aboutsummaryrefslogtreecommitdiffstatshomepage
path: root/tools/perf/scripts/python/export-to-postgresql.py (unfollow)
AgeCommit message (Collapse)AuthorFilesLines
2024-05-12KVM: SVM: Add module parameter to enable SEV-SNPBrijesh Singh1-1/+2
Add a module parameter than can be used to enable or disable the SEV-SNP feature. Now that KVM contains the support for the SNP set the GHCB hypervisor feature flag to indicate that SNP is supported. Signed-off-by: Brijesh Singh <brijesh.singh@amd.com> Reviewed-by: Paolo Bonzini <pbonzini@redhat.com> Signed-off-by: Ashish Kalra <ashish.kalra@amd.com> Message-ID: <20240501085210.2213060-18-michael.roth@amd.com> Signed-off-by: Michael Roth <michael.roth@amd.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2024-05-12KVM: SEV: Avoid WBINVD for HVA-based MMU notifications for SNPAshish Kalra1-1/+7
With SNP/guest_memfd, private/encrypted memory should not be mappable, and MMU notifications for HVA-mapped memory will only be relevant to unencrypted guest memory. Therefore, the rationale behind issuing a wbinvd_on_all_cpus() in sev_guest_memory_reclaimed() should not apply for SNP guests and can be ignored. Signed-off-by: Ashish Kalra <ashish.kalra@amd.com> Reviewed-by: Paolo Bonzini <pbonzini@redhat.com> [mdr: Add some clarifications in commit] Signed-off-by: Michael Roth <michael.roth@amd.com> Message-ID: <20240501085210.2213060-17-michael.roth@amd.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2024-05-12KVM: x86: Implement hook for determining max NPT mapping levelMichael Roth3-0/+21
In the case of SEV-SNP, whether or not a 2MB page can be mapped via a 2MB mapping in the guest's nested page table depends on whether or not any subpages within the range have already been initialized as private in the RMP table. The existing mixed-attribute tracking in KVM is insufficient here, for instance: - gmem allocates 2MB page - guest issues PVALIDATE on 2MB page - guest later converts a subpage to shared - SNP host code issues PSMASH to split 2MB RMP mapping to 4K - KVM MMU splits NPT mapping to 4K - guest later converts that shared page back to private At this point there are no mixed attributes, and KVM would normally allow for 2MB NPT mappings again, but this is actually not allowed because the RMP table mappings are 4K and cannot be promoted on the hypervisor side, so the NPT mappings must still be limited to 4K to match this. Implement a kvm_x86_ops.private_max_mapping_level() hook for SEV that checks for this condition and adjusts the mapping level accordingly. Reviewed-by: Paolo Bonzini <pbonzini@redhat.com> Signed-off-by: Michael Roth <michael.roth@amd.com> Message-ID: <20240501085210.2213060-16-michael.roth@amd.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2024-05-12KVM: SEV: Implement gmem hook for invalidating private pagesMichael Roth4-0/+68
Implement a platform hook to do the work of restoring the direct map entries of gmem-managed pages and transitioning the corresponding RMP table entries back to the default shared/hypervisor-owned state. Signed-off-by: Michael Roth <michael.roth@amd.com> Message-ID: <20240501085210.2213060-15-michael.roth@amd.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2024-05-12KVM: SEV: Implement gmem hook for initializing private pagesMichael Roth6-2/+113
This will handle the RMP table updates needed to put a page into a private state before mapping it into an SEV-SNP guest. Reviewed-by: Paolo Bonzini <pbonzini@redhat.com> Signed-off-by: Michael Roth <michael.roth@amd.com> Message-ID: <20240501085210.2213060-14-michael.roth@amd.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2024-05-12KVM: SEV: Support SEV-SNP AP Creation NAE eventTom Lendacky6-3/+266
Add support for the SEV-SNP AP Creation NAE event. This allows SEV-SNP guests to alter the register state of the APs on their own. This allows the guest a way of simulating INIT-SIPI. A new event, KVM_REQ_UPDATE_PROTECTED_GUEST_STATE, is created and used so as to avoid updating the VMSA pointer while the vCPU is running. For CREATE The guest supplies the GPA of the VMSA to be used for the vCPU with the specified APIC ID. The GPA is saved in the svm struct of the target vCPU, the KVM_REQ_UPDATE_PROTECTED_GUEST_STATE event is added to the vCPU and then the vCPU is kicked. For CREATE_ON_INIT: The guest supplies the GPA of the VMSA to be used for the vCPU with the specified APIC ID the next time an INIT is performed. The GPA is saved in the svm struct of the target vCPU. For DESTROY: The guest indicates it wishes to stop the vCPU. The GPA is cleared from the svm struct, the KVM_REQ_UPDATE_PROTECTED_GUEST_STATE event is added to vCPU and then the vCPU is kicked. The KVM_REQ_UPDATE_PROTECTED_GUEST_STATE event handler will be invoked as a result of the event or as a result of an INIT. If a new VMSA is to be installed, the VMSA guest page is set as the VMSA in the vCPU VMCB and the vCPU state is set to KVM_MP_STATE_RUNNABLE. If a new VMSA is not to be installed, the VMSA is cleared in the vCPU VMCB and the vCPU state is set to KVM_MP_STATE_HALTED to prevent it from being run. Signed-off-by: Tom Lendacky <thomas.lendacky@amd.com> Co-developed-by: Michael Roth <michael.roth@amd.com> Signed-off-by: Michael Roth <michael.roth@amd.com> Signed-off-by: Brijesh Singh <brijesh.singh@amd.com> Signed-off-by: Ashish Kalra <ashish.kalra@amd.com> Message-ID: <20240501085210.2213060-13-michael.roth@amd.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2024-05-12KVM: SEV: Add support to handle RMP nested page faultsBrijesh Singh9-6/+159
When SEV-SNP is enabled in the guest, the hardware places restrictions on all memory accesses based on the contents of the RMP table. When hardware encounters RMP check failure caused by the guest memory access it raises the #NPF. The error code contains additional information on the access type. See the APM volume 2 for additional information. When using gmem, RMP faults resulting from mismatches between the state in the RMP table vs. what the guest expects via its page table result in KVM_EXIT_MEMORY_FAULTs being forwarded to userspace to handle. This means the only expected case that needs to be handled in the kernel is when the page size of the entry in the RMP table is larger than the mapping in the nested page table, in which case a PSMASH instruction needs to be issued to split the large RMP entry into individual 4K entries so that subsequent accesses can succeed. Signed-off-by: Brijesh Singh <brijesh.singh@amd.com> Co-developed-by: Michael Roth <michael.roth@amd.com> Signed-off-by: Michael Roth <michael.roth@amd.com> Signed-off-by: Ashish Kalra <ashish.kalra@amd.com> Message-ID: <20240501085210.2213060-12-michael.roth@amd.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2024-05-12KVM: SEV: Add support to handle Page State Change VMGEXITMichael Roth3-0/+204
SEV-SNP VMs can ask the hypervisor to change the page state in the RMP table to be private or shared using the Page State Change NAE event as defined in the GHCB specification version 2. Forward these requests to userspace as KVM_EXIT_VMGEXITs, similar to how it is done for requests that don't use a GHCB page. As with the MSR-based page-state changes, use the existing KVM_HC_MAP_GPA_RANGE hypercall format to deliver these requests to userspace via KVM_EXIT_HYPERCALL. Signed-off-by: Michael Roth <michael.roth@amd.com> Co-developed-by: Brijesh Singh <brijesh.singh@amd.com> Signed-off-by: Brijesh Singh <brijesh.singh@amd.com> Signed-off-by: Ashish Kalra <ashish.kalra@amd.com> Message-ID: <20240501085210.2213060-11-michael.roth@amd.com> Co-developed-by: Paolo Bonzini <pbonzini@redhat.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2024-05-12KVM: SEV: Add support to handle MSR based Page State Change VMGEXITMichael Roth2-0/+54
SEV-SNP VMs can ask the hypervisor to change the page state in the RMP table to be private or shared using the Page State Change MSR protocol as defined in the GHCB specification. When using gmem, private/shared memory is allocated through separate pools, and KVM relies on userspace issuing a KVM_SET_MEMORY_ATTRIBUTES KVM ioctl to tell the KVM MMU whether or not a particular GFN should be backed by private memory or not. Forward these page state change requests to userspace so that it can issue the expected KVM ioctls. The KVM MMU will handle updating the RMP entries when it is ready to map a private page into a guest. Use the existing KVM_HC_MAP_GPA_RANGE hypercall format to deliver these requests to userspace via KVM_EXIT_HYPERCALL. Signed-off-by: Michael Roth <michael.roth@amd.com> Co-developed-by: Brijesh Singh <brijesh.singh@amd.com> Signed-off-by: Brijesh Singh <brijesh.singh@amd.com> Signed-off-by: Ashish Kalra <ashish.kalra@amd.com> Message-ID: <20240501085210.2213060-10-michael.roth@amd.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2024-05-12KVM: SEV: Add support to handle GHCB GPA register VMGEXITBrijesh Singh3-6/+57
SEV-SNP guests are required to perform a GHCB GPA registration. Before using a GHCB GPA for a vCPU the first time, a guest must register the vCPU GHCB GPA. If hypervisor can work with the guest requested GPA then it must respond back with the same GPA otherwise return -1. On VMEXIT, verify that the GHCB GPA matches with the registered value. If a mismatch is detected, then abort the guest. Signed-off-by: Brijesh Singh <brijesh.singh@amd.com> Signed-off-by: Ashish Kalra <ashish.kalra@amd.com> Signed-off-by: Michael Roth <michael.roth@amd.com> Message-ID: <20240501085210.2213060-9-michael.roth@amd.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2024-05-12KVM: SEV: Add KVM_SEV_SNP_LAUNCH_FINISH commandBrijesh Singh4-1/+175
Add a KVM_SEV_SNP_LAUNCH_FINISH command to finalize the cryptographic launch digest which stores the measurement of the guest at launch time. Also extend the existing SNP firmware data structures to support disabling the use of Versioned Chip Endorsement Keys (VCEK) by guests as part of this command. While finalizing the launch flow, the code also issues the LAUNCH_UPDATE SNP firmware commands to encrypt/measure the initial VMSA pages for each configured vCPU, which requires setting the RMP entries for those pages to private, so also add handling to clean up the RMP entries for these pages whening freeing vCPUs during shutdown. Signed-off-by: Brijesh Singh <brijesh.singh@amd.com> Co-developed-by: Michael Roth <michael.roth@amd.com> Signed-off-by: Michael Roth <michael.roth@amd.com> Signed-off-by: Harald Hoyer <harald@profian.com> Signed-off-by: Ashish Kalra <ashish.kalra@amd.com> Message-ID: <20240501085210.2213060-8-michael.roth@amd.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2024-05-12KVM: SEV: Add KVM_SEV_SNP_LAUNCH_UPDATE commandBrijesh Singh3-0/+303
A key aspect of a launching an SNP guest is initializing it with a known/measured payload which is then encrypted into guest memory as pre-validated private pages and then measured into the cryptographic launch context created with KVM_SEV_SNP_LAUNCH_START so that the guest can attest itself after booting. Since all private pages are provided by guest_memfd, make use of the kvm_gmem_populate() interface to handle this. The general flow is that guest_memfd will handle allocating the pages associated with the GPA ranges being initialized by each particular call of KVM_SEV_SNP_LAUNCH_UPDATE, copying data from userspace into those pages, and then the post_populate callback will do the work of setting the RMP entries for these pages to private and issuing the SNP firmware calls to encrypt/measure them. For more information see the SEV-SNP specification. Signed-off-by: Brijesh Singh <brijesh.singh@amd.com> Co-developed-by: Michael Roth <michael.roth@amd.com> Signed-off-by: Michael Roth <michael.roth@amd.com> Signed-off-by: Ashish Kalra <ashish.kalra@amd.com> Message-ID: <20240501085210.2213060-7-michael.roth@amd.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2024-05-12KVM: SEV: Add KVM_SEV_SNP_LAUNCH_START commandBrijesh Singh4-4/+212
KVM_SEV_SNP_LAUNCH_START begins the launch process for an SEV-SNP guest. The command initializes a cryptographic digest context used to construct the measurement of the guest. Other commands can then at that point be used to load/encrypt data into the guest's initial launch image. For more information see the SEV-SNP specification. Signed-off-by: Brijesh Singh <brijesh.singh@amd.com> Co-developed-by: Michael Roth <michael.roth@amd.com> Signed-off-by: Michael Roth <michael.roth@amd.com> Signed-off-by: Ashish Kalra <ashish.kalra@amd.com> Message-ID: <20240501085210.2213060-6-michael.roth@amd.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2024-05-12KVM: SEV: Add initial SEV-SNP supportBrijesh Singh5-3/+42
SEV-SNP builds upon existing SEV and SEV-ES functionality while adding new hardware-based security protection. SEV-SNP adds strong memory encryption and integrity protection to help prevent malicious hypervisor-based attacks such as data replay, memory re-mapping, and more, to create an isolated execution environment. Define a new KVM_X86_SNP_VM type which makes use of these capabilities and extend the KVM_SEV_INIT2 ioctl to support it. Also add a basic helper to check whether SNP is enabled and set PFERR_PRIVATE_ACCESS for private #NPFs so they are handled appropriately by KVM MMU. Signed-off-by: Brijesh Singh <brijesh.singh@amd.com> Co-developed-by: Michael Roth <michael.roth@amd.com> Signed-off-by: Michael Roth <michael.roth@amd.com> Signed-off-by: Ashish Kalra <ashish.kalra@amd.com> Reviewed-by: Paolo Bonzini <pbonzini@redhat.com> Message-ID: <20240501085210.2213060-5-michael.roth@amd.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2024-05-12KVM: SEV: Select KVM_GENERIC_PRIVATE_MEM when CONFIG_KVM_AMD_SEV=yMichael Roth1-0/+1
SEV-SNP relies on private memory support to run guests, so make sure to enable that support via the CONFIG_KVM_GENERIC_PRIVATE_MEM config option. Signed-off-by: Michael Roth <michael.roth@amd.com> Message-ID: <20240501085210.2213060-4-michael.roth@amd.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2024-05-12KVM: MMU: Disable fast path if KVM_EXIT_MEMORY_FAULT is neededMichael Roth1-2/+22
For hardware-protected VMs like SEV-SNP guests, certain conditions like attempting to perform a write to a page which is not in the state that the guest expects it to be in can result in a nested/extended #PF which can only be satisfied by the host performing an implicit page state change to transition the page into the expected shared/private state. This is generally handled by generating a KVM_EXIT_MEMORY_FAULT event that gets forwarded to userspace to handle via KVM_SET_MEMORY_ATTRIBUTES. However, the fast_page_fault() code might misconstrue this situation as being the result of a write-protected access, and treat it as a spurious case when it sees that writes are already allowed for the sPTE. This results in the KVM MMU trying to resume the guest rather than taking any action to satisfy the real source of the #PF such as generating a KVM_EXIT_MEMORY_FAULT, resulting in the guest spinning on nested #PFs. Check for this condition and bail out of the fast path if it is detected. Suggested-by: Paolo Bonzini <pbonzini@redhat.com> Suggested-by: Sean Christopherson <seanjc@google.com> Cc: Isaku Yamahata <isaku.yamahata@intel.com> Reviewed-by: Isaku Yamahata <isaku.yamahata@intel.com> Signed-off-by: Michael Roth <michael.roth@amd.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2024-05-10KVM: x86: Add hook for determining max NPT mapping levelMichael Roth3-2/+23
In the case of SEV-SNP, whether or not a 2MB page can be mapped via a 2MB mapping in the guest's nested page table depends on whether or not any subpages within the range have already been initialized as private in the RMP table. The existing mixed-attribute tracking in KVM is insufficient here, for instance: - gmem allocates 2MB page - guest issues PVALIDATE on 2MB page - guest later converts a subpage to shared - SNP host code issues PSMASH to split 2MB RMP mapping to 4K - KVM MMU splits NPT mapping to 4K - guest later converts that shared page back to private At this point there are no mixed attributes, and KVM would normally allow for 2MB NPT mappings again, but this is actually not allowed because the RMP table mappings are 4K and cannot be promoted on the hypervisor side, so the NPT mappings must still be limited to 4K to match this. Add a hook to determine the max NPT mapping size in situations like this. Suggested-by: Sean Christopherson <seanjc@google.com> Signed-off-by: Michael Roth <michael.roth@amd.com> Reviewed-by: Isaku Yamahata <isaku.yamahata@intel.com> Message-ID: <20240501085210.2213060-3-michael.roth@amd.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2024-05-10KVM: guest_memfd: Add hook for invalidating memoryMichael Roth6-0/+31
In some cases, like with SEV-SNP, guest memory needs to be updated in a platform-specific manner before it can be safely freed back to the host. Wire up arch-defined hooks to the .free_folio kvm_gmem_aops callback to allow for special handling of this sort when freeing memory in response to FALLOC_FL_PUNCH_HOLE operations and when releasing the inode, and go ahead and define an arch-specific hook for x86 since it will be needed for handling memory used for SEV-SNP guests. Signed-off-by: Michael Roth <michael.roth@amd.com> Message-Id: <20231230172351.574091-6-michael.roth@amd.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2024-05-10KVM: guest_memfd: Add interface for populating gmem pages with user dataPaolo Bonzini2-0/+79
During guest run-time, kvm_arch_gmem_prepare() is issued as needed to prepare newly-allocated gmem pages prior to mapping them into the guest. In the case of SEV-SNP, this mainly involves setting the pages to private in the RMP table. However, for the GPA ranges comprising the initial guest payload, which are encrypted/measured prior to starting the guest, the gmem pages need to be accessed prior to setting them to private in the RMP table so they can be initialized with the userspace-provided data. Additionally, an SNP firmware call is needed afterward to encrypt them in-place and measure the contents into the guest's launch digest. While it is possible to bypass the kvm_arch_gmem_prepare() hooks so that this handling can be done in an open-coded/vendor-specific manner, this may expose more gmem-internal state/dependencies to external callers than necessary. Try to avoid this by implementing an interface that tries to handle as much of the common functionality inside gmem as possible, while also making it generic enough to potentially be usable/extensible for TDX as well. Suggested-by: Sean Christopherson <seanjc@google.com> Signed-off-by: Michael Roth <michael.roth@amd.com> Co-developed-by: Michael Roth <michael.roth@amd.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2024-05-10KVM: guest_memfd: extract __kvm_gmem_get_pfn()Paolo Bonzini1-16/+24
In preparation for adding a function that walks a set of pages provided by userspace and populates them in a guest_memfd, add a version of kvm_gmem_get_pfn() that has a "bool prepare" argument and passes it down to kvm_gmem_get_folio(). Populating guest memory has to call repeatedly __kvm_gmem_get_pfn() on the same file, so make the new function take struct file*. Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2024-05-10KVM: guest_memfd: Add hook for initializing memoryPaolo Bonzini6-3/+65
guest_memfd pages are generally expected to be in some arch-defined initial state prior to using them for guest memory. For SEV-SNP this initial state is 'private', or 'guest-owned', and requires additional operations to move these pages into a 'private' state by updating the corresponding entries the RMP table. Allow for an arch-defined hook to handle updates of this sort, and go ahead and implement one for x86 so KVM implementations like AMD SVM can register a kvm_x86_ops callback to handle these updates for SEV-SNP guests. The preparation callback is always called when allocating/grabbing folios via gmem, and it is up to the architecture to keep track of whether or not the pages are already in the expected state (e.g. the RMP table in the case of SEV-SNP). In some cases, it is necessary to defer the preparation of the pages to handle things like in-place encryption of initial guest memory payloads before marking these pages as 'private'/'guest-owned'. Add an argument (always true for now) to kvm_gmem_get_folio() that allows for the preparation callback to be bypassed. To detect possible issues in the way userspace initializes memory, it is only possible to add an unprepared page if it is not already included in the filemap. Link: https://lore.kernel.org/lkml/ZLqVdvsF11Ddo7Dq@google.com/ Co-developed-by: Michael Roth <michael.roth@amd.com> Signed-off-by: Michael Roth <michael.roth@amd.com> Message-Id: <20231230172351.574091-5-michael.roth@amd.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2024-05-10KVM: guest_memfd: limit overzealous WARNPaolo Bonzini1-1/+2
Because kvm_gmem_get_pfn() is called from the page fault path without any of the slots_lock, filemap lock or mmu_lock taken, it is possible for it to race with kvm_gmem_unbind(). This is not a problem, as any PTE that is installed temporarily will be zapped before the guest has the occasion to run. However, it is not possible to have a complete unbind+bind racing with the page fault, because deleting the memslot will call synchronize_srcu_expedited() and wait for the page fault to be resolved. Thus, we can still warn if the file is there and is not the one we expect. Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2024-05-10KVM: guest_memfd: pass error up from filemap_grab_folioPaolo Bonzini1-6/+6
Some SNP ioctls will require the page not to be in the pagecache, and as such they will want to return EEXIST to userspace. Start by passing the error up from filemap_grab_folio. Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2024-05-10KVM: guest_memfd: Use AS_INACCESSIBLE when creating guest_memfd inodeMichael Roth1-0/+1
truncate_inode_pages_range() may attempt to zero pages before truncating them, and this will occur before arch-specific invalidations can be triggered via .invalidate_folio/.free_folio hooks via kvm_gmem_aops. For AMD SEV-SNP this would result in an RMP #PF being generated by the hardware, which is currently treated as fatal (and even if specifically allowed for, would not result in anything other than garbage being written to guest pages due to encryption). On Intel TDX this would also result in undesirable behavior. Set the AS_INACCESSIBLE flag to prevent the MM from attempting unexpected accesses of this sort during operations like truncation. This may also in some cases yield a decent performance improvement for guest_memfd userspace implementations that hole-punch ranges immediately after private->shared conversions via KVM_SET_MEMORY_ATTRIBUTES, since the current implementation of truncate_inode_pages_range() always ends up zero'ing an entire 4K range if it is backing by a 2M folio. Link: https://lore.kernel.org/lkml/ZR9LYhpxTaTk6PJX@google.com/ Suggested-by: Sean Christopherson <seanjc@google.com> Signed-off-by: Michael Roth <michael.roth@amd.com> Message-ID: <20240329212444.395559-6-michael.roth@amd.com> Acked-by: Vlastimil Babka <vbabka@suse.cz> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2024-05-10mm: Introduce AS_INACCESSIBLE for encrypted/confidential memoryMichael Roth2-1/+3
filemap users like guest_memfd may use page cache pages to allocate/manage memory that is only intended to be accessed by guests via hardware protections like encryption. Writes to memory of this sort in common paths like truncation may cause unexpected behavior such as writing garbage instead of zeros when attempting to zero pages, or worse, triggering hardware protections that are considered fatal as far as the kernel is concerned. Introduce a new address_space flag, AS_INACCESSIBLE, and use this initially to prevent zero'ing of pages during truncation, with the understanding that it is up to the owner of the mapping to handle this specially if needed. This is admittedly a rather blunt solution, but it seems like there are no other places that should take into account the flag to keep its promise. Link: https://lore.kernel.org/lkml/ZR9LYhpxTaTk6PJX@google.com/ Cc: Matthew Wilcox <willy@infradead.org> Suggested-by: Sean Christopherson <seanjc@google.com> Signed-off-by: Michael Roth <michael.roth@amd.com> Message-ID: <20240329212444.395559-5-michael.roth@amd.com> Acked-by: Vlastimil Babka <vbabka@suse.cz> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2024-05-09KVM: selftests: arm64: Test vCPU-scoped feature ID registersOliver Upton1-1/+52
Test that CLIDR_EL1 and MPIDR_EL1 are modifiable from userspace and that the values are preserved across a vCPU reset like the other feature ID registers. Signed-off-by: Oliver Upton <oliver.upton@linux.dev> Link: https://lore.kernel.org/r/20240502233529.1958459-8-oliver.upton@linux.dev Signed-off-by: Marc Zyngier <maz@kernel.org>
2024-05-09KVM: selftests: arm64: Test that feature ID regs survive a resetOliver Upton1-8/+33
One of the expectations with feature ID registers is that their values survive a vCPU reset. Start testing that. Signed-off-by: Oliver Upton <oliver.upton@linux.dev> Link: https://lore.kernel.org/r/20240502233529.1958459-7-oliver.upton@linux.dev Signed-off-by: Marc Zyngier <maz@kernel.org>
2024-05-09KVM: selftests: arm64: Store expected register value in set_id_regsOliver Upton1-9/+18
Rather than comparing against what is returned by the ioctl, store expected values for the feature ID registers in a table and compare with that instead. This will prove useful for subsequent tests involving vCPU reset. Signed-off-by: Oliver Upton <oliver.upton@linux.dev> Link: https://lore.kernel.org/r/20240502233529.1958459-6-oliver.upton@linux.dev Signed-off-by: Marc Zyngier <maz@kernel.org>
2024-05-09KVM: selftests: arm64: Rename helper in set_id_regs to imply VM scopeOliver Upton1-2/+2
Prepare for a later change that'll cram in per-vCPU feature ID test cases by renaming the current test case. Signed-off-by: Oliver Upton <oliver.upton@linux.dev> Link: https://lore.kernel.org/r/20240502233529.1958459-5-oliver.upton@linux.dev Signed-off-by: Marc Zyngier <maz@kernel.org>
2024-05-09KVM: arm64: Only reset vCPU-scoped feature ID regs onceOliver Upton3-13/+26
The general expecation with feature ID registers is that they're 'reset' exactly once by KVM for the lifetime of a vCPU/VM, such that any userspace changes to the CPU features / identity are honored after a vCPU gets reset (e.g. PSCI_ON). KVM handles what it calls VM-scoped feature ID registers correctly, but feature ID registers local to a vCPU (CLIDR_EL1, MPIDR_EL1) get wiped after every reset. What's especially concerning is that a potentially-changing MPIDR_EL1 breaks MPIDR compression for indexing mpidr_data, as the mask of useful bits to build the index could change. This is absolutely no good. Avoid resetting vCPU feature ID registers more than once. Signed-off-by: Oliver Upton <oliver.upton@linux.dev> Link: https://lore.kernel.org/r/20240502233529.1958459-4-oliver.upton@linux.dev Signed-off-by: Marc Zyngier <maz@kernel.org>
2024-05-09KVM: arm64: Reset VM feature ID regs from kvm_reset_sys_regs()Oliver Upton1-17/+10
A subsequent change to KVM will expand the range of feature ID registers that get special treatment at reset. Fold the existing ones back in to kvm_reset_sys_regs() to avoid the need for an additional table walk. Signed-off-by: Oliver Upton <oliver.upton@linux.dev> Link: https://lore.kernel.org/r/20240502233529.1958459-3-oliver.upton@linux.dev Signed-off-by: Marc Zyngier <maz@kernel.org>
2024-05-09KVM: arm64: Rename is_id_reg() to imply VM scopeOliver Upton1-5/+6
The naming of some of the feature ID checks is ambiguous. Rephrase the is_id_reg() helper to make its purpose slightly clearer. Signed-off-by: Oliver Upton <oliver.upton@linux.dev> Link: https://lore.kernel.org/r/20240502233529.1958459-2-oliver.upton@linux.dev Signed-off-by: Marc Zyngier <maz@kernel.org>
2024-05-08KVM: arm64: Destroy mpidr_data for 'late' vCPU creationOliver Upton1-9/+41
A particularly annoying userspace could create a vCPU after KVM has computed mpidr_data for the VM, either by racing against VGIC initialization or having a userspace irqchip. In any case, this means mpidr_data no longer fully describes the VM, and attempts to find the new vCPU with kvm_mpidr_to_vcpu() will fail. The fix is to discard mpidr_data altogether, as it is only a performance optimization and not required for correctness. In all likelihood KVM will recompute the mappings when KVM_RUN is called on the new vCPU. Note that reads of mpidr_data are not guarded by a lock; promote to RCU to cope with the possibility of mpidr_data being invalidated at runtime. Fixes: 54a8006d0b49 ("KVM: arm64: Fast-track kvm_mpidr_to_vcpu() when mpidr_data is available") Signed-off-by: Oliver Upton <oliver.upton@linux.dev> Link: https://lore.kernel.org/r/20240508071952.2035422-1-oliver.upton@linux.dev Signed-off-by: Marc Zyngier <maz@kernel.org>
2024-05-08KVM: arm64: Use hVHE in pKVM by default on CPUs with VHE supportWill Deacon1-1/+1
The early command line parsing treats "kvm-arm.mode=protected" as an alias for "id_aa64mmfr1.vh=0", forcing the use of nVHE so that the host kernel runs at EL1 with the pKVM hypervisor at EL2. With the introduction of hVHE support in ad744e8cb346 ("arm64: Allow arm64_sw.hvhe on command line"), the hypervisor can run using the EL2+0 translation regime. This is interesting for unusual CPUs that have VH stuck to 1, but also because it opens the possibility of a hypervisor "userspace" in the distant future which could be used to isolate vCPU contexts in the hypervisor (see Marc's talk from KVM Forum 2022 [1]). Repaint the "kvm-arm.mode=protected" alias to map to "arm64_sw.hvhe=1", which will use hVHE on CPUs that support it and remain with nVHE otherwise. [1] https://www.youtube.com/watch?v=1F_Mf2j9eIo Signed-off-by: Will Deacon <will@kernel.org> Acked-by: Oliver Upton <oliver.upton@linux.dev> Link: https://lore.kernel.org/r/20240501163400.15838-3-will@kernel.org Signed-off-by: Marc Zyngier <maz@kernel.org>
2024-05-08KVM: arm64: Fix hvhe/nvhe early alias parsingWill Deacon1-1/+1
Booting a kernel with "arm64_sw.hvhe=1 kvm-arm.mode=nvhe" on the command-line results in KVM initialising using hVHE, whereas one might expect the latter option to override the former. Fix this by adding "arm64_sw.hvhe=0" to the alias expansion for "kvm-arm.mode=nvhe". Signed-off-by: Will Deacon <will@kernel.org> Acked-by: Oliver Upton <oliver.upton@linux.dev> Link: https://lore.kernel.org/r/20240501163400.15838-2-will@kernel.org Signed-off-by: Marc Zyngier <maz@kernel.org>
2024-05-07KVM: SEV: Allow per-guest configuration of GHCB protocol versionMichael Roth4-6/+42
The GHCB protocol version may be different from one guest to the next. Add a field to track it for each KVM instance and extend KVM_SEV_INIT2 to allow it to be configured by userspace. Now that all SEV-ES support for GHCB protocol version 2 is in place, go ahead and default to it when creating SEV-ES guests through the new KVM_SEV_INIT2 interface. Keep the older KVM_SEV_ES_INIT interface restricted to GHCB protocol version 1. Suggested-by: Sean Christopherson <seanjc@google.com> Signed-off-by: Michael Roth <michael.roth@amd.com> Message-ID: <20240501071048.2208265-5-michael.roth@amd.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2024-05-07KVM: SEV: Add GHCB handling for termination requestsMichael Roth1-0/+9
GHCB version 2 adds support for a GHCB-based termination request that a guest can issue when it reaches an error state and wishes to inform the hypervisor that it should be terminated. Implement support for that similarly to GHCB MSR-based termination requests that are already available to SEV-ES guests via earlier versions of the GHCB protocol. See 'Termination Request' in the 'Invoking VMGEXIT' section of the GHCB specification for more details. Signed-off-by: Michael Roth <michael.roth@amd.com> Message-ID: <20240501071048.2208265-4-michael.roth@amd.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2024-05-07KVM: SEV: Add GHCB handling for Hypervisor Feature Support requestsBrijesh Singh2-0/+16
Version 2 of the GHCB specification introduced advertisement of features that are supported by the Hypervisor. Now that KVM supports version 2 of the GHCB specification, bump the maximum supported protocol version. Signed-off-by: Brijesh Singh <brijesh.singh@amd.com> Signed-off-by: Ashish Kalra <ashish.kalra@amd.com> Signed-off-by: Michael Roth <michael.roth@amd.com> Message-ID: <20240501071048.2208265-3-michael.roth@amd.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2024-05-07KVM: SEV: Add support to handle AP reset MSR protocolTom Lendacky3-10/+53
Add support for AP Reset Hold being invoked using the GHCB MSR protocol, available in version 2 of the GHCB specification. Signed-off-by: Tom Lendacky <thomas.lendacky@amd.com> Signed-off-by: Brijesh Singh <brijesh.singh@amd.com> Signed-off-by: Ashish Kalra <ashish.kalra@amd.com> Signed-off-by: Michael Roth <michael.roth@amd.com> Message-ID: <20240501071048.2208265-2-michael.roth@amd.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2024-05-07KVM: x86: Explicitly zero kvm_caps during vendor module loadSean Christopherson1-0/+7
Zero out all of kvm_caps when loading a new vendor module to ensure that KVM can't inadvertently rely on global initialization of a field, and add a comment above the definition of kvm_caps to call out that all fields needs to be explicitly computed during vendor module load. Signed-off-by: Sean Christopherson <seanjc@google.com> Reviewed-by: Xiaoyao Li <xiaoyao.li@intel.com> Message-ID: <20240423165328.2853870-4-seanjc@google.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2024-05-07KVM: x86: Fully re-initialize supported_mce_cap on vendor module loadSean Christopherson1-3/+2
Effectively reset supported_mce_cap on vendor module load to ensure that capabilities aren't unintentionally preserved across module reload, e.g. if kvm-intel.ko added a module param to control LMCE support, or if someone somehow managed to load a vendor module that doesn't support LMCE after loading and unloading kvm-intel.ko. Practically speaking, this bug is a non-issue as kvm-intel.ko doesn't have a module param for LMCE, and there is no system in the world that supports both kvm-intel.ko and kvm-amd.ko. Fixes: c45dcc71b794 ("KVM: VMX: enable guest access to LMCE related MSRs") Signed-off-by: Sean Christopherson <seanjc@google.com> Reviewed-by: Xiaoyao Li <xiaoyao.li@intel.com> Message-ID: <20240423165328.2853870-3-seanjc@google.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2024-05-07KVM: x86: Fully re-initialize supported_vm_types on vendor module loadSean Christopherson1-1/+2
Recompute the entire set of supported VM types when a vendor module is loaded, as preserving supported_vm_types across vendor module unload and reload can result in VM types being incorrectly treated as supported. E.g. if a vendor module is loaded with TDP enabled, unloaded, and then reloaded with TDP disabled, KVM_X86_SW_PROTECTED_VM will be incorrectly retained. Ditto for SEV_VM and SEV_ES_VM and their respective module params in kvm-amd.ko. Fixes: 2a955c4db1dd ("KVM: x86: Add supported_vm_types to kvm_caps") Signed-off-by: Sean Christopherson <seanjc@google.com> Reviewed-by: Xiaoyao Li <xiaoyao.li@intel.com> Message-ID: <20240423165328.2853870-2-seanjc@google.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2024-05-07KVM: x86/mmu: Sanity check that __kvm_faultin_pfn() doesn't create noslot pfnsSean Christopherson1-1/+1
WARN if __kvm_faultin_pfn() generates a "no slot" pfn, and gracefully handle the unexpected behavior instead of continuing on with dangerous state, e.g. tdp_mmu_map_handle_target_level() _only_ checks fault->slot, and so could install a bogus PFN into the guest. The existing code is functionally ok, because kvm_faultin_pfn() pre-checks all of the cases that result in KVM_PFN_NOSLOT, but it is unnecessarily unsafe as it relies on __gfn_to_pfn_memslot() getting the _exact_ same memslot, i.e. not a re-retrieved pointer with KVM_MEMSLOT_INVALID set. And checking only fault->slot would fall apart if KVM ever added a flag or condition that forced emulation, similar to how KVM handles writes to read-only memslots. Cc: David Matlack <dmatlack@google.com> Signed-off-by: Sean Christopherson <seanjc@google.com> Reviewed-by: Kai Huang <kai.huang@intel.com> Message-ID: <20240228024147.41573-17-seanjc@google.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2024-05-07KVM: x86/mmu: Initialize kvm_page_fault's pfn and hva to error valuesSean Christopherson1-0/+3
Explicitly set "pfn" and "hva" to error values in kvm_mmu_do_page_fault() to harden KVM against using "uninitialized" values. In quotes because the fields are actually zero-initialized, and zero is a legal value for both page frame numbers and virtual addresses. E.g. failure to set "pfn" prior to creating an SPTE could result in KVM pointing at physical address '0', which is far less desirable than KVM generating a SPTE with reserved PA bits set and thus effectively killing the VM. Signed-off-by: Sean Christopherson <seanjc@google.com> Reviewed-by: Kai Huang <kai.huang@intel.com> Message-ID: <20240228024147.41573-16-seanjc@google.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2024-05-07KVM: x86/mmu: Set kvm_page_fault.hva to KVM_HVA_ERR_BAD for "no slot" faultsSean Christopherson1-0/+1
Explicitly set fault->hva to KVM_HVA_ERR_BAD when handling a "no slot" fault to ensure that KVM doesn't use a bogus virtual address, e.g. if there *was* a slot but it's unusable (APIC access page), or if there really was no slot, in which case fault->hva will be '0' (which is a legal address for x86). Signed-off-by: Sean Christopherson <seanjc@google.com> Reviewed-by: Kai Huang <kai.huang@intel.com> Message-ID: <20240228024147.41573-15-seanjc@google.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2024-05-07KVM: x86/mmu: Handle no-slot faults at the beginning of kvm_faultin_pfn()Sean Christopherson1-12/+17
Handle the "no memslot" case at the beginning of kvm_faultin_pfn(), just after the private versus shared check, so that there's no need to repeatedly query whether or not a slot exists. This also makes it more obvious that, except for private vs. shared attributes, the process of faulting in a pfn simply doesn't apply to gfns without a slot. Opportunistically stuff @fault's metadata in kvm_handle_noslot_fault() so that it doesn't need to be duplicated in all paths that invoke kvm_handle_noslot_fault(), and to minimize the probability of not stuffing the right fields. Leave the existing handle behind, but convert it to a WARN, to guard against __kvm_faultin_pfn() unexpectedly nullifying fault->slot. Cc: David Matlack <dmatlack@google.com> Signed-off-by: Sean Christopherson <seanjc@google.com> Reviewed-by: Kai Huang <kai.huang@intel.com> Message-ID: <20240228024147.41573-14-seanjc@google.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2024-05-07KVM: x86/mmu: Move slot checks from __kvm_faultin_pfn() to kvm_faultin_pfn()Sean Christopherson1-43/+44
Move the checks related to the validity of an access to a memslot from the inner __kvm_faultin_pfn() to its sole caller, kvm_faultin_pfn(). This allows emulating accesses to the APIC access page, which don't need to resolve a pfn, even if there is a relevant in-progress mmu_notifier invalidation. Ditto for accesses to KVM internal memslots from L2, which KVM also treats as emulated MMIO. More importantly, this will allow for future cleanup by having the "no memslot" case bail from kvm_faultin_pfn() very early on. Go to rather extreme and gross lengths to make the change a glorified nop, e.g. call into __kvm_faultin_pfn() even when there is no slot, as the related code is very subtle. E.g. fault->slot can be nullified if it points at the APIC access page, some flows in KVM x86 expect fault->pfn to be KVM_PFN_NOSLOT, while others check only fault->slot, etc. No functional change intended. Signed-off-by: Sean Christopherson <seanjc@google.com> Reviewed-by: Kai Huang <kai.huang@intel.com> Message-ID: <20240228024147.41573-13-seanjc@google.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2024-05-07KVM: x86/mmu: Explicitly disallow private accesses to emulated MMIOSean Christopherson1-0/+5
Explicitly detect and disallow private accesses to emulated MMIO in kvm_handle_noslot_fault() instead of relying on kvm_faultin_pfn_private() to perform the check. This will allow the page fault path to go straight to kvm_handle_noslot_fault() without bouncing through __kvm_faultin_pfn(). Signed-off-by: Sean Christopherson <seanjc@google.com> Message-ID: <20240228024147.41573-12-seanjc@google.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2024-05-07KVM: x86/mmu: Don't force emulation of L2 accesses to non-APIC internal slotsSean Christopherson1-4/+13
Allow mapping KVM's internal memslots used for EPT without unrestricted guest into L2, i.e. allow mapping the hidden TSS and the identity mapped page tables into L2. Unlike the APIC access page, there is no correctness issue with letting L2 access the "hidden" memory. Allowing these memslots to be mapped into L2 fixes a largely theoretical bug where KVM could incorrectly emulate subsequent _L1_ accesses as MMIO, and also ensures consistent KVM behavior for L2. If KVM is using TDP, but L1 is using shadow paging for L2, then routing through kvm_handle_noslot_fault() will incorrectly cache the gfn as MMIO, and create an MMIO SPTE. Creating an MMIO SPTE is ok, but only because kvm_mmu_page_role.guest_mode ensure KVM uses different roots for L1 vs. L2. But vcpu->arch.mmio_gfn will remain valid, and could cause KVM to incorrectly treat an L1 access to the hidden TSS or identity mapped page tables as MMIO. Furthermore, forcing L2 accesses to be treated as "no slot" faults doesn't actually prevent exposing KVM's internal memslots to L2, it simply forces KVM to emulate the access. In most cases, that will trigger MMIO, amusingly due to filling vcpu->arch.mmio_gfn, but also because vcpu_is_mmio_gpa() unconditionally treats APIC accesses as MMIO, i.e. APIC accesses are ok. But the hidden TSS and identity mapped page tables could go either way (MMIO or access the private memslot's backing memory). Alternatively, the inconsistent emulator behavior could be addressed by forcing MMIO emulation for L2 access to all internal memslots, not just to the APIC. But that's arguably less correct than letting L2 access the hidden TSS and identity mapped page tables, not to mention that it's *extremely* unlikely anyone cares what KVM does in this case. From L1's perspective there is R/W memory at those memslots, the memory just happens to be initialized with non-zero data. Making the memory disappear when it is accessed by L2 is far more magical and arbitrary than the memory existing in the first place. The APIC access page is special because KVM _must_ emulate the access to do the right thing (emulate an APIC access instead of reading/writing the APIC access page). And despite what commit 3a2936dedd20 ("kvm: mmu: Don't expose private memslots to L2") said, it's not just necessary when L1 is accelerating L2's virtual APIC, it's just as important (likely *more* imporant for correctness when L1 is passing through its own APIC to L2. Fixes: 3a2936dedd20 ("kvm: mmu: Don't expose private memslots to L2") Signed-off-by: Sean Christopherson <seanjc@google.com> Reviewed-by: Kai Huang <kai.huang@intel.com> Message-ID: <20240228024147.41573-11-seanjc@google.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2024-05-07KVM: x86/mmu: Move private vs. shared check above slot validity checksSean Christopherson1-5/+15
Prioritize private vs. shared gfn attribute checks above slot validity checks to ensure a consistent userspace ABI. E.g. as is, KVM will exit to userspace if there is no memslot, but emulate accesses to the APIC access page even if the attributes mismatch. Fixes: 8dd2eee9d526 ("KVM: x86/mmu: Handle page fault for private memory") Cc: Yu Zhang <yu.c.zhang@linux.intel.com> Cc: Chao Peng <chao.p.peng@linux.intel.com> Cc: Fuad Tabba <tabba@google.com> Cc: Michael Roth <michael.roth@amd.com> Cc: Isaku Yamahata <isaku.yamahata@intel.com> Signed-off-by: Sean Christopherson <seanjc@google.com> Reviewed-by: Kai Huang <kai.huang@intel.com> Message-ID: <20240228024147.41573-10-seanjc@google.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>