 errno=4 - Interrupted system call
1 0x0000000000402853: vcpu_run_loop at page_fault_test.c:681
2 0x0000000000402cdb: run_test at page_fault_test.c:730
3 0x0000000000403897: for_each_guest_mode at guest_modes.c:100
4 0x00000000004019f3: for_each_test_and_guest_mode at page_fault_test.c:1105
5 (inlined by) main at page_fault_test.c:1131
6 0x0000ffffb153c03b: ?? ??:0
7 0x0000ffffb153c113: ?? ??:0
8 0x0000000000401aaf: _start at ??:?
0x1 != 0x0 (par & 1 != 0)
Signed-off-by: Zenghui Yu <yuzenghui@huawei.com>
Acked-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20231007124043.626-2-yuzenghui@huawei.com
Signed-off-by: Oliver Upton <oliver.upton@linux.dev>
|
|
Running page_fault_test on a Cortex A72 fails with
Test: ro_memslot_no_syndrome_guest_cas
Testing guest mode: PA-bits:40, VA-bits:48, 4K pages
Testing memory backing src type: anonymous
==== Test Assertion Failure ====
aarch64/page_fault_test.c:117: guest_check_lse()
pid=1944087 tid=1944087 errno=4 - Interrupted system call
1 0x00000000004028b3: vcpu_run_loop at page_fault_test.c:682
2 0x0000000000402d93: run_test at page_fault_test.c:731
3 0x0000000000403957: for_each_guest_mode at guest_modes.c:100
4 0x00000000004019f3: for_each_test_and_guest_mode at page_fault_test.c:1108
5 (inlined by) main at page_fault_test.c:1134
6 0x0000ffff868e503b: ?? ??:0
7 0x0000ffff868e5113: ?? ??:0
8 0x0000000000401aaf: _start at ??:?
guest_check_lse()
because we don't have a guest_prepare stage to check the presence of
FEAT_LSE and skip the related guest_cas testing, and we end-up failing in
GUEST_ASSERT(guest_check_lse()).
Add the missing .guest_prepare() where it's indeed required.
Signed-off-by: Zenghui Yu <yuzenghui@huawei.com>
Acked-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20231007124043.626-1-yuzenghui@huawei.com
Signed-off-by: Oliver Upton <oliver.upton@linux.dev>
|
|
It is possible for multiple vCPUs to fault on the same IPA and attempt
to resolve the fault. One of the page table walks will actually update
the PTE and the rest will return -EAGAIN per our race detection scheme.
KVM elides the TLB invalidation on the racing threads as the return
value is nonzero.
Before commit a12ab1378a88 ("KVM: arm64: Use local TLBI on permission
relaxation") KVM always used broadcast TLB invalidations when handling
permission faults, which had the convenient property of making the
stage-2 updates visible to all CPUs in the system. However now we do a
local invalidation, and TLBI elision leads to the vCPU thread faulting
again on the stale entry. Remember that the architecture permits the TLB
to cache translations that precipitate a permission fault.
Invalidate the TLB entry responsible for the permission fault if the
stage-2 descriptor has been relaxed, regardless of which thread actually
did the job.
Acked-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20230922223229.1608155-1-oliver.upton@linux.dev
Signed-off-by: Oliver Upton <oliver.upton@linux.dev>
|
|
|
|
Recent changes to count number of matching symbols when creating
a kprobe event failed to take into account kernel modules. As such, it
breaks kprobes on kernel module symbols, by assuming there is no match.
Fix this my calling module_kallsyms_on_each_symbol() in addition to
kallsyms_on_each_match_symbol() to perform a proper counting.
Link: https://lore.kernel.org/all/20231027233126.2073148-1-andrii@kernel.org/
Cc: Francis Laniel <flaniel@linux.microsoft.com>
Cc: stable@vger.kernel.org
Cc: Masami Hiramatsu <mhiramat@kernel.org>
Cc: Steven Rostedt <rostedt@goodmis.org>
Fixes: b022f0c7e404 ("tracing/kprobes: Return EADDRNOTAVAIL when func matches several symbols")
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Acked-by: Song Liu <song@kernel.org>
Signed-off-by: Masami Hiramatsu (Google) <mhiramat@kernel.org>
|
|
Use of dget() after we'd dropped ->d_lock is too late - dentry might
be gone by that point.
Reviewed-by: Jeff Layton <jlayton@kernel.org>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
|
|
->ki_pos value is unreliable in such cases. For an obvious example,
consider O_DSYNC write - we feed the data to page cache and start IO,
then we make sure it's completed. Update of ->ki_pos is dealt with
by the first part; failure in the second ends up with negative value
returned _and_ ->ki_pos left advanced as if sync had been successful.
In the same situation write(2) does not advance the file position
at all.
Reviewed-by: Christian Brauner <brauner@kernel.org>
Reviewed-by: Jens Axboe <axboe@kernel.dk>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
|
|
Fault handler used to make non-trivial calls, so it needed
to set a stack frame up. Used to be
save ... - grab a stack frame, old %o... become %i...
....
ret - go back to address originally in %o7, currently %i7
restore - switch to previous stack frame, in delay slot
Non-trivial calls had been gone since ab5e8b331244 and that code should
have become
retl - go back to address in %o7
clr %o0 - have return value set to 0
What it had become instead was
ret - go back to address in %i7 - return address of *caller*
clr %o0 - have return value set to 0
which is not good, to put it mildly - we forcibly return 0 from
csum_and_copy_{from,to}_iter() (which is what the call of that
thing had been inlined into) and do that without dropping the
stack frame of said csum_and_copy_..._iter(). Confuses the
hell out of the caller of csum_and_copy_..._iter(), obviously...
Reviewed-by: Sam Ravnborg <sam@ravnborg.org>
Fixes: ab5e8b331244 "sparc32: propagate the calling conventions change down to __csum_partial_copy_sparc_generic()"
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
|
|
Service NMI and SMI requests after PMI requests in vcpu_enter_guest() so
that KVM does not need to cancel and redo the VM-Enter if the guest
configures its PMIs to be delivered as NMIs (likely) or SMIs (unlikely).
Because APIC emulation "injects" NMIs via KVM_REQ_NMI, handling PMI
requests after NMI requests (the likely case) means KVM won't detect the
pending NMI request until the final check for outstanding requests.
Detecting requests at the final stage is costly as KVM has already loaded
guest state, potentially queued events for injection, disabled IRQs,
dropped SRCU, etc., most of which needs to be unwound.
Note that changing the order of request processing doesn't change the end
result, as KVM's final check for outstanding requests prevents entering
the guest until all requests are serviced. I.e. KVM will ultimately
coalesce events (or not) regardless of the ordering.
Using SPEC2017 benchmark programs running along with Intel vtune in a VM
demonstrates that the following code change reduces 800~1500 canceled
VM-Enters per second.
Some glory details:
Probe the invocation to vmx_cancel_injection():
$ perf probe -a vmx_cancel_injection
$ perf stat -a -e probe:vmx_cancel_injection -I 10000 # per 10 seconds
Partial results when SPEC2017 with Intel vtune are running in the VM:
On kernel without the change:
10.010018010 14254 probe:vmx_cancel_injection
20.037646388 15207 probe:vmx_cancel_injection
30.078739816 15261 probe:vmx_cancel_injection
40.114033258 15085 probe:vmx_cancel_injection
50.149297460 15112 probe:vmx_cancel_injection
60.185103088 15104 probe:vmx_cancel_injection
On kernel with the change:
10.003595390 40 probe:vmx_cancel_injection
20.017855682 31 probe:vmx_cancel_injection
30.028355883 34 probe:vmx_cancel_injection
40.038686298 31 probe:vmx_cancel_injection
50.048795162 20 probe:vmx_cancel_injection
60.069057747 19 probe:vmx_cancel_injection
Suggested-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Mingwei Zhang <mizhang@google.com>
Link: https://lore.kernel.org/r/20231002040839.2630027-1-mizhang@google.com
[sean: hoist PMU/PMI above SMI too, massage changelog]
Signed-off-by: Sean Christopherson <seanjc@google.com>
|
|
Tetsuo reported the following lockdep splat when the TSC synchronization
fails during CPU hotplug:
tsc: Marking TSC unstable due to check_tsc_sync_source failed
WARNING: inconsistent lock state
inconsistent {IN-HARDIRQ-W} -> {HARDIRQ-ON-W} usage.
ffffffff8cfa1c78 (watchdog_lock){?.-.}-{2:2}, at: clocksource_watchdog+0x23/0x5a0
{IN-HARDIRQ-W} state was registered at:
_raw_spin_lock_irqsave+0x3f/0x60
clocksource_mark_unstable+0x1b/0x90
mark_tsc_unstable+0x41/0x50
check_tsc_sync_source+0x14f/0x180
sysvec_call_function_single+0x69/0x90
Possible unsafe locking scenario:
lock(watchdog_lock);
<Interrupt>
lock(watchdog_lock);
stack backtrace:
_raw_spin_lock+0x30/0x40
clocksource_watchdog+0x23/0x5a0
run_timer_softirq+0x2a/0x50
sysvec_apic_timer_interrupt+0x6e/0x90
The reason is the recent conversion of the TSC synchronization function
during CPU hotplug on the control CPU to a SMP function call. In case
that the synchronization with the upcoming CPU fails, the TSC has to be
marked unstable via clocksource_mark_unstable().
clocksource_mark_unstable() acquires 'watchdog_lock', but that lock is
taken with interrupts enabled in the watchdog timer callback to minimize
interrupt disabled time. That's obviously a possible deadlock scenario,
Before that change the synchronization function was invoked in thread
context so this could not happen.
As it is not crucical whether the unstable marking happens slightly
delayed, defer the call to a worker thread which avoids the lock context
problem.
Fixes: 9d349d47f0e3 ("x86/smpboot: Make TSC synchronization function call based")
Reported-by: Tetsuo Handa <penguin-kernel@i-love.sakura.ne.jp>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Tetsuo Handa <penguin-kernel@i-love.sakura.ne.jp>
Cc: stable@vger.kernel.org
Link: https://lore.kernel.org/r/87zg064ceg.ffs@tglx
|
|
David and a few others reported that on certain newer systems some legacy
interrupts fail to work correctly.
Debugging revealed that the BIOS of these systems leaves the legacy PIC in
uninitialized state which makes the PIC detection fail and the kernel
switches to a dummy implementation.
Unfortunately this fallback causes quite some code to fail as it depends on
checks for the number of legacy PIC interrupts or the availability of the
real PIC.
In theory there is no reason to use the PIC on any modern system when
IO/APIC is available, but the dependencies on the related checks cannot be
resolved trivially and on short notice. This needs lots of analysis and
rework.
The PIC detection has been added to avoid quirky checks and force selection
of the dummy implementation all over the place, especially in VM guest
scenarios. So it's not an option to revert the relevant commit as that
would break a lot of other scenarios.
One solution would be to try to initialize the PIC on detection fail and
retry the detection, but that puts the burden on everything which does not
have a PIC.
Fortunately the ACPI/MADT table header has a flag field, which advertises
in bit 0 that the system is PCAT compatible, which means it has a legacy
8259 PIC.
Evaluate that bit and if set avoid the detection routine and keep the real
PIC installed, which then gets initialized (for nothing) and makes the rest
of the code with all the dependencies work again.
Fixes: e179f6914152 ("x86, irq, pic: Probe for legacy PIC and set legacy_pic appropriately")
Reported-by: David Lazar <dlazar@gmail.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: David Lazar <dlazar@gmail.com>
Reviewed-by: Hans de Goede <hdegoede@redhat.com>
Reviewed-by: Mario Limonciello <mario.limonciello@amd.com>
Cc: stable@vger.kernel.org
Closes: https://bugzilla.kernel.org/show_bug.cgi?id=218003
Link: https://lore.kernel.org/r/875y2u5s8g.ffs@tglx
|
|
For "reasons" Intel has code-named this CPU with a "_H" suffix.
[ dhansen: As usual, apply this and send it upstream quickly to
make it easier for anyone who is doing work that
consumes this. ]
Signed-off-by: Tony Luck <tony.luck@intel.com>
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Link: https://lore.kernel.org/all/20231025202513.12358-1-tony.luck%40intel.com
|
|
When suspending to idle and resuming on some Lenovo laptops using the
Mendocino APU, multiple NVME IOMMU page faults occur, showing up in
dmesg as repeated errors:
nvme 0000:01:00.0: AMD-Vi: Event logged [IO_PAGE_FAULT domain=0x000b
address=0xb6674000 flags=0x0000]
The system is unstable afterwards.
Applying the s2idle quirk introduced by commit 455cd867b85b ("platform/x86:
thinkpad_acpi: Add a s2idle resume quirk for a number of laptops")
allows these systems to work with the IOMMU enabled and s2idle
resume to work.
Closes: https://bugzilla.kernel.org/show_bug.cgi?id=218024
Suggested-by: Mario Limonciello <mario.limonciello@amd.com>
Suggested-by: Mark Pearson <mpearson-lenovo@squebb.ca>
Signed-off-by: David Lazar <dlazar@gmail.com>
Reviewed-by: Mario Limonciello <mario.limonciello@amd.com>
Reviewed-by: Mark Pearson <mpearson-lenovo@squebb.ca>
Link: https://lore.kernel.org/r/ZTlsyOaFucF2pWrL@localhost
Signed-off-by: Hans de Goede <hdegoede@redhat.com>
|
|
Fix the following kernel-doc warnings:
kernel/trace/trace_kprobe.c:1029: warning: Excess function parameter 'args' description in '__kprobe_event_gen_cmd_start'
kernel/trace/trace_kprobe.c:1097: warning: Excess function parameter 'args' description in '__kprobe_event_add_fields'
Refer to the usage of variable length arguments elsewhere in the kernel
code, "@..." is the proper way to express it in the description.
Link: https://lore.kernel.org/all/20231027041315.2613166-1-yujie.liu@intel.com/
Fixes: 2a588dd1d5d6 ("tracing: Add kprobe event command generation functions")
Reported-by: kernel test robot <lkp@intel.com>
Closes: https://lore.kernel.org/oe-kbuild-all/202310190437.paI6LYJF-lkp@intel.com/
Signed-off-by: Yujie Liu <yujie.liu@intel.com>
Reviewed-by: Mukesh Ojha <quic_mojha@quicinc.com>
Acked-by: Masami Hiramatsu (Google) <mhiramat@kernel.org>
Signed-off-by: Masami Hiramatsu (Google) <mhiramat@kernel.org>
|
|
The iommu_create_device_direct_mappings() only needs to flush the caches
when the mappings are changed in the affected domain. This is not true
for non-DMA domains, or for devices attached to the domain that have no
reserved regions. To avoid unnecessary cache invalidations, add a check
before iommu_flush_iotlb_all().
Fixes: a48ce36e2786 ("iommu: Prevent RESV_DIRECT devices from blocking domains")
Signed-off-by: Lu Baolu <baolu.lu@linux.intel.com>
Tested-by: Henry Willard <henry.willard@oracle.com>
Link: https://lore.kernel.org/r/20231026084942.17387-1-baolu.lu@linux.intel.com
Signed-off-by: Joerg Roedel <jroedel@suse.de>
|
|
Commit aa3998dbeb3a ("ata: libata-scsi: Disable scsi device
manage_system_start_stop") change setting the manage_system_start_stop
flag to false for libata managed disks to enable libata internal
management of disk suspend/resume. However, a side effect of this change
is that on system shutdown, disks are no longer being stopped (set to
standby mode with the heads unloaded). While this is not a critical
issue, this unclean shutdown is not recommended and shows up with
increased smart counters (e.g. the unexpected power loss counter
"Unexpect_Power_Loss_Ct").
Instead of defining a shutdown driver method for all ATA adapter
drivers (not all of them define that operation), this patch resolves
this issue by further refining the sd driver start/stop control of disks
using the new flag manage_shutdown. If this new flag is set to true by
a low level driver, the function sd_shutdown() will issue a
START STOP UNIT command with the start argument set to 0 when a disk
needs to be powered off (suspended) on system power off, that is, when
system_state is equal to SYSTEM_POWER_OFF.
Similarly to the other manage_xxx flags, the new manage_shutdown flag is
exposed through sysfs as a read-write device attribute.
To avoid any confusion between manage_shutdown and
manage_system_start_stop, the comments describing these flags in
include/scsi/scsi.h are also improved.
Fixes: aa3998dbeb3a ("ata: libata-scsi: Disable scsi device manage_system_start_stop")
Cc: stable@vger.kernel.org
Closes: https://bugzilla.kernel.org/show_bug.cgi?id=218038
Link: https://lore.kernel.org/all/cd397c88-bf53-4768-9ab8-9d107df9e613@gmail.com/
Signed-off-by: Damien Le Moal <dlemoal@kernel.org>
Reviewed-by: Niklas Cassel <niklas.cassel@wdc.com>
Reviewed-by: Hannes Reinecke <hare@suse.de>
Reviewed-by: James Bottomley <James.Bottomley@HansenPartnership.com>
Acked-by: Martin K. Petersen <martin.petersen@oracle.com>
|
|
ARCH_R9A07G043 has its own non-standard global pool based DMA coherent
allocator, which conflicts with the remap based RISCV_ISA_ZICBOM version.
Add a proper dependency.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Lad Prabhakar <prabhakar.mahadev-lad.rj@bp.renesas.com>
Acked-by: Conor Dooley <conor.dooley@microchip.com>
Acked-by: Geert Uytterhoeven <geert+renesas@glider.be>
Link: https://lore.kernel.org/r/20231018052654.50074-4-hch@lst.de
Signed-off-by: Geert Uytterhoeven <geert+renesas@glider.be>
|
|
RISCV_DMA_NONCOHERENT is also used for whacky non-standard
non-coherent ops that use different hooks in dma-direct.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Conor Dooley <conor.dooley@microchip.com>
Reviewed-by: Robin Murphy <robin.murphy@arm.com>
Reviewed-by: Lad Prabhakar <prabhakar.mahadev-lad.rj@bp.renesas.com>
Tested-by: Samuel Holland <samuel.holland@sifive.com>
Link: https://lore.kernel.org/r/20231018052654.50074-3-hch@lst.de
Signed-off-by: Geert Uytterhoeven <geert+renesas@glider.be>
|
|
RISCV_NONSTANDARD_CACHE_OPS is also used for the pmem cache maintenance
helpers, which are built into the kernel unconditionally.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Acked-by: Conor Dooley <conor.dooley@microchip.com>
Link: https://lore.kernel.org/r/20231018052654.50074-2-hch@lst.de
Signed-off-by: Geert Uytterhoeven <geert+renesas@glider.be>
|
|
Move sequence of masking and unmasking global interrupts from buttress
interrupt handler to generic one that handles both VPUIP and BTRS
interrupts. Unmasking global interrupts will re-trigger MSI for any
pending interrupts.
Lack of this sequence will cause the driver to miss any
VPUIP interrupt that comes after reading VPU_37XX_HOST_SS_ICB_STATUS_0
and before clearing all active interrupt sources.
Fixes: 35b137630f08 ("accel/ivpu: Introduce a new DRM driver for Intel VPU")
Cc: stable@vger.kernel.org
Signed-off-by: Karol Wachowski <karol.wachowski@linux.intel.com>
Reviewed-by: Stanislaw Gruszka <stanislaw.gruszka@linux.intel.com>
Signed-off-by: Stanislaw Gruszka <stanislaw.gruszka@linux.intel.com>
Link: https://patchwork.freedesktop.org/patch/msgid/20231024161952.759914-1-stanislaw.gruszka@linux.intel.com
|
|
In iavf_down, we're skipping the scheduling of certain operations if
the driver is being removed. However, the IAVF_FLAG_AQ_DISABLE_QUEUES
request must not be skipped in this case, because iavf_close waits
for the transition to the __IAVF_DOWN state, which happens in
iavf_virtchnl_completion after the queues are released.
Without this fix, "rmmod iavf" takes half a second per interface that's
up and prints the "Device resources not yet released" warning.
Fixes: c8de44b577eb ("iavf: do not process adminq tasks when __IAVF_IN_REMOVE_TASK is set")
Signed-off-by: Michal Schmidt <mschmidt@redhat.com>
Reviewed-by: Wojciech Drewek <wojciech.drewek@intel.com>
Tested-by: Rafal Romanowski <rafal.romanowski@intel.com>
Tested-by: Jacob Keller <jacob.e.keller@intel.com>
Signed-off-by: Jacob Keller <jacob.e.keller@intel.com>
Link: https://lore.kernel.org/r/20231025183213.874283-1-jacob.e.keller@intel.com
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
|
|
Once VQs are filled with empty buffers and we kick the host, it can send
connection requests. If the_virtio_vsock is not initialized before,
replies are silently dropped and do not reach the host.
virtio_transport_send_pkt() can queue packets once the_virtio_vsock is
set, but they won't be processed until vsock->tx_run is set to true. We
queue vsock->send_pkt_work when initialization finishes to send those
packets queued earlier.
Fixes: 0deab087b16a ("vsock/virtio: use RCU to avoid use-after-free on the_virtio_vsock")
Signed-off-by: Alexandru Matei <alexandru.matei@uipath.com>
Reviewed-by: Stefano Garzarella <sgarzare@redhat.com>
Link: https://lore.kernel.org/r/20231024191742.14259-1-alexandru.matei@uipath.com
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
|
|
When splitting the allocation of the ITS node from its configuration,
some of the default settings were kept in the latter instead of
being moved to the former.
This has the side effect of negating some of the quirk detections that
have happened in between, amongst which the dreaded Synquacer hack
(that also affect Dominic's TI platform).
Move the initialisation of these fields early, so that they can again be
overriden by the Synquacer quirk.
Fixes: 9585a495ac93 ("irqchip/gic-v3-its: Split allocation from initialisation of its_node")
Reported by: Dominic Rath <dominic.rath@ibv-augsburg.net>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Dominic Rath <dominic.rath@ibv-augsburg.net>
Link: https://lore.kernel.org/r/20231024084831.GA3788@JADEVM-DRA
Link: https://lore.kernel.org/r/20231024143431.2144579-1-maz@kernel.org
|