Age | Commit message (Collapse) | Author | Files | Lines |
|
When a CPU is taken offline the resctrl filesystem code needs to check if it
was the CPU nominated to perform the periodic overflow and limbo work. If so,
another CPU needs to be chosen to do this work.
This is currently done in core.c, mixed in with the code that removes the CPU
from the domain's mask, and potentially free()s the domain.
Move the migration of the overflow and limbo helpers into the filesystem code,
into resctrl_offline_cpu(). As resctrl_offline_cpu() runs before the
architecture code has removed the CPU from the domain mask, the callers need to
be told which CPU is being removed, to avoid picking it as the new CPU. This
uses the exclude_cpu feature previously added.
Signed-off-by: James Morse <james.morse@arm.com>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Reviewed-by: Shaopeng Tan <tan.shaopeng@fujitsu.com>
Reviewed-by: Reinette Chatre <reinette.chatre@intel.com>
Reviewed-by: Babu Moger <babu.moger@amd.com>
Tested-by: Shaopeng Tan <tan.shaopeng@fujitsu.com>
Tested-by: Peter Newman <peternewman@google.com>
Tested-by: Babu Moger <babu.moger@amd.com>
Tested-by: Carl Worth <carl@os.amperecomputing.com> # arm64
Link: https://lore.kernel.org/r/20240213184438.16675-24-james.morse@arm.com
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
|
|
The resctrl architecture specific code may need to free a domain when a CPU
goes offline, it also needs to reset the CPUs PQR_ASSOC register. Amongst
other things, the resctrl filesystem code needs to clear this CPU from the
cpu_mask of any control and monitor groups.
Currently, this is all done in core.c and called from resctrl_offline_cpu(),
making the split between architecture and filesystem code unclear.
Move the filesystem work to remove the CPU from the control and monitor groups
into a filesystem helper called resctrl_offline_cpu(), and rename the one in
core.c resctrl_arch_offline_cpu().
Signed-off-by: James Morse <james.morse@arm.com>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Reviewed-by: Shaopeng Tan <tan.shaopeng@fujitsu.com>
Reviewed-by: Reinette Chatre <reinette.chatre@intel.com>
Reviewed-by: Babu Moger <babu.moger@amd.com>
Tested-by: Shaopeng Tan <tan.shaopeng@fujitsu.com>
Tested-by: Peter Newman <peternewman@google.com>
Tested-by: Babu Moger <babu.moger@amd.com>
Tested-by: Carl Worth <carl@os.amperecomputing.com> # arm64
Link: https://lore.kernel.org/r/20240213184438.16675-23-james.morse@arm.com
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
|
|
When a CPU is taken offline resctrl may need to move the overflow or limbo
handlers to run on a different CPU.
Once the offline callbacks have been split, cqm_setup_limbo_handler() will be
called while the CPU that is going offline is still present in the CPU mask.
Pass the CPU to exclude to cqm_setup_limbo_handler() and
mbm_setup_overflow_handler(). These functions can use a variant of
cpumask_any_but() when selecting the CPU. -1 is used to indicate no CPUs need
excluding.
Signed-off-by: James Morse <james.morse@arm.com>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Reviewed-by: Shaopeng Tan <tan.shaopeng@fujitsu.com>
Reviewed-by: Babu Moger <babu.moger@amd.com>
Reviewed-by: Reinette Chatre <reinette.chatre@intel.com>
Tested-by: Shaopeng Tan <tan.shaopeng@fujitsu.com>
Tested-by: Peter Newman <peternewman@google.com>
Tested-by: Babu Moger <babu.moger@amd.com>
Tested-by: Carl Worth <carl@os.amperecomputing.com> # arm64
Link: https://lore.kernel.org/r/20240213184438.16675-22-james.morse@arm.com
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
|
|
The resctrl architecture specific code may need to create a domain when a CPU
comes online, it also needs to reset the CPUs PQR_ASSOC register. The resctrl
filesystem code needs to update the rdtgroup_default CPU mask when CPUs are
brought online.
Currently, this is all done in one function, resctrl_online_cpu(). It will
need to be split into architecture and filesystem parts before resctrl can be
moved to /fs/.
Pull the rdtgroup_default update work out as a filesystem specific cpu_online
helper. resctrl_online_cpu() is the obvious name for this, which means the
version in core.c needs renaming.
resctrl_online_cpu() is called by the arch code once it has done the work to
add the new CPU to any domains.
In future patches, resctrl_online_cpu() will take the rdtgroup_mutex itself.
Signed-off-by: James Morse <james.morse@arm.com>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Reviewed-by: Shaopeng Tan <tan.shaopeng@fujitsu.com>
Reviewed-by: Reinette Chatre <reinette.chatre@intel.com>
Reviewed-by: Babu Moger <babu.moger@amd.com>
Tested-by: Shaopeng Tan <tan.shaopeng@fujitsu.com>
Tested-by: Peter Newman <peternewman@google.com>
Tested-by: Babu Moger <babu.moger@amd.com>
Tested-by: Carl Worth <carl@os.amperecomputing.com> # arm64
Link: https://lore.kernel.org/r/20240213184438.16675-21-james.morse@arm.com
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
|
|
resctrl reads rdt_alloc_capable or rdt_mon_capable to determine whether any of
the resources support the corresponding features. resctrl also uses the
static keys that affect the architecture's context-switch code to determine the
same thing.
This forces another architecture to have the same static keys.
As the static key is enabled based on the capable flag, and none of the
filesystem uses of these are in the scheduler path, move the capable flags
behind helpers, and use these in the filesystem code instead of the static key.
After this change, only the architecture code manages and uses the static keys
to ensure __resctrl_sched_in() does not need runtime checks.
This avoids multiple architectures having to define the same static keys.
Cases where the static key implicitly tested if the resctrl filesystem was
mounted all have an explicit check now.
Signed-off-by: James Morse <james.morse@arm.com>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Reviewed-by: Shaopeng Tan <tan.shaopeng@fujitsu.com>
Reviewed-by: Reinette Chatre <reinette.chatre@intel.com>
Reviewed-by: Babu Moger <babu.moger@amd.com>
Tested-by: Shaopeng Tan <tan.shaopeng@fujitsu.com>
Tested-by: Peter Newman <peternewman@google.com>
Tested-by: Babu Moger <babu.moger@amd.com>
Tested-by: Carl Worth <carl@os.amperecomputing.com> # arm64
Link: https://lore.kernel.org/r/20240213184438.16675-20-james.morse@arm.com
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
|
|
rdt_enable_key is switched when resctrl is mounted. It was also previously used
to prevent a second mount of the filesystem.
Any other architecture that wants to support resctrl has to provide identical
static keys.
Now that there are helpers for enabling and disabling the alloc/mon keys,
resctrl doesn't need to switch this extra key, it can be done by the arch code.
Use the static-key increment and decrement helpers, and change resctrl to
ensure the calls are balanced.
Signed-off-by: James Morse <james.morse@arm.com>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Reviewed-by: Shaopeng Tan <tan.shaopeng@fujitsu.com>
Reviewed-by: Reinette Chatre <reinette.chatre@intel.com>
Reviewed-by: Babu Moger <babu.moger@amd.com>
Tested-by: Shaopeng Tan <tan.shaopeng@fujitsu.com>
Tested-by: Peter Newman <peternewman@google.com>
Tested-by: Babu Moger <babu.moger@amd.com>
Tested-by: Carl Worth <carl@os.amperecomputing.com> # arm64
Link: https://lore.kernel.org/r/20240213184438.16675-19-james.morse@arm.com
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
|
|
resctrl enables three static keys depending on the features it has enabled.
Another architecture's context switch code may look different, any static keys
that control it should be buried behind helpers.
Move the alloc/mon logic into arch-specific helpers as a preparatory step for
making the rdt_enable_key's status something the arch code decides.
This means other architectures don't have to mirror the static keys.
Signed-off-by: James Morse <james.morse@arm.com>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Reviewed-by: Shaopeng Tan <tan.shaopeng@fujitsu.com>
Reviewed-by: Reinette Chatre <reinette.chatre@intel.com>
Reviewed-by: Babu Moger <babu.moger@amd.com>
Tested-by: Shaopeng Tan <tan.shaopeng@fujitsu.com>
Tested-by: Peter Newman <peternewman@google.com>
Tested-by: Babu Moger <babu.moger@amd.com>
Tested-by: Carl Worth <carl@os.amperecomputing.com> # arm64
Link: https://lore.kernel.org/r/20240213184438.16675-18-james.morse@arm.com
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
|
|
The rdt_enable_key is switched when resctrl is mounted, and used to prevent
a second mount of the filesystem. It also enables the architecture's context
switch code.
This requires another architecture to have the same set of static keys, as
resctrl depends on them too. The existing users of these static keys are
implicitly also checking if the filesystem is mounted.
Make the resctrl_mounted checks explicit: resctrl can keep track of whether it
has been mounted once. This doesn't need to be combined with whether the arch
code is context switching the CLOSID.
rdt_mon_enable_key is never used just to test that resctrl is mounted, but does
also have this implication. Add a resctrl_mounted to all uses of
rdt_mon_enable_key.
This will allow the static key changing to be moved behind resctrl_arch_ calls.
Signed-off-by: James Morse <james.morse@arm.com>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Reviewed-by: Shaopeng Tan <tan.shaopeng@fujitsu.com>
Reviewed-by: Reinette Chatre <reinette.chatre@intel.com>
Reviewed-by: Babu Moger <babu.moger@amd.com>
Tested-by: Shaopeng Tan <tan.shaopeng@fujitsu.com>
Tested-by: Peter Newman <peternewman@google.com>
Tested-by: Babu Moger <babu.moger@amd.com>
Tested-by: Carl Worth <carl@os.amperecomputing.com> # arm64
Link: https://lore.kernel.org/r/20240213184438.16675-17-james.morse@arm.com
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
|
|
Depending on the number of monitors available, Arm's MPAM may need to
allocate a monitor prior to reading the counter value. Allocating a
contended resource may involve sleeping.
__check_limbo() and mon_event_count() each make multiple calls to
resctrl_arch_rmid_read(), to avoid extra work on contended systems,
the allocation should be valid for multiple invocations of
resctrl_arch_rmid_read().
The memory or hardware allocated is not specific to a domain.
Add arch hooks for this allocation, which need calling before
resctrl_arch_rmid_read(). The allocated monitor is passed to
resctrl_arch_rmid_read(), then freed again afterwards. The helper
can be called on any CPU, and can sleep.
Signed-off-by: James Morse <james.morse@arm.com>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Reviewed-by: Shaopeng Tan <tan.shaopeng@fujitsu.com>
Reviewed-by: Reinette Chatre <reinette.chatre@intel.com>
Reviewed-by: Babu Moger <babu.moger@amd.com>
Tested-by: Shaopeng Tan <tan.shaopeng@fujitsu.com>
Tested-by: Peter Newman <peternewman@google.com>
Tested-by: Babu Moger <babu.moger@amd.com>
Tested-by: Carl Worth <carl@os.amperecomputing.com> # arm64
Link: https://lore.kernel.org/r/20240213184438.16675-16-james.morse@arm.com
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
|
|
MPAM's cache occupancy counters can take a little while to settle once the
monitor has been configured. The maximum settling time is described to the
driver via a firmware table. The value could be large enough that it makes
sense to sleep. To avoid exposing this to resctrl, it should be hidden behind
MPAM's resctrl_arch_rmid_read().
resctrl_arch_rmid_read() may be called via IPI meaning it is unable to sleep.
In this case, it should return an error if it needs to sleep. This will only
affect MPAM platforms where the cache occupancy counter isn't available
immediately, nohz_full is in use, and there are no housekeeping CPUs in the
necessary domain.
There are three callers of resctrl_arch_rmid_read(): __mon_event_count() and
__check_limbo() are both called from a non-migrateable context.
mon_event_read() invokes __mon_event_count() using smp_call_on_cpu(), which
adds work to the target CPUs workqueue. rdtgroup_mutex() is held, meaning this
cannot race with the resctrl cpuhp callback. __check_limbo() is invoked via
schedule_delayed_work_on() also adds work to a per-cpu workqueue.
The remaining call is add_rmid_to_limbo() which is called in response to
a user-space syscall that frees an RMID. This opportunistically reads the LLC
occupancy counter on the current domain to see if the RMID is over the dirty
threshold. This has to disable preemption to avoid reading the wrong domain's
value. Disabling preemption here prevents resctrl_arch_rmid_read() from
sleeping.
add_rmid_to_limbo() walks each domain, but only reads the counter on one
domain. If the system has more than one domain, the RMID will always be added
to the limbo list. If the RMIDs usage was not over the threshold, it will be
removed from the list when __check_limbo() runs. Make this the default
behaviour. Free RMIDs are always added to the limbo list for each domain.
The user visible effect of this is that a clean RMID is not available for
re-allocation immediately after 'rmdir()' completes. This behaviour was never
portable as it never happened on a machine with multiple domains.
Removing this path allows resctrl_arch_rmid_read() to sleep if its called with
interrupts unmasked. Document this is the expected behaviour, and add
a might_sleep() annotation to catch changes that won't work on arm64.
Signed-off-by: James Morse <james.morse@arm.com>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Reviewed-by: Shaopeng Tan <tan.shaopeng@fujitsu.com>
Reviewed-by: Reinette Chatre <reinette.chatre@intel.com>
Reviewed-by: Babu Moger <babu.moger@amd.com>
Tested-by: Shaopeng Tan <tan.shaopeng@fujitsu.com>
Tested-by: Peter Newman <peternewman@google.com>
Tested-by: Babu Moger <babu.moger@amd.com>
Tested-by: Carl Worth <carl@os.amperecomputing.com> # arm64
Link: https://lore.kernel.org/r/20240213184438.16675-15-james.morse@arm.com
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
|
|
Intel is blessed with an abundance of monitors, one per RMID, that can be
read from any CPU in the domain. MPAMs monitors reside in the MMIO MSC,
the number implemented is up to the manufacturer. This means when there are
fewer monitors than needed, they need to be allocated and freed.
MPAM's CSU monitors are used to back the 'llc_occupancy' monitor file. The
CSU counter is allowed to return 'not ready' for a small number of
micro-seconds after programming. To allow one CSU hardware monitor to be
used for multiple control or monitor groups, the CPU accessing the
monitor needs to be able to block when configuring and reading the
counter.
Worse, the domain may be broken up into slices, and the MMIO accesses
for each slice may need performing from different CPUs.
These two details mean MPAMs monitor code needs to be able to sleep, and
IPI another CPU in the domain to read from a resource that has been sliced.
mon_event_read() already invokes mon_event_count() via IPI, which means
this isn't possible. On systems using nohz-full, some CPUs need to be
interrupted to run kernel work as they otherwise stay in user-space
running realtime workloads. Interrupting these CPUs should be avoided,
and scheduling work on them may never complete.
Change mon_event_read() to pick a housekeeping CPU, (one that is not using
nohz_full) and schedule mon_event_count() and wait. If all the CPUs
in a domain are using nohz-full, then an IPI is used as the fallback.
This function is only used in response to a user-space filesystem request
(not the timing sensitive overflow code).
This allows MPAM to hide the slice behaviour from resctrl, and to keep
the monitor-allocation in monitor.c. When the IPI fallback is used on
machines where MPAM needs to make an access on multiple CPUs, the counter
read will always fail.
Signed-off-by: James Morse <james.morse@arm.com>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Reviewed-by: Shaopeng Tan <tan.shaopeng@fujitsu.com>
Reviewed-by: Peter Newman <peternewman@google.com>
Reviewed-by: Reinette Chatre <reinette.chatre@intel.com>
Reviewed-by: Babu Moger <babu.moger@amd.com>
Tested-by: Shaopeng Tan <tan.shaopeng@fujitsu.com>
Tested-by: Peter Newman <peternewman@google.com>
Tested-by: Babu Moger <babu.moger@amd.com>
Tested-by: Carl Worth <carl@os.amperecomputing.com> # arm64
Link: https://lore.kernel.org/r/20240213184438.16675-14-james.morse@arm.com
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
|
|
The limbo and overflow code picks a CPU to use from the domain's list of online
CPUs. Work is then scheduled on these CPUs to maintain the limbo list and any
counters that may overflow.
cpumask_any() may pick a CPU that is marked nohz_full, which will either
penalise the work that CPU was dedicated to, or delay the processing of limbo
list or counters that may overflow. Perhaps indefinitely. Delaying the overflow
handling will skew the bandwidth values calculated by mba_sc, which expects to
be called once a second.
Add cpumask_any_housekeeping() as a replacement for cpumask_any() that prefers
housekeeping CPUs. This helper will still return a nohz_full CPU if that is the
only option. The CPU to use is re-evaluated each time the limbo/overflow work
runs. This ensures the work will move off a nohz_full CPU once a housekeeping
CPU is available.
Signed-off-by: James Morse <james.morse@arm.com>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Reviewed-by: Shaopeng Tan <tan.shaopeng@fujitsu.com>
Reviewed-by: Reinette Chatre <reinette.chatre@intel.com>
Reviewed-by: Babu Moger <babu.moger@amd.com>
Tested-by: Shaopeng Tan <tan.shaopeng@fujitsu.com>
Tested-by: Peter Newman <peternewman@google.com>
Tested-by: Babu Moger <babu.moger@amd.com>
Tested-by: Carl Worth <carl@os.amperecomputing.com> # arm64
Link: https://lore.kernel.org/r/20240213184438.16675-13-james.morse@arm.com
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
|
|
When switching tasks, the CLOSID and RMID that the new task should use
are stored in struct task_struct. For x86 the CLOSID known by resctrl,
the value in task_struct, and the value written to the CPU register are
all the same thing.
MPAM's CPU interface has two different PARTIDs - one for data accesses
the other for instruction fetch. Storing resctrl's CLOSID value in
struct task_struct implies the arch code knows whether resctrl is using
CDP.
Move the matching and setting of the struct task_struct properties to
use helpers. This allows arm64 to store the hardware format of the
register, instead of having to convert it each time.
__rdtgroup_move_task()s use of READ_ONCE()/WRITE_ONCE() ensures torn
values aren't seen as another CPU may schedule the task being moved
while the value is being changed. MPAM has an additional corner-case
here as the PMG bits extend the PARTID space.
If the scheduler sees a new-CLOSID but old-RMID, the task will dirty an
RMID that the limbo code is not watching causing an inaccurate count.
x86's RMID are independent values, so the limbo code will still be
watching the old-RMID in this circumstance.
To avoid this, arm64 needs both the CLOSID/RMID WRITE_ONCE()d together.
Both values must be provided together.
Because MPAM's RMID values are not unique, the CLOSID must be provided
when matching the RMID.
Signed-off-by: James Morse <james.morse@arm.com>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Reviewed-by: Shaopeng Tan <tan.shaopeng@fujitsu.com>
Reviewed-by: Reinette Chatre <reinette.chatre@intel.com>
Reviewed-by: Babu Moger <babu.moger@amd.com>
Tested-by: Shaopeng Tan <tan.shaopeng@fujitsu.com>
Tested-by: Peter Newman <peternewman@google.com>
Tested-by: Babu Moger <babu.moger@amd.com>
Tested-by: Carl Worth <carl@os.amperecomputing.com> # arm64
Link: https://lore.kernel.org/r/20240213184438.16675-12-james.morse@arm.com
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
|
|
MPAM's PMG bits extend its PARTID space, meaning the same PMG value can be used
for different control groups.
This means once a CLOSID is allocated, all its monitoring ids may still be
dirty, and held in limbo.
Instead of allocating the first free CLOSID, on architectures where
CONFIG_RESCTRL_RMID_DEPENDS_ON_CLOSID is enabled, search
closid_num_dirty_rmid[] to find the cleanest CLOSID.
The CLOSID found is returned to closid_alloc() for the free list
to be updated.
Signed-off-by: James Morse <james.morse@arm.com>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Reviewed-by: Shaopeng Tan <tan.shaopeng@fujitsu.com>
Reviewed-by: Reinette Chatre <reinette.chatre@intel.com>
Reviewed-by: Babu Moger <babu.moger@amd.com>
Tested-by: Shaopeng Tan <tan.shaopeng@fujitsu.com>
Tested-by: Peter Newman <peternewman@google.com>
Tested-by: Babu Moger <babu.moger@amd.com>
Tested-by: Carl Worth <carl@os.amperecomputing.com> # arm64
Link: https://lore.kernel.org/r/20240213184438.16675-11-james.morse@arm.com
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
|
|
The resctrl CLOSID allocator uses a single 32bit word to track which
CLOSID are free. The setting and clearing of bits is open coded.
Convert the existing open coded bit manipulations of closid_free_map
to use __set_bit() and friends. These don't need to be atomic as this
list is protected by the mutex.
Signed-off-by: James Morse <james.morse@arm.com>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Reviewed-by: Shaopeng Tan <tan.shaopeng@fujitsu.com>
Reviewed-by: Reinette Chatre <reinette.chatre@intel.com>
Reviewed-by: Babu Moger <babu.moger@amd.com>
Tested-by: Shaopeng Tan <tan.shaopeng@fujitsu.com>
Tested-by: Peter Newman <peternewman@google.com>
Tested-by: Babu Moger <babu.moger@amd.com>
Tested-by: Carl Worth <carl@os.amperecomputing.com> # arm64
Link: https://lore.kernel.org/r/20240213184438.16675-10-james.morse@arm.com
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
|
|
MPAM's PMG bits extend its PARTID space, meaning the same PMG value can be
used for different control groups.
This means once a CLOSID is allocated, all its monitoring ids may still be
dirty, and held in limbo.
Keep track of the number of RMID held in limbo each CLOSID has. This will
allow a future helper to find the 'cleanest' CLOSID when allocating.
The array is only needed when CONFIG_RESCTRL_RMID_DEPENDS_ON_CLOSID is
defined. This will never be the case on x86.
Signed-off-by: James Morse <james.morse@arm.com>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Reviewed-by: Shaopeng Tan <tan.shaopeng@fujitsu.com>
Reviewed-by: Reinette Chatre <reinette.chatre@intel.com>
Reviewed-by: Babu Moger <babu.moger@amd.com>
Tested-by: Shaopeng Tan <tan.shaopeng@fujitsu.com>
Tested-by: Peter Newman <peternewman@google.com>
Tested-by: Babu Moger <babu.moger@amd.com>
Tested-by: Carl Worth <carl@os.amperecomputing.com> # arm64
Link: https://lore.kernel.org/r/20240213184438.16675-9-james.morse@arm.com
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
|
|
MPAMs RMID values are not unique unless the CLOSID is considered as well.
alloc_rmid() expects the RMID to be an independent number.
Pass the CLOSID in to alloc_rmid(). Use this to compare indexes when
allocating. If the CLOSID is not relevant to the index, this ends up comparing
the free RMID with itself, and the first free entry will be used. With MPAM the
CLOSID is included in the index, so this becomes a walk of the free RMID
entries, until one that matches the supplied CLOSID is found.
Signed-off-by: James Morse <james.morse@arm.com>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Reviewed-by: Shaopeng Tan <tan.shaopeng@fujitsu.com>
Reviewed-by: Reinette Chatre <reinette.chatre@intel.com>
Reviewed-by: Babu Moger <babu.moger@amd.com>
Tested-by: Shaopeng Tan <tan.shaopeng@fujitsu.com>
Tested-by: Peter Newman <peternewman@google.com>
Tested-by: Babu Moger <babu.moger@amd.com>
Tested-by: Carl Worth <carl@os.amperecomputing.com> # arm64
Link: https://lore.kernel.org/r/20240213184438.16675-8-james.morse@arm.com
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
|
|
x86 systems identify traffic using the CLOSID and RMID. The CLOSID is
used to lookup the control policy, the RMID is used for monitoring. For
x86 these are independent numbers.
Arm's MPAM has equivalent features PARTID and PMG, where the PARTID is
used to lookup the control policy. The PMG in contrast is a small number
of bits that are used to subdivide PARTID when monitoring. The
cache-occupancy monitors require the PARTID to be specified when
monitoring.
This means MPAM's PMG field is not unique. There are multiple PMG-0, one
per allocated CLOSID/PARTID. If PMG is treated as equivalent to RMID, it
cannot be allocated as an independent number. Bitmaps like rmid_busy_llc
need to be sized by the number of unique entries for this resource.
Treat the combined CLOSID and RMID as an index, and provide architecture
helpers to pack and unpack an index. This makes the MPAM values unique.
The domain's rmid_busy_llc and rmid_ptrs[] are then sized by index, as
are domain mbm_local[] and mbm_total[].
x86 can ignore the CLOSID field when packing and unpacking an index, and
report as many indexes as RMID.
Signed-off-by: James Morse <james.morse@arm.com>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Reviewed-by: Shaopeng Tan <tan.shaopeng@fujitsu.com>
Reviewed-by: Babu Moger <babu.moger@amd.com>
Reviewed-by: Reinette Chatre <reinette.chatre@intel.com>
Tested-by: Shaopeng Tan <tan.shaopeng@fujitsu.com>
Tested-by: Peter Newman <peternewman@google.com>
Tested-by: Babu Moger <babu.moger@amd.com>
Tested-by: Carl Worth <carl@os.amperecomputing.com> # arm64
Link: https://lore.kernel.org/r/20240213184438.16675-7-james.morse@arm.com
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
|
|
x86's RMID are independent of the CLOSID. An RMID can be allocated,
used and freed without considering the CLOSID.
MPAM's equivalent feature is PMG, which is not an independent number,
it extends the CLOSID/PARTID space. For MPAM, only PMG-bits worth of
'RMID' can be allocated for a single CLOSID.
i.e. if there is 1 bit of PMG space, then each CLOSID can have two
monitor groups.
To allow resctrl to disambiguate RMID values for different CLOSID,
everything in resctrl that keeps an RMID value needs to know the CLOSID
too. This will always be ignored on x86.
Signed-off-by: James Morse <james.morse@arm.com>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Reviewed-by: Shaopeng Tan <tan.shaopeng@fujitsu.com>
Reviewed-by: Xin Hao <xhao@linux.alibaba.com>
Reviewed-by: Reinette Chatre <reinette.chatre@intel.com>
Tested-by: Shaopeng Tan <tan.shaopeng@fujitsu.com>
Tested-by: Peter Newman <peternewman@google.com>
Tested-by: Babu Moger <babu.moger@amd.com>
Tested-by: Carl Worth <carl@os.amperecomputing.com> # arm64
Link: https://lore.kernel.org/r/20240213184438.16675-6-james.morse@arm.com
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
|
|
RMIDs are allocated for each monitor or control group directory, because
each of these needs its own RMID. For control groups,
rdtgroup_mkdir_ctrl_mon() later goes on to allocate the CLOSID.
MPAM's equivalent of RMID is not an independent number, so can't be
allocated until the CLOSID is known. An RMID allocation for one CLOSID
may fail, whereas another may succeed depending on how many monitor
groups a control group has.
The RMID allocation needs to move to be after the CLOSID has been
allocated.
Move the RMID allocation out of mkdir_rdt_prepare() to occur in its caller,
after the mkdir_rdt_prepare() call. This allows the RMID allocator to
know the CLOSID.
Signed-off-by: James Morse <james.morse@arm.com>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Reviewed-by: Shaopeng Tan <tan.shaopeng@fujitsu.com>
Reviewed-by: Reinette Chatre <reinette.chatre@intel.com>
Reviewed-by: Babu Moger <babu.moger@amd.com>
Tested-by: Shaopeng Tan <tan.shaopeng@fujitsu.com>
Tested-by: Peter Newman <peternewman@google.com>
Tested-by: Babu Moger <babu.moger@amd.com>
Tested-by: Carl Worth <carl@os.amperecomputing.com> # arm64
Link: https://lore.kernel.org/r/20240213184438.16675-5-james.morse@arm.com
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
|
|
When monitoring is supported, each monitor and control group is allocated an
RMID. For control groups, rdtgroup_mkdir_ctrl_mon() later goes on to allocate
the CLOSID.
MPAM's equivalent of RMID are not an independent number, so can't be allocated
until the CLOSID is known. An RMID allocation for one CLOSID may fail, whereas
another may succeed depending on how many monitor groups a control group has.
The RMID allocation needs to move to be after the CLOSID has been allocated.
Move the RMID allocation and mondata dir creation to a helper.
Signed-off-by: James Morse <james.morse@arm.com>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Reviewed-by: Shaopeng Tan <tan.shaopeng@fujitsu.com>
Reviewed-by: Ilpo Järvinen <ilpo.jarvinen@linux.intel.com>
Reviewed-by: Reinette Chatre <reinette.chatre@intel.com>
Reviewed-by: Babu Moger <babu.moger@amd.com>
Tested-by: Peter Newman <peternewman@google.com>
Tested-by: Shaopeng Tan <tan.shaopeng@fujitsu.com>
Tested-by: Babu Moger <babu.moger@amd.com>
Tested-by: Carl Worth <carl@os.amperecomputing.com> # arm64
Link: https://lore.kernel.org/r/20240213184438.16675-4-james.morse@arm.com
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
|
|
rmid_ptrs[] is allocated from dom_data_init() but never free()d.
While the exit text ends up in the linker script's DISCARD section,
the direction of travel is for resctrl to be/have loadable modules.
Add resctrl_put_mon_l3_config() to cleanup any memory allocated
by rdt_get_mon_l3_config().
There is no reason to backport this to a stable kernel.
Signed-off-by: James Morse <james.morse@arm.com>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Reviewed-by: Babu Moger <babu.moger@amd.com>
Reviewed-by: Reinette Chatre <reinette.chatre@intel.com>
Tested-by: Babu Moger <babu.moger@amd.com>
Tested-by: Carl Worth <carl@os.amperecomputing.com> # arm64
Link: https://lore.kernel.org/r/20240213184438.16675-3-james.morse@arm.com
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
|
|
tick_nohz_full_mask lists the CPUs that are nohz_full. This is only needed when
CONFIG_NO_HZ_FULL is defined. tick_nohz_full_cpu() allows a specific CPU to be
tested against the mask, and evaluates to false when CONFIG_NO_HZ_FULL is not
defined.
The resctrl code needs to pick a CPU to run some work on, a new helper prefers
housekeeping CPUs by examining the tick_nohz_full_mask. Hiding the declaration
behind #ifdef CONFIG_NO_HZ_FULL forces all the users to be behind an #ifdef
too.
Move the tick_nohz_full_mask declaration, this lets callers drop the #ifdef,
and guard access to tick_nohz_full_mask with IS_ENABLED() or something like
tick_nohz_full_cpu().
The definition does not need to be moved as any callers should be removed at
compile time unless CONFIG_NO_HZ_FULL is defined.
Signed-off-by: James Morse <james.morse@arm.com>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Reviewed-by: Shaopeng Tan <tan.shaopeng@fujitsu.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Reinette Chatre <reinette.chatre@intel.com> # for resctrl dependency
Tested-by: Shaopeng Tan <tan.shaopeng@fujitsu.com>
Tested-by: Peter Newman <peternewman@google.com>
Tested-by: Carl Worth <carl@os.amperecomputing.com> # arm64
Link: https://lore.kernel.org/r/20240213184438.16675-2-james.morse@arm.com
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
|
|
The kernel test robot reported the following warning after commit
54e35eb8611c ("x86/resctrl: Read supported bandwidth sources from CPUID").
even though the issue is present even in the original commit
92bd5a139033 ("x86/resctrl: Add interface to write mbm_total_bytes_config")
which added this function. The reported warning is:
$ make C=1 CHECK=scripts/coccicheck arch/x86/kernel/cpu/resctrl/rdtgroup.o
...
arch/x86/kernel/cpu/resctrl/rdtgroup.c:1621:5-8: Unneeded variable: "ret". Return "0" on line 1655
Remove the local variable 'ret'.
[ bp: Massage commit message, make mbm_config_write_domain() void. ]
Fixes: 92bd5a139033 ("x86/resctrl: Add interface to write mbm_total_bytes_config")
Reported-by: kernel test robot <lkp@intel.com>
Closes: https://lore.kernel.org/oe-kbuild-all/202401241810.jbd8Ipa1-lkp@intel.com/
Signed-off-by: Babu Moger <babu.moger@amd.com>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Acked-by: Reinette Chatre <reinette.chatre@intel.com>
Link: https://lore.kernel.org/r/202401241810.jbd8Ipa1-lkp@intel.com
|
|
The mba_MBps feedback loop increases throttling when a group is using
more bandwidth than the target set by the user in the schemata file, and
decreases throttling when below target.
To avoid possibly stepping throttling up and down on every poll a flag
"delta_comp" is set whenever throttling is changed to indicate that the
actual change in bandwidth should be recorded on the next poll in
"delta_bw". Throttling is only reduced if the current bandwidth plus
delta_bw is below the user target.
This algorithm works well if the workload has steady bandwidth needs.
But it can go badly wrong if the workload moves to a different phase
just as the throttling level changed. E.g. if the workload becomes
essentially idle right as throttling level is increased, the value
calculated for delta_bw will be more or less the old bandwidth level.
If the workload then resumes, Linux may never reduce throttling because
current bandwidth plus delta_bw is above the target set by the user.
Implement a simpler heuristic by assuming that in the worst case the
currently measured bandwidth is being controlled by the current level of
throttling. Compute how much it may increase if throttling is relaxed to
the next higher level. If that is still below the user target, then it
is ok to reduce the amount of throttling.
Fixes: ba0f26d8529c ("x86/intel_rdt/mba_sc: Prepare for feedback loop")
Reported-by: Xiaochen Shen <xiaochen.shen@intel.com>
Signed-off-by: Tony Luck <tony.luck@intel.com>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Reviewed-by: Reinette Chatre <reinette.chatre@intel.com>
Tested-by: Xiaochen Shen <xiaochen.shen@intel.com>
Link: https://lore.kernel.org/r/20240122180807.70518-1-tony.luck@intel.com
|
|
If the BMEC (Bandwidth Monitoring Event Configuration) feature is
supported, the bandwidth events can be configured. The maximum supported
bandwidth bitmask can be read from CPUID:
CPUID_Fn80000020_ECX_x03 [Platform QoS Monitoring Bandwidth Event Configuration]
Bits Description
31:7 Reserved
6:0 Identifies the bandwidth sources that can be tracked.
While at it, move the mask checking to mon_config_write() before
iterating over all the domains. Also, print the valid bitmask when the
user tries to configure invalid event configuration value.
The CPUID details are documented in the Processor Programming Reference
(PPR) Vol 1.1 for AMD Family 19h Model 11h B1 - 55901 Rev 0.25 in the
Link tag.
Fixes: dc2a3e857981 ("x86/resctrl: Add interface to read mbm_total_bytes_config")
Signed-off-by: Babu Moger <babu.moger@amd.com>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Reviewed-by: Reinette Chatre <reinette.chatre@intel.com>
Link: https://bugzilla.kernel.org/show_bug.cgi?id=206537
Link: https://lore.kernel.org/r/669896fa512c7451319fa5ca2fdb6f7e015b5635.1705359148.git.babu.moger@amd.com
|
|
The QOS Memory Bandwidth Enforcement Limit is reported by
CPUID_Fn80000020_EAX_x01 and CPUID_Fn80000020_EAX_x02:
Bits Description
31:0 BW_LEN: Size of the QOS Memory Bandwidth Enforcement Limit.
Newer processors can support higher bandwidth limit than the current
hard-coded value. Remove latter and detect using CPUID instead. Also,
update the register variables eax and edx to match the AMD CPUID
definition.
The CPUID details are documented in the Processor Programming Reference
(PPR) Vol 1.1 for AMD Family 19h Model 11h B1 - 55901 Rev 0.25 in the
Link tag below.
Fixes: 4d05bf71f157 ("x86/resctrl: Introduce AMD QOS feature")
Signed-off-by: Babu Moger <babu.moger@amd.com>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Reviewed-by: Reinette Chatre <reinette.chatre@intel.com>
Link: https://bugzilla.kernel.org/show_bug.cgi?id=206537
Link: https://lore.kernel.org/r/c26a8ca79d399ed076cf8bf2e9fbc58048808289.1705359148.git.babu.moger@amd.com
|
|
In a "W=1" build gcc throws a warning:
arch/x86/kernel/cpu/resctrl/core.c: In function ‘cache_alloc_hsw_probe’:
arch/x86/kernel/cpu/resctrl/core.c:139:16: warning: variable ‘h’ set but not used
Switch from wrmsr_safe() to wrmsrl_safe(), and from rdmsr() to rdmsrl()
using a single u64 argument for the MSR value instead of the pair of u32
for the high and low halves.
Signed-off-by: Tony Luck <tony.luck@intel.com>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Reviewed-by: Babu Moger <babu.moger@amd.com>
Acked-by: Reinette Chatre <reinette.chatre@intel.com>
Link: https://lore.kernel.org/r/ZULCd/TGJL9Dmncf@agluck-desk3
|
|
|
|
Add line breaks - inode_to_text() is now much easier to read.
Signed-off-by: Kent Overstreet <kent.overstreet@linux.dev>
|
|
Signed-off-by: Kent Overstreet <kent.overstreet@linux.dev>
|
|
Signed-off-by: Kent Overstreet <kent.overstreet@linux.dev>
|
|
Signed-off-by: Kent Overstreet <kent.overstreet@linux.dev>
|
|
Signed-off-by: Kent Overstreet <kent.overstreet@linux.dev>
|
|
Signed-off-by: Kent Overstreet <kent.overstreet@linux.dev>
|
|
Signed-off-by: Kent Overstreet <kent.overstreet@linux.dev>
|
|
Signed-off-by: Kent Overstreet <kent.overstreet@linux.dev>
|
|
Signed-off-by: Kent Overstreet <kent.overstreet@linux.dev>
|
|
Signed-off-by: Kent Overstreet <kent.overstreet@linux.dev>
|
|
Signed-off-by: Kent Overstreet <kent.overstreet@linux.dev>
|
|
Signed-off-by: Kent Overstreet <kent.overstreet@linux.dev>
|
|
bcachefs_format.h has gotten too big; let's do some organizing.
Signed-off-by: Kent Overstreet <kent.overstreet@linux.dev>
|
|
Signed-off-by: Kent Overstreet <kent.overstreet@linux.dev>
|
|
Signed-off-by: Kent Overstreet <kent.overstreet@linux.dev>
|
|
Add a field to bch_snapshot for creation time; this will be important
when we start exposing the snapshot tree to userspace.
Signed-off-by: Kent Overstreet <kent.overstreet@linux.dev>
|
|
Signed-off-by: Kent Overstreet <kent.overstreet@linux.dev>
|
|
The "apply this compression method in the background" paths now use the
compression option if background_compression is not set; this means that
setting or changing the compression option will cause existing data to
be compressed accordingly in the background.
Signed-off-by: Kent Overstreet <kent.overstreet@linux.dev>
|
|
bcachefs btree nodes are big - typically 256k - and btree roots are
pinned in memory. As we're now up to 18 btrees, we now have significant
memory overhead in mostly empty btree roots.
And in the future we're going to start enforcing that certain btree node
boundaries exist, to solve lock contention issues - analagous to XFS's
AGIs.
Thus, we need to start allocating smaller btree node buffers when we
can. This patch changes code that refers to the filesystem constant
c->opts.btree_node_size to refer to the btree node buffer size -
btree_buf_bytes() - where appropriate.
Signed-off-by: Kent Overstreet <kent.overstreet@linux.dev>
|
|
When I was testing mongodb over bcachefs with compression,
there is a lockdep warning when snapshotting mongodb data volume.
$ cat test.sh
prog=bcachefs
$prog subvolume create /mnt/data
$prog subvolume create /mnt/data/snapshots
while true;do
$prog subvolume snapshot /mnt/data /mnt/data/snapshots/$(date +%s)
sleep 1s
done
$ cat /etc/mongodb.conf
systemLog:
destination: file
logAppend: true
path: /mnt/data/mongod.log
storage:
dbPath: /mnt/data/
lockdep reports:
[ 3437.452330] ======================================================
[ 3437.452750] WARNING: possible circular locking dependency detected
[ 3437.453168] 6.7.0-rc7-custom+ #85 Tainted: G E
[ 3437.453562] ------------------------------------------------------
[ 3437.453981] bcachefs/35533 is trying to acquire lock:
[ 3437.454325] ffffa0a02b2b1418 (sb_writers#10){.+.+}-{0:0}, at: filename_create+0x62/0x190
[ 3437.454875]
but task is already holding lock:
[ 3437.455268] ffffa0a02b2b10e0 (&type->s_umount_key#48){.+.+}-{3:3}, at: bch2_fs_file_ioctl+0x232/0xc90 [bcachefs]
[ 3437.456009]
which lock already depends on the new lock.
[ 3437.456553]
the existing dependency chain (in reverse order) is:
[ 3437.457054]
-> #3 (&type->s_umount_key#48){.+.+}-{3:3}:
[ 3437.457507] down_read+0x3e/0x170
[ 3437.457772] bch2_fs_file_ioctl+0x232/0xc90 [bcachefs]
[ 3437.458206] __x64_sys_ioctl+0x93/0xd0
[ 3437.458498] do_syscall_64+0x42/0xf0
[ 3437.458779] entry_SYSCALL_64_after_hwframe+0x6e/0x76
[ 3437.459155]
-> #2 (&c->snapshot_create_lock){++++}-{3:3}:
[ 3437.459615] down_read+0x3e/0x170
[ 3437.459878] bch2_truncate+0x82/0x110 [bcachefs]
[ 3437.460276] bchfs_truncate+0x254/0x3c0 [bcachefs]
[ 3437.460686] notify_change+0x1f1/0x4a0
[ 3437.461283] do_truncate+0x7f/0xd0
[ 3437.461555] path_openat+0xa57/0xce0
[ 3437.461836] do_filp_open+0xb4/0x160
[ 3437.462116] do_sys_openat2+0x91/0xc0
[ 3437.462402] __x64_sys_openat+0x53/0xa0
[ 3437.462701] do_syscall_64+0x42/0xf0
[ 3437.462982] entry_SYSCALL_64_after_hwframe+0x6e/0x76
[ 3437.463359]
-> #1 (&sb->s_type->i_mutex_key#15){+.+.}-{3:3}:
[ 3437.463843] down_write+0x3b/0xc0
[ 3437.464223] bch2_write_iter+0x5b/0xcc0 [bcachefs]
[ 3437.464493] vfs_write+0x21b/0x4c0
[ 3437.464653] ksys_write+0x69/0xf0
[ 3437.464839] do_syscall_64+0x42/0xf0
[ 3437.465009] entry_SYSCALL_64_after_hwframe+0x6e/0x76
[ 3437.465231]
-> #0 (sb_writers#10){.+.+}-{0:0}:
[ 3437.465471] __lock_acquire+0x1455/0x21b0
[ 3437.465656] lock_acquire+0xc6/0x2b0
[ 3437.465822] mnt_want_write+0x46/0x1a0
[ 3437.465996] filename_create+0x62/0x190
[ 3437.466175] user_path_create+0x2d/0x50
[ 3437.466352] bch2_fs_file_ioctl+0x2ec/0xc90 [bcachefs]
[ 3437.466617] __x64_sys_ioctl+0x93/0xd0
[ 3437.466791] do_syscall_64+0x42/0xf0
[ 3437.466957] entry_SYSCALL_64_after_hwframe+0x6e/0x76
[ 3437.467180]
other info that might help us debug this:
[ 3437.469670] 2 locks held by bcachefs/35533:
other info that might help us debug this:
[ 3437.467507] Chain exists of:
sb_writers#10 --> &c->snapshot_create_lock --> &type->s_umount_key#48
[ 3437.467979] Possible unsafe locking scenario:
[ 3437.468223] CPU0 CPU1
[ 3437.468405] ---- ----
[ 3437.468585] rlock(&type->s_umount_key#48);
[ 3437.468758] lock(&c->snapshot_create_lock);
[ 3437.469030] lock(&type->s_umount_key#48);
[ 3437.469291] rlock(sb_writers#10);
[ 3437.469434]
*** DEADLOCK ***
[ 3437.469670] 2 locks held by bcachefs/35533:
[ 3437.469838] #0: ffffa0a02ce00a88 (&c->snapshot_create_lock){++++}-{3:3}, at: bch2_fs_file_ioctl+0x1e3/0xc90 [bcachefs]
[ 3437.470294] #1: ffffa0a02b2b10e0 (&type->s_umount_key#48){.+.+}-{3:3}, at: bch2_fs_file_ioctl+0x232/0xc90 [bcachefs]
[ 3437.470744]
stack backtrace:
[ 3437.470922] CPU: 7 PID: 35533 Comm: bcachefs Kdump: loaded Tainted: G E 6.7.0-rc7-custom+ #85
[ 3437.471313] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS Arch Linux 1.16.3-1-1 04/01/2014
[ 3437.471694] Call Trace:
[ 3437.471795] <TASK>
[ 3437.471884] dump_stack_lvl+0x57/0x90
[ 3437.472035] check_noncircular+0x132/0x150
[ 3437.472202] __lock_acquire+0x1455/0x21b0
[ 3437.472369] lock_acquire+0xc6/0x2b0
[ 3437.472518] ? filename_create+0x62/0x190
[ 3437.472683] ? lock_is_held_type+0x97/0x110
[ 3437.472856] mnt_want_write+0x46/0x1a0
[ 3437.473025] ? filename_create+0x62/0x190
[ 3437.473204] filename_create+0x62/0x190
[ 3437.473380] user_path_create+0x2d/0x50
[ 3437.473555] bch2_fs_file_ioctl+0x2ec/0xc90 [bcachefs]
[ 3437.473819] ? lock_acquire+0xc6/0x2b0
[ 3437.474002] ? __fget_files+0x2a/0x190
[ 3437.474195] ? __fget_files+0xbc/0x190
[ 3437.474380] ? lock_release+0xc5/0x270
[ 3437.474567] ? __x64_sys_ioctl+0x93/0xd0
[ 3437.474764] ? __pfx_bch2_fs_file_ioctl+0x10/0x10 [bcachefs]
[ 3437.475090] __x64_sys_ioctl+0x93/0xd0
[ 3437.475277] do_syscall_64+0x42/0xf0
[ 3437.475454] entry_SYSCALL_64_after_hwframe+0x6e/0x76
[ 3437.475691] RIP: 0033:0x7f2743c313af
======================================================
In __bch2_ioctl_subvolume_create(), we grab s_umount unconditionally
and unlock it at the end of the function. There is a comment
"why do we need this lock?" about the lock coming from
commit 42d237320e98 ("bcachefs: Snapshot creation, deletion")
The reason is that __bch2_ioctl_subvolume_create() calls
sync_inodes_sb() which enforce locked s_umount to writeback all dirty
nodes before doing snapshot works.
Fix it by read locking s_umount for snapshotting only and unlocking
s_umount after sync_inodes_sb().
Signed-off-by: Su Yue <glass.su@suse.com>
Signed-off-by: Kent Overstreet <kent.overstreet@linux.dev>
|
|
bch_fs::snapshots is allocated by kvzalloc in __snapshot_t_mut.
It should be freed by kvfree not kfree.
Or umount will triger:
[ 406.829178 ] BUG: unable to handle page fault for address: ffffe7b487148008
[ 406.830676 ] #PF: supervisor read access in kernel mode
[ 406.831643 ] #PF: error_code(0x0000) - not-present page
[ 406.832487 ] PGD 0 P4D 0
[ 406.832898 ] Oops: 0000 [#1] PREEMPT SMP PTI
[ 406.833512 ] CPU: 2 PID: 1754 Comm: umount Kdump: loaded Tainted: G OE 6.7.0-rc7-custom+ #90
[ 406.834746 ] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS Arch Linux 1.16.3-1-1 04/01/2014
[ 406.835796 ] RIP: 0010:kfree+0x62/0x140
[ 406.836197 ] Code: 80 48 01 d8 0f 82 e9 00 00 00 48 c7 c2 00 00 00 80 48 2b 15 78 9f 1f 01 48 01 d0 48 c1 e8 0c 48 c1 e0 06 48 03 05 56 9f 1f 01 <48> 8b 50 08 48 89 c7 f6 c2 01 0f 85 b0 00 00 00 66 90 48 8b 07 f6
[ 406.837810 ] RSP: 0018:ffffb9d641607e48 EFLAGS: 00010286
[ 406.838213 ] RAX: ffffe7b487148000 RBX: ffffb9d645200000 RCX: ffffb9d641607dc4
[ 406.838738 ] RDX: 000065bb00000000 RSI: ffffffffc0d88b84 RDI: ffffb9d645200000
[ 406.839217 ] RBP: ffff9a4625d00068 R08: 0000000000000001 R09: 0000000000000001
[ 406.839650 ] R10: 0000000000000001 R11: 000000000000001f R12: ffff9a4625d4da80
[ 406.840055 ] R13: ffff9a4625d00000 R14: ffffffffc0e2eb20 R15: 0000000000000000
[ 406.840451 ] FS: 00007f0a264ffb80(0000) GS:ffff9a4e2d500000(0000) knlGS:0000000000000000
[ 406.840851 ] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
[ 406.841125 ] CR2: ffffe7b487148008 CR3: 000000018c4d2000 CR4: 00000000000006f0
[ 406.841464 ] Call Trace:
[ 406.841583 ] <TASK>
[ 406.841682 ] ? __die+0x1f/0x70
[ 406.841828 ] ? page_fault_oops+0x159/0x470
[ 406.842014 ] ? fixup_exception+0x22/0x310
[ 406.842198 ] ? exc_page_fault+0x1ed/0x200
[ 406.842382 ] ? asm_exc_page_fault+0x22/0x30
[ 406.842574 ] ? bch2_fs_release+0x54/0x280 [bcachefs]
[ 406.842842 ] ? kfree+0x62/0x140
[ 406.842988 ] ? kfree+0x104/0x140
[ 406.843138 ] bch2_fs_release+0x54/0x280 [bcachefs]
[ 406.843390 ] kobject_put+0xb7/0x170
[ 406.843552 ] deactivate_locked_super+0x2f/0xa0
[ 406.843756 ] cleanup_mnt+0xba/0x150
[ 406.843917 ] task_work_run+0x59/0xa0
[ 406.844083 ] exit_to_user_mode_prepare+0x197/0x1a0
[ 406.844302 ] syscall_exit_to_user_mode+0x16/0x40
[ 406.844510 ] do_syscall_64+0x4e/0xf0
[ 406.844675 ] entry_SYSCALL_64_after_hwframe+0x6e/0x76
[ 406.844907 ] RIP: 0033:0x7f0a2664e4fb
Signed-off-by: Su Yue <glass.su@suse.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Signed-off-by: Kent Overstreet <kent.overstreet@linux.dev>
|