Age | Commit message (Collapse) | Author | Files | Lines |
|
Patch series "improve vmap allocation", v3.
Objective
---------
Please have a look for the description at:
https://lkml.org/lkml/2018/10/19/786
but let me also summarize it a bit here as well.
The current implementation has O(N) complexity. Requests with different
permissive parameters can lead to long allocation time. When i say
"long" i mean milliseconds.
Description
-----------
This approach organizes the KVA memory layout into free areas of the
1-ULONG_MAX range, i.e. an allocation is done over free areas lookups,
instead of finding a hole between two busy blocks. It allows to have
lower number of objects which represent the free space, therefore to have
less fragmented memory allocator. Because free blocks are always as large
as possible.
It uses the augment tree where all free areas are sorted in ascending
order of va->va_start address in pair with linked list that provides
O(1) access to prev/next elements.
Since the tree is augment, we also maintain the "subtree_max_size" of VA
that reflects a maximum available free block in its left or right
sub-tree. Knowing that, we can easily traversal toward the lowest (left
most path) free area.
Allocation: ~O(log(N)) complexity. It is sequential allocation method
therefore tends to maximize locality. The search is done until a first
suitable block is large enough to encompass the requested parameters.
Bigger areas are split.
I copy paste here the description of how the area is split, since i
described it in https://lkml.org/lkml/2018/10/19/786
<snip>
A free block can be split by three different ways. Their names are
FL_FIT_TYPE, LE_FIT_TYPE/RE_FIT_TYPE and NE_FIT_TYPE, i.e. they
correspond to how requested size and alignment fit to a free block.
FL_FIT_TYPE - in this case a free block is just removed from the free
list/tree because it fully fits. Comparing with current design there is
an extra work with rb-tree updating.
LE_FIT_TYPE/RE_FIT_TYPE - left/right edges fit. In this case what we do
is just cutting a free block. It is as fast as a current design. Most of
the vmalloc allocations just end up with this case, because the edge is
always aligned to 1.
NE_FIT_TYPE - Is much less common case. Basically it happens when
requested size and alignment does not fit left nor right edges, i.e. it
is between them. In this case during splitting we have to build a
remaining left free area and place it back to the free list/tree.
Comparing with current design there are two extra steps. First one is we
have to allocate a new vmap_area structure. Second one we have to insert
that remaining free block to the address sorted list/tree.
In order to optimize a first case there is a cache with free_vmap objects.
Instead of allocating from slab we just take an object from the cache and
reuse it.
Second one is pretty optimized. Since we know a start point in the tree
we do not do a search from the top. Instead a traversal begins from a
rb-tree node we split.
<snip>
De-allocation. ~O(log(N)) complexity. An area is not inserted straight
away to the tree/list, instead we identify the spot first, checking if it
can be merged around neighbors. The list provides O(1) access to
prev/next, so it is pretty fast to check it. Summarizing. If merged then
large coalesced areas are created, if not the area is just linked making
more fragments.
There is one more thing that i should mention here. After modification of
VA node, its subtree_max_size is updated if it was/is the biggest area in
its left or right sub-tree. Apart of that it can also be populated back
to upper levels to fix the tree. For more details please have a look at
the __augment_tree_propagate_from() function and the description.
Tests and stressing
-------------------
I use the "test_vmalloc.sh" test driver available under
"tools/testing/selftests/vm/" since 5.1-rc1 kernel. Just trigger "sudo
./test_vmalloc.sh" to find out how to deal with it.
Tested on different platforms including x86_64/i686/ARM64/x86_64_NUMA.
Regarding last one, i do not have any physical access to NUMA system,
therefore i emulated it. The time of stressing is days.
If you run the test driver in "stress mode", you also need the patch that
is in Andrew's tree but not in Linux 5.1-rc1. So, please apply it:
http://git.cmpxchg.org/cgit.cgi/linux-mmotm.git/commit/?id=e0cf7749bade6da318e98e934a24d8b62fab512c
After massive testing, i have not identified any problems like memory
leaks, crashes or kernel panics. I find it stable, but more testing would
be good.
Performance analysis
--------------------
I have used two systems to test. One is i5-3320M CPU @ 2.60GHz and
another is HiKey960(arm64) board. i5-3320M runs on 4.20 kernel, whereas
Hikey960 uses 4.15 kernel. I have both system which could run on 5.1-rc1
as well, but the results have not been ready by time i an writing this.
Currently it consist of 8 tests. There are three of them which correspond
to different types of splitting(to compare with default). We have 3
ones(see above). Another 5 do allocations in different conditions.
a) sudo ./test_vmalloc.sh performance
When the test driver is run in "performance" mode, it runs all available
tests pinned to first online CPU with sequential execution test order. We
do it in order to get stable and repeatable results. Take a look at time
difference in "long_busy_list_alloc_test". It is not surprising because
the worst case is O(N).
# i5-3320M
How many cycles all tests took:
CPU0=646919905370(default) cycles vs CPU0=193290498550(patched) cycles
# See detailed table with results here:
ftp://vps418301.ovh.net/incoming/vmap_test_results_v2/i5-3320M_performance_default.txt
ftp://vps418301.ovh.net/incoming/vmap_test_results_v2/i5-3320M_performance_patched.txt
# Hikey960 8x CPUs
How many cycles all tests took:
CPU0=3478683207 cycles vs CPU0=463767978 cycles
# See detailed table with results here:
ftp://vps418301.ovh.net/incoming/vmap_test_results_v2/HiKey960_performance_default.txt
ftp://vps418301.ovh.net/incoming/vmap_test_results_v2/HiKey960_performance_patched.txt
b) time sudo ./test_vmalloc.sh test_repeat_count=1
With this configuration, all tests are run on all available online CPUs.
Before running each CPU shuffles its tests execution order. It gives
random allocation behaviour. So it is rough comparison, but it puts in
the picture for sure.
# i5-3320M
<default> vs <patched>
real 101m22.813s real 0m56.805s
user 0m0.011s user 0m0.015s
sys 0m5.076s sys 0m0.023s
# See detailed table with results here:
ftp://vps418301.ovh.net/incoming/vmap_test_results_v2/i5-3320M_test_repeat_count_1_default.txt
ftp://vps418301.ovh.net/incoming/vmap_test_results_v2/i5-3320M_test_repeat_count_1_patched.txt
# Hikey960 8x CPUs
<default> vs <patched>
real unknown real 4m25.214s
user unknown user 0m0.011s
sys unknown sys 0m0.670s
I did not manage to complete this test on "default Hikey960" kernel
version. After 24 hours it was still running, therefore i had to cancel
it. That is why real/user/sys are "unknown".
This patch (of 3):
Currently an allocation of the new vmap area is done over busy list
iteration(complexity O(n)) until a suitable hole is found between two busy
areas. Therefore each new allocation causes the list being grown. Due to
over fragmented list and different permissive parameters an allocation can
take a long time. For example on embedded devices it is milliseconds.
This patch organizes the KVA memory layout into free areas of the
1-ULONG_MAX range. It uses an augment red-black tree that keeps blocks
sorted by their offsets in pair with linked list keeping the free space in
order of increasing addresses.
Nodes are augmented with the size of the maximum available free block in
its left or right sub-tree. Thus, that allows to take a decision and
traversal toward the block that will fit and will have the lowest start
address, i.e. it is sequential allocation.
Allocation: to allocate a new block a search is done over the tree until a
suitable lowest(left most) block is large enough to encompass: the
requested size, alignment and vstart point. If the block is bigger than
requested size - it is split.
De-allocation: when a busy vmap area is freed it can either be merged or
inserted to the tree. Red-black tree allows efficiently find a spot
whereas a linked list provides a constant-time access to previous and next
blocks to check if merging can be done. In case of merging of
de-allocated memory chunk a large coalesced area is created.
Complexity: ~O(log(N))
[urezki@gmail.com: v3]
Link: http://lkml.kernel.org/r/20190402162531.10888-2-urezki@gmail.com
[urezki@gmail.com: v4]
Link: http://lkml.kernel.org/r/20190406183508.25273-2-urezki@gmail.com
Link: http://lkml.kernel.org/r/20190321190327.11813-2-urezki@gmail.com
Signed-off-by: Uladzislau Rezki (Sony) <urezki@gmail.com>
Reviewed-by: Roman Gushchin <guro@fb.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Thomas Garnier <thgarnie@google.com>
Cc: Oleksiy Avramchenko <oleksiy.avramchenko@sonymobile.com>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Joel Fernandes <joelaf@google.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: Tejun Heo <tj@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Commit e45adf665a53 ("KVM: Introduce a new guest mapping API", 2019-01-31)
introduced a build failure on aarch64 defconfig:
$ make -j$(nproc) ARCH=arm64 CROSS_COMPILE=aarch64-linux-gnu- O=out defconfig \
Image.gz
...
../arch/arm64/kvm/../../../virt/kvm/kvm_main.c:
In function '__kvm_map_gfn':
../arch/arm64/kvm/../../../virt/kvm/kvm_main.c:1763:9: error:
implicit declaration of function 'memremap'; did you mean 'memset_p'?
../arch/arm64/kvm/../../../virt/kvm/kvm_main.c:1763:46: error:
'MEMREMAP_WB' undeclared (first use in this function)
../arch/arm64/kvm/../../../virt/kvm/kvm_main.c:
In function 'kvm_vcpu_unmap':
../arch/arm64/kvm/../../../virt/kvm/kvm_main.c:1795:3: error:
implicit declaration of function 'memunmap'; did you mean 'vm_munmap'?
because these functions are declared in <linux/io.h> rather than <asm/io.h>,
and the former was being pulled in already on x86 but not on aarch64.
Reported-by: Nathan Chancellor <natechancellor@gmail.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
It turned out that DEBUG_SLAB_LEAK is still broken even after recent
recue efforts that when there is a large number of objects like
kmemleak_object which is normal on a debug kernel,
# grep kmemleak /proc/slabinfo
kmemleak_object 2243606 3436210 ...
reading /proc/slab_allocators could easily loop forever while processing
the kmemleak_object cache and any additional freeing or allocating
objects will trigger a reprocessing. To make a situation worse,
soft-lockups could easily happen in this sitatuion which will call
printk() to allocate more kmemleak objects to guarantee an infinite
loop.
Also, since it seems no one had noticed when it was totally broken
more than 2-year ago - see the commit fcf88917dd43 ("slab: fix a crash
by reading /proc/slab_allocators"), probably nobody cares about it
anymore due to the decline of the SLAB. Just remove it entirely.
Suggested-by: Vlastimil Babka <vbabka@suse.cz>
Suggested-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Qian Cai <cai@lca.pw>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Fix afs_do_lookup() such that when it does an inline bulk status fetch op,
it will update inodes that are already extant (something that afs_iget()
doesn't do) and to cache permits for each inode created (thereby avoiding a
follow up FS.FetchStatus call to determine this).
Extant inodes need looking up in advance so that their cb_break counters
before and after the operation can be compared. To this end, the inode
pointers are cached so that they don't need looking up again after the op.
Fixes: 5cf9dd55a0ec ("afs: Prospectively look up extra files when doing a single lookup")
Signed-off-by: David Howells <dhowells@redhat.com>
|
|
Pass the server and volume break counts from before the status fetch
operation that queried the attributes of a file into afs_iget5_set() so
that the new vnode's break counters can be initialised appropriately.
This allows detection of a volume or server break that happened whilst we
were fetching the status or setting up the vnode.
Fixes: c435ee34551e ("afs: Overhaul the callback handling")
Signed-off-by: David Howells <dhowells@redhat.com>
|
|
Make use of the status update for the target file that the YFS.RemoveFile2
RPC op returns to correctly update the vnode as to whether the file was
actually deleted or just had nlink reduced.
Fixes: 30062bd13e36 ("afs: Implement YFS support in the fs client")
Signed-off-by: David Howells <dhowells@redhat.com>
|
|
Fix afs_validate() to clear AFS_VNODE_CB_PROMISED on a vnode if we detect
any condition that causes the callback promise to be broken implicitly,
including server break (cb_s_break), volume break (cb_v_break) or callback
expiry.
Fixes: ae3b7361dc0e ("afs: Fix validation/callback interaction")
Reported-by: Marc Dionne <marc.dionne@auristor.com>
Signed-off-by: David Howells <dhowells@redhat.com>
|
|
Use RCU-based freeing for afs_cb_interest struct objects and use RCU on
vnode->cb_interest. Use that change to allow afs_check_validity() to use
read_seqbegin_or_lock() instead of read_seqlock_excl().
This also requires the caller of afs_check_validity() to hold the RCU read
lock across the call.
Signed-off-by: David Howells <dhowells@redhat.com>
|
|
Split afs_validate() so that the part that decides if the vnode is still
valid can be used under LOOKUP_RCU conditions from afs_d_revalidate().
Signed-off-by: David Howells <dhowells@redhat.com>
|
|
Don't save callback version and type fields as the version is about the
format of the callback information and the type is relative to the
particular RPC call.
Signed-off-by: David Howells <dhowells@redhat.com>
|
|
Convert the vendor prefix registry to a schema. This will enable checking
that new vendor prefixes are added (in addition to the less than perfect
checkpatch.pl check) and will also check against adding other prefixes
which are not vendors.
Converted vendor-prefixes.txt using the following sed script:
sed -e 's/\([a-zA-Z0-9\-]*\)[[:space:]]*\([a-zA-Z0-9].*\)/ "^\1,\.\*\":\n description: \2/'
Signed-off-by: Rob Herring <robh@kernel.org>
|
|
Alex Xu reported a regression in strace, caused by the introduction of
the cgroup v2 freezer. The regression can be reproduced by stracing
the following simple program:
#include <unistd.h>
int main() {
write(1, "a", 1);
return 0;
}
An attempt to run strace ./a.out leads to the infinite loop:
[ pre-main omitted ]
write(1, "a", 1) = ? ERESTARTSYS (To be restarted if SA_RESTART is set)
write(1, "a", 1) = ? ERESTARTSYS (To be restarted if SA_RESTART is set)
write(1, "a", 1) = ? ERESTARTSYS (To be restarted if SA_RESTART is set)
write(1, "a", 1) = ? ERESTARTSYS (To be restarted if SA_RESTART is set)
write(1, "a", 1) = ? ERESTARTSYS (To be restarted if SA_RESTART is set)
write(1, "a", 1) = ? ERESTARTSYS (To be restarted if SA_RESTART is set)
[ repeats forever ]
The problem occurs because the traced task leaves ptrace_stop()
(and the signal handling loop) with the frozen bit set. So let's
call cgroup_leave_frozen(true) unconditionally after sleeping
in ptrace_stop().
With this patch applied, strace works as expected:
[ pre-main omitted ]
write(1, "a", 1) = 1
exit_group(0) = ?
+++ exited with 0 +++
Reported-by: Alex Xu <alex_y_xu@yahoo.ca>
Fixes: 76f969e8948d ("cgroup: cgroup v2 freezer")
Signed-off-by: Roman Gushchin <guro@fb.com>
Acked-by: Oleg Nesterov <oleg@redhat.com>
Cc: Tejun Heo <tj@kernel.org>
Signed-off-by: Tejun Heo <tj@kernel.org>
|
|
Wire up the mount API syscalls on non-x86 arches.
Reported-by: Arnd Bergmann <arnd@arndb.de>
Signed-off-by: David Howells <dhowells@redhat.com>
Reviewed-by: Arnd Bergmann <arnd@arndb.de>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
|
|
Fix the syscall numbering of the mount API syscalls so that the numbers
match between i386 and x86_64 and that they're in the common numbering
scheme space.
Fixes: a07b20004793 ("vfs: syscall: Add open_tree(2) to reference or clone a mount")
Fixes: 2db154b3ea8e ("vfs: syscall: Add move_mount(2) to move mounts around")
Fixes: 24dcb3d90a1f ("vfs: syscall: Add fsopen() to prepare for superblock creation")
Fixes: ecdab150fddb ("vfs: syscall: Add fsconfig() for configuring and managing a context")
Fixes: 93766fbd2696 ("vfs: syscall: Add fsmount() to create a mount for a superblock")
Fixes: cf3cba4a429b ("vfs: syscall: Add fspick() to select a superblock for reconfiguration")
Reported-by: Arnd Bergmann <arnd@arndb.de>
Signed-off-by: David Howells <dhowells@redhat.com>
Reviewed-by: Arnd Bergmann <arnd@arndb.de>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
|
|
Make the name of the anon inode fd "[fscontext]" instead of "fscontext".
This is minor but most core-kernel anon inode fds already carry square
brackets around their name:
[eventfd]
[eventpoll]
[fanotify]
[io_uring]
[pidfd]
[signalfd]
[timerfd]
[userfaultfd]
For the sake of consistency lets do the same for the fscontext anon inode
fd that comes with the new mount api.
Signed-off-by: Christian Brauner <christian@brauner.io>
Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
|
|
When __afs_break_callback() clears the CB_PROMISED flag, it increments
vnode->cb_break to trigger a future refetch of the status and callback -
however it also calls afs_clear_permits(), which also increments
vnode->cb_break.
Fix this by removing the increment from afs_clear_permits().
Whilst we're at it, fix the conditional call to afs_put_permits() as the
function checks to see if the argument is NULL, so the check is redundant.
Fixes: be080a6f43c4 ("afs: Overhaul permit caching");
Signed-off-by: David Howells <dhowells@redhat.com>
|
|
When applying the status and callback in the response of an operation,
apply them in the same critical section so that there's no race between
checking the callback state and checking status-dependent state (such as
the data version).
Fix this by:
(1) Allocating a joint {status,callback} record (afs_status_cb) before
calling the RPC function for each vnode for which the RPC reply
contains a status or a status plus a callback. A flag is set in the
record to indicate if a callback was actually received.
(2) These records are passed into the RPC functions to be filled in. The
afs_decode_status() and yfs_decode_status() functions are removed and
the cb_lock is no longer taken.
(3) xdr_decode_AFSFetchStatus() and xdr_decode_YFSFetchStatus() no longer
update the vnode.
(4) xdr_decode_AFSCallBack() and xdr_decode_YFSCallBack() no longer update
the vnode.
(5) vnodes, expected data-version numbers and callback break counters
(cb_break) no longer need to be passed to the reply delivery
functions.
Note that, for the moment, the file locking functions still need
access to both the call and the vnode at the same time.
(6) afs_vnode_commit_status() is now given the cb_break value and the
expected data_version and the task of applying the status and the
callback to the vnode are now done here.
This is done under a single taking of vnode->cb_lock.
(7) afs_pages_written_back() is now called by afs_store_data() rather than
by the reply delivery function.
afs_pages_written_back() has been moved to before the call point and
is now given the first and last page numbers rather than a pointer to
the call.
(8) The indicator from YFS.RemoveFile2 as to whether the target file
actually got removed (status.abort_code == VNOVNODE) rather than
merely dropping a link is now checked in afs_unlink rather than in
xdr_decode_YFSFetchStatus().
Supplementary fixes:
(*) afs_cache_permit() now gets the caller_access mask from the
afs_status_cb object rather than picking it out of the vnode's status
record. afs_fetch_status() returns caller_access through its argument
list for this purpose also.
(*) afs_inode_init_from_status() now uses a write lock on cb_lock rather
than a read lock and now sets the callback inside the same critical
section.
Fixes: c435ee34551e ("afs: Overhaul the callback handling")
Signed-off-by: David Howells <dhowells@redhat.com>
|
|
__afs_break_callback() holds vnode->lock around its call of
afs_lock_may_be_available() - which also takes that lock.
Fix this by not taking the lock in __afs_break_callback().
Also, there's no point checking the granted_locks and pending_locks queues;
it's sufficient to check lock_state, so move that check out of
afs_lock_may_be_available() into __afs_break_callback() to replace the
queue checks.
Fixes: e8d6c554126b ("AFS: implement file locking")
Signed-off-by: David Howells <dhowells@redhat.com>
|
|
Always ask for the reply time from AF_RXRPC as it's used to calculate the
callback expiry time and lock expiry times, so it's needed by most FS
operations.
Signed-off-by: David Howells <dhowells@redhat.com>
|
|
Don't invalidate the callback promise on a directory if the
AFS_VNODE_DIR_VALID flag is not set (which indicates that the directory
contents are invalid, due to edit failure, callback break, page reclaim).
The directory will be reloaded next time the directory is accessed, so
clearing the callback flag at this point may race with a reload of the
directory and cancel it's recorded callback promise.
Fixes: f3ddee8dc4e2 ("afs: Fix directory handling")
Signed-off-by: David Howells <dhowells@redhat.com>
|
|
afs_do_lookup() will do an order-1 allocation to allocate status records if
there are more than 39 vnodes to stat.
Fix this by allocating an array of {status,callback} records for each vnode
we want to examine using vmalloc() if larger than a page.
This not only gets rid of the order-1 allocation, but makes it easier to
grow beyond 50 records for YFS servers. It also allows us to move to
{status,callback} tuples for other calls too and makes it easier to lock
across the application of the status and the callback to the vnode.
Fixes: 5cf9dd55a0ec ("afs: Prospectively look up extra files when doing a single lookup")
Signed-off-by: David Howells <dhowells@redhat.com>
|
|
Fix the calculation of the expiry time of a callback promise, as obtained
from operations like FS.FetchStatus and FS.FetchData.
The time should be based on the timestamp of the first DATA packet in the
reply and the calculation needs to turn the ktime_t timestamp into a
time64_t.
Fixes: c435ee34551e ("afs: Overhaul the callback handling")
Signed-off-by: David Howells <dhowells@redhat.com>
|
|
Replace the afs_call::reply[] array with a bunch of typed members so that
the compiler can use type-checking on them. It's also easier for the eye
to see what's going on.
Signed-off-by: David Howells <dhowells@redhat.com>
|
|
Make dynamic root population wait uninterruptibly for proc_cells_lock.
Signed-off-by: David Howells <dhowells@redhat.com>
|
|
Don't pass the vnode pointer through into the inline bulk status op. We
want to process the status records outside of it anyway.
Signed-off-by: David Howells <dhowells@redhat.com>
|
|
Make certain RPC operations non-interruptible, including:
(*) Set attributes
(*) Store data
We don't want to get interrupted during a flush on close, flush on
unlock, writeback or an inode update, leaving us in a state where we
still need to do the writeback or update.
(*) Extend lock
(*) Release lock
We don't want to get lock extension interrupted as the file locks on
the server are time-limited. Interruption during lock release is less
of an issue since the lock is time-limited, but it's better to
complete the release to avoid a several-minute wait to recover it.
*Setting* the lock isn't a problem if it's interrupted since we can
just return to the user and tell them they were interrupted - at
which point they can elect to retry.
(*) Silly unlink
We want to remove silly unlink files if we can, rather than leaving
them for the salvager to clear up.
Note that whilst these calls are no longer interruptible, they do have
timeouts on them, so if the server stops responding the call will fail with
something like ETIME or ECONNRESET.
Without this, the following:
kAFS: Unexpected error from FS.StoreData -512
appears in dmesg when a pending store data gets interrupted and some
processes may just hang.
Additionally, make the code that checks/updates the server record ignore
failure due to interruption if the main call is uninterruptible and if the
server has an address list. The next op will check it again since the
expiration time on the old list has past.
Fixes: d2ddc776a458 ("afs: Overhaul volume and server record caching and fileserver rotation")
Reported-by: Jonathan Billings <jsbillings@jsbillings.org>
Reported-by: Marc Dionne <marc.dionne@auristor.com>
Signed-off-by: David Howells <dhowells@redhat.com>
|
|
Allow kernel services using AF_RXRPC to indicate that a call should be
non-interruptible. This allows kafs to make things like lock-extension and
writeback data storage calls non-interruptible.
If this is set, signals will be ignored for operations on that call where
possible - such as waiting to get a call channel on an rxrpc connection.
It doesn't prevent UDP sendmsg from being interrupted, but that will be
handled by packet retransmission.
rxrpc_kernel_recv_data() isn't affected by this since that never waits,
preferring instead to return -EAGAIN and leave the waiting to the caller.
Userspace initiated calls can't be set to be uninterruptible at this time.
Signed-off-by: David Howells <dhowells@redhat.com>
|
|
afs_check/update_server_record() should be setting fc->error rather than
fc->ac.error as they're called from within the cursor iteration function.
afs_fs_cursor::error is where the error code of the attempt to call the
operation on multiple servers is integrated and is the final result,
whereas afs_addr_cursor::error is used to hold the error from individual
iterations of the call loop. (Note there's also an afs_vl_cursor which
also wraps afs_addr_cursor for accessing VL servers rather than file
servers).
Fix this by setting fc->error in the afs_check/update_server_record() so
that any error incurred whilst talking to the VL server correctly
propagates to the final result.
This results in:
kAFS: Unexpected error from FS.StoreData -512
being seen, even though the store-data op is non-interruptible. The error
is actually coming from the server record update getting interrupted.
Fixes: d2ddc776a458 ("afs: Overhaul volume and server record caching and fileserver rotation")
Signed-off-by: David Howells <dhowells@redhat.com>
|
|
If an older AFS server doesn't support an operation, it may accept the call
and then sit on it forever, happily responding to pings that make kafs
think that the call is still alive.
Fix this by setting the maximum lifespan of Volume Location service calls
in particular and probe calls in general so that they don't run on
endlessly if they're not supported.
Signed-off-by: David Howells <dhowells@redhat.com>
|
|
Use the new struct_size() helper to keep code simple.
Reviewed-by: Chaitanya Kulkarni <chaitanya.kulkarni@wdc.com>
Signed-off-by: Jackie Liu <liuyun01@kylinos.cn>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
|
|
Provide an interface to set max lifespan on a call from inside of the
kernel without having to call kernel_sendmsg().
Signed-off-by: David Howells <dhowells@redhat.com>
|
|
Under some circumstances afs_select_fileserver() can return without setting
an error in fc->error. The problem is in the no_more_servers segment where
the accumulated errors from attempts to contact various servers are
integrated into an afs_error-type variable 'e'. The resultant error code
is, however, then abandoned.
Fix this by getting the error out of e.error and putting it in 'error' so
that the next part will store it into fc->error.
Not doing this causes a report like the following:
kAFS: AFS vnode with undefined type 0
kAFS: A=0 m=0 s=0 v=0
kAFS: vnode 20000025:1:1
because the code following the server selection loop then sees what it
thinks is a successful invocation because fc.error is 0. However, it can't
apply the status record because it's all zeros.
The report is followed on the first instance with a trace looking something
like:
dump_stack+0x67/0x8e
afs_inode_init_from_status.isra.2+0x21b/0x487
afs_fetch_status+0x119/0x1df
afs_iget+0x130/0x295
afs_get_tree+0x31d/0x595
vfs_get_tree+0x1f/0xe8
fc_mount+0xe/0x36
afs_d_automount+0x328/0x3c3
follow_managed+0x109/0x20a
lookup_fast+0x3bf/0x3f8
do_last+0xc3/0x6a4
path_openat+0x1af/0x236
do_filp_open+0x51/0xae
? _raw_spin_unlock+0x24/0x2d
? __alloc_fd+0x1a5/0x1b7
do_sys_open+0x13b/0x1e8
do_syscall_64+0x7d/0x1b3
entry_SYSCALL_64_after_hwframe+0x49/0xbe
Fixes: 4584ae96ae30 ("afs: Fix missing net error handling")
Signed-off-by: David Howells <dhowells@redhat.com>
|
|
The previous patch has ensured that io_cqring_events contain
smp_rmb memory barriers, Now we can use wait_event_interruptible
to keep the code simple.
Signed-off-by: Jackie Liu <liuyun01@kylinos.cn>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
|
|
Whenever smp_rmb is required to use io_cqring_events,
keep smp_rmb inside the function io_cqring_events.
Signed-off-by: Jackie Liu <liuyun01@kylinos.cn>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
|
|
This fixes couple of races which lead to infinite wait of park completion
with the following backtraces:
[20801.303319] Call Trace:
[20801.303321] ? __schedule+0x284/0x650
[20801.303323] schedule+0x33/0xc0
[20801.303324] schedule_timeout+0x1bc/0x210
[20801.303326] ? schedule+0x3d/0xc0
[20801.303327] ? schedule_timeout+0x1bc/0x210
[20801.303329] ? preempt_count_add+0x79/0xb0
[20801.303330] wait_for_completion+0xa5/0x120
[20801.303331] ? wake_up_q+0x70/0x70
[20801.303333] kthread_park+0x48/0x80
[20801.303335] io_finish_async+0x2c/0x70
[20801.303336] io_ring_ctx_wait_and_kill+0x95/0x180
[20801.303338] io_uring_release+0x1c/0x20
[20801.303339] __fput+0xad/0x210
[20801.303341] task_work_run+0x8f/0xb0
[20801.303342] exit_to_usermode_loop+0xa0/0xb0
[20801.303343] do_syscall_64+0xe0/0x100
[20801.303349] entry_SYSCALL_64_after_hwframe+0x44/0xa9
[20801.303380] Call Trace:
[20801.303383] ? __schedule+0x284/0x650
[20801.303384] schedule+0x33/0xc0
[20801.303386] io_sq_thread+0x38a/0x410
[20801.303388] ? __switch_to_asm+0x40/0x70
[20801.303390] ? wait_woken+0x80/0x80
[20801.303392] ? _raw_spin_lock_irqsave+0x17/0x40
[20801.303394] ? io_submit_sqes+0x120/0x120
[20801.303395] kthread+0x112/0x130
[20801.303396] ? kthread_create_on_node+0x60/0x60
[20801.303398] ret_from_fork+0x35/0x40
o kthread_park() waits for park completion, so io_sq_thread() loop
should check kthread_should_park() along with khread_should_stop(),
otherwise if kthread_park() is called before prepare_to_wait()
the following schedule() never returns:
CPU#0 CPU#1
io_sq_thread_stop(): io_sq_thread():
while(!kthread_should_stop() && !ctx->sqo_stop) {
ctx->sqo_stop = 1;
kthread_park()
prepare_to_wait();
if (kthread_should_stop() {
}
schedule(); <<< nobody checks park flag,
<<< so schedule and never return
o if the flag ctx->sqo_stop is observed by the io_sq_thread() loop
it is quite possible, that kthread_should_park() check and the
following kthread_parkme() is never called, because kthread_park()
has not been yet called, but few moments later is is called and
waits there for park completion, which never happens, because
kthread has already exited:
CPU#0 CPU#1
io_sq_thread_stop(): io_sq_thread():
ctx->sqo_stop = 1;
while(!kthread_should_stop() && !ctx->sqo_stop) {
<<< observe sqo_stop and exit the loop
}
if (kthread_should_park())
kthread_parkme(); <<< never called, since was
<<< never parked
kthread_park() <<< waits forever for park completion
In the current patch we quit the loop by only kthread_should_park()
check (kthread_park() is synchronous, so kthread_should_stop() is
never observed), and we abandon ->sqo_stop flag, since it is racy.
At the end of the io_sq_thread() we unconditionally call parmke(),
since we've exited the loop by the park flag.
Signed-off-by: Roman Penyaev <rpenyaev@suse.de>
Cc: Jens Axboe <axboe@kernel.dk>
Cc: linux-block@vger.kernel.org
Signed-off-by: Jens Axboe <axboe@kernel.dk>
|
|
Signed-off-by: Sheetal Singala <2396sheetal@gmail.com>
Signed-off-by: Mike Snitzer <snitzer@redhat.com>
|
|
This message should better identify the DM device with the integrity
failure.
Signed-off-by: Milan Broz <gmazyland@gmail.com>
Signed-off-by: Mike Snitzer <snitzer@redhat.com>
|
|
The information about tag size should not be printed without debug info
set. Also print device major:minor in the error message to identify the
device instance.
Also use rate limiting and debug level for info about used crypto API
implementaton. This is important because during online reencryption
the existing message saturates syslog (because we are moving hotzone
across the whole device).
Cc: stable@vger.kernel.org
Signed-off-by: Milan Broz <gmazyland@gmail.com>
Signed-off-by: Mike Snitzer <snitzer@redhat.com>
|
|
The dm_early_create() function (which deals with "dm-mod.create=" kernel
command line option) calls dm_hash_insert() who gets an extra reference
to the md object.
In case of failure, this reference wasn't being released, causing
dm_destroy() to hang, thus hanging the whole boot process.
Fix this by calling __hash_remove() in the error path.
Fixes: 6bbc923dfcf57d ("dm: add support to directly boot to a mapped device")
Cc: stable@vger.kernel.org
Signed-off-by: Helen Koike <helen.koike@collabora.com>
Signed-off-by: Mike Snitzer <snitzer@redhat.com>
|
|
Currently, once configured, AFS cells are looked up in the DNS at regular
intervals - which is a waste of resources if those cells aren't being
used. It also leads to a problem where cells preloaded, but not
configured, before the network is brought up end up effectively statically
configured with no VL servers and are unable to get any.
Fix this by not doing the DNS lookup until the first time a cell is
touched. It is waited for if we don't have any cached records yet,
otherwise the DNS lookup to maintain the record is done in the background.
This has the downside that the first time you touch a cell, you now have to
wait for the upcall to do the required DNS lookups rather than them already
being cached.
Further, the record is not replaced if the old record has at least one
server in it and the new record doesn't have any.
Fixes: 0a5143f2f89c ("afs: Implement VL server rotation")
Signed-off-by: David Howells <dhowells@redhat.com>
|
|
clock_getres in the vDSO library has to preserve the same behaviour
of posix_get_hrtimer_res().
In particular, posix_get_hrtimer_res() does:
sec = 0;
ns = hrtimer_resolution;
and hrtimer_resolution depends on the enablement of the high
resolution timers that can happen either at compile or at run time.
Fix the nds32 vdso implementation of clock_getres keeping a copy of
hrtimer_resolution in vdso data and using that directly.
Cc: Greentime Hu <green.hu@gmail.com>
Cc: Vincent Chen <deanbo422@gmail.com>
Signed-off-by: Vincenzo Frascino <vincenzo.frascino@arm.com>
Signed-off-by: Greentime Hu <greentime@andestech.com>
|
|
On x86_64, all returns to usermode go through
prepare_exit_to_usermode(), with the sole exception of do_nmi().
This even includes machine checks -- this was added several years
ago to support MCE recovery. Update the documentation.
Signed-off-by: Andy Lutomirski <luto@kernel.org>
Cc: Borislav Petkov <bp@suse.de>
Cc: Frederic Weisbecker <frederic@kernel.org>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Jon Masters <jcm@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: stable@vger.kernel.org
Fixes: 04dcbdb80578 ("x86/speculation/mds: Clear CPU buffers on exit to user")
Link: http://lkml.kernel.org/r/999fa9e126ba6a48e9d214d2f18dbde5c62ac55c.1557865329.git.luto@kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
|
|
The double fault ESPFIX path doesn't return to user mode at all --
it returns back to the kernel by simulating a #GP fault.
prepare_exit_to_usermode() will run on the way out of
general_protection before running user code.
Signed-off-by: Andy Lutomirski <luto@kernel.org>
Cc: Borislav Petkov <bp@suse.de>
Cc: Frederic Weisbecker <frederic@kernel.org>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Jon Masters <jcm@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: stable@vger.kernel.org
Fixes: 04dcbdb80578 ("x86/speculation/mds: Clear CPU buffers on exit to user")
Link: http://lkml.kernel.org/r/ac97612445c0a44ee10374f6ea79c222fe22a5c4.1557865329.git.luto@kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
|
|
We use git.kernel.org to put nds32's latest code instead of github.
Signed-off-by: Greentime Hu <greentime@andestech.com>
|
|
None of these is used by modules. Nor should they as we have better
highlevel primitives.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Acked-by: Greentime Hu <greentime@andestech.com>
Signed-off-by: Greentime Hu <greentime@andestech.com>
|
|
Generic kernels feed many operation through the "machvec" logic to get
the correct form of the operation for the current system. "mmiowb()" is
one of those operations.
Although machvec is initialized very early in boot, it isn't early
enough for a recent upstream kernel change that added mmiowb to the
spin_unlock() path.
Statically initialize the mmiowb field of machvec so that we won't die
with a call through a NULL pointer. This should be safe because we do
the real initialization of machvec before bringing up any addtional CPUs
or doing any I/O.
Fixes: 49ca6462fc9e ("ia64/mmiowb: Add unconditional mmiowb() to arch_spin_unlock()")
Signed-off-by: Tony Luck <tony.luck@intel.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
This reverts commit e8c24bbda7d5eba6df5ca45e5462fd3f96b8f217.
GCC 4.7, which is still permitted, emits code using the original
syntax. This means we end up with lots of assembler warnings when
building with a currently-supported version of gcc.
Revert the commit (with fixups to keep the follow-on -mauto-it
change) to avoid these warnings.
Signed-off-by: Russell King <rmk+kernel@armlinux.org.uk>
|
|
The RDPMC-exiting control is dependent on the existence of the RDPMC
instruction itself, i.e. is not tied to the "Architectural Performance
Monitoring" feature. For all intents and purposes, the control exists
on all CPUs with VMX support since RDPMC also exists on all VCPUs with
VMX supported. Per Intel's SDM:
The RDPMC instruction was introduced into the IA-32 Architecture in
the Pentium Pro processor and the Pentium processor with MMX technology.
The earlier Pentium processors have performance-monitoring counters, but
they must be read with the RDMSR instruction.
Because RDPMC-exiting always exists, KVM requires the control and refuses
to load if it's not available. As a result, hiding the PMU from a guest
breaks nested virtualization if the guest attemts to use KVM.
While it's not explicitly stated in the RDPMC pseudocode, the VM-Exit
check for RDPMC-exiting follows standard fault vs. VM-Exit prioritization
for privileged instructions, e.g. occurs after the CPL/CR0.PE/CR4.PCE
checks, but before the counter referenced in ECX is checked for validity.
In other words, the original KVM behavior of injecting a #GP was correct,
and the KVM unit test needs to be adjusted accordingly, e.g. eat the #GP
when the unit test guest (L3 in this case) executes RDPMC without
RDPMC-exiting set in the unit test host (L2).
This reverts commit e51bfdb68725dc052d16241ace40ea3140f938aa.
Fixes: e51bfdb68725 ("KVM: nVMX: Expose RDPMC-exiting only when guest supports PMU")
Reported-by: David Hill <hilld@binarystorm.net>
Cc: Saar Amar <saaramar@microsoft.com>
Cc: Mihai Carabas <mihai.carabas@oracle.com>
Cc: Jim Mattson <jmattson@google.com>
Cc: Liran Alon <liran.alon@oracle.com>
Cc: stable@vger.kernel.org
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
Currently KVM sets 5 most significant bits of physical address bits
reported by CPUID (boot_cpu_data.x86_phys_bits) for nonpresent or
reserved bits SPTE to mitigate L1TF attack from guest when using shadow
MMU. However for some particular Intel CPUs the physical address bits
of internal cache is greater than physical address bits reported by
CPUID.
Use the kernel's existing boot_cpu_data.x86_cache_bits to determine the
five most significant bits. Doing so improves KVM's L1TF mitigation in
the unlikely scenario that system RAM overlaps the high order bits of
the "real" physical address space as reported by CPUID. This aligns with
the kernel's warnings regarding L1TF mitigation, e.g. in the above
scenario the kernel won't warn the user about lack of L1TF mitigation
if x86_cache_bits is greater than x86_phys_bits.
Also initialize shadow_nonpresent_or_rsvd_mask explicitly to make it
consistent with other 'shadow_{xxx}_mask', and opportunistically add a
WARN once if KVM's L1TF mitigation cannot be applied on a system that
is marked as being susceptible to L1TF.
Reviewed-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Kai Huang <kai.huang@linux.intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
If L1 is using an MSR bitmap, unconditionally merge the MSR bitmaps from
L0 and L1 for MSR_{KERNEL,}_{FS,GS}_BASE. KVM unconditionally exposes
MSRs L1. If KVM is also running in L1 then it's highly likely L1 is
also exposing the MSRs to L2, i.e. KVM doesn't need to intercept L2
accesses.
Based on code from Jintack Lim.
Cc: Jintack Lim <jintack@xxxxxxxxxxxxxxx>
Signed-off-by: Sean Christopherson <sean.j.christopherson@xxxxxxxxx>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|