From 783e9e51266ebb7f78c606a53cb0fa41bb7c31a0 Mon Sep 17 00:00:00 2001 From: Paolo Bonzini Date: Tue, 27 Mar 2018 11:49:19 +0200 Subject: kvm: selftests: add API testing infrastructure Testsuite contributed by Google and cleaned up by myself for inclusion in Linux. Signed-off-by: Ken Hofsass Signed-off-by: Paolo Bonzini --- tools/testing/selftests/Makefile | 1 + tools/testing/selftests/kvm/Makefile | 38 + tools/testing/selftests/kvm/include/kvm_util.h | 139 ++ tools/testing/selftests/kvm/include/sparsebit.h | 75 + tools/testing/selftests/kvm/include/test_util.h | 45 + tools/testing/selftests/kvm/include/x86.h | 1043 ++++++++++ tools/testing/selftests/kvm/lib/assert.c | 87 + tools/testing/selftests/kvm/lib/kvm_util.c | 1480 ++++++++++++++ .../testing/selftests/kvm/lib/kvm_util_internal.h | 67 + tools/testing/selftests/kvm/lib/sparsebit.c | 2087 ++++++++++++++++++++ tools/testing/selftests/kvm/lib/x86.c | 697 +++++++ tools/testing/selftests/kvm/set_sregs_test.c | 54 + 12 files changed, 5813 insertions(+) create mode 100644 tools/testing/selftests/kvm/Makefile create mode 100644 tools/testing/selftests/kvm/include/kvm_util.h create mode 100644 tools/testing/selftests/kvm/include/sparsebit.h create mode 100644 tools/testing/selftests/kvm/include/test_util.h create mode 100644 tools/testing/selftests/kvm/include/x86.h create mode 100644 tools/testing/selftests/kvm/lib/assert.c create mode 100644 tools/testing/selftests/kvm/lib/kvm_util.c create mode 100644 tools/testing/selftests/kvm/lib/kvm_util_internal.h create mode 100644 tools/testing/selftests/kvm/lib/sparsebit.c create mode 100644 tools/testing/selftests/kvm/lib/x86.c create mode 100644 tools/testing/selftests/kvm/set_sregs_test.c (limited to 'tools/testing') diff --git a/tools/testing/selftests/Makefile b/tools/testing/selftests/Makefile index 7442dfb73b7f..c98f1b874582 100644 --- a/tools/testing/selftests/Makefile +++ b/tools/testing/selftests/Makefile @@ -14,6 +14,7 @@ TARGETS += gpio TARGETS += intel_pstate TARGETS += ipc TARGETS += kcmp +TARGETS += kvm TARGETS += lib TARGETS += membarrier TARGETS += memfd diff --git a/tools/testing/selftests/kvm/Makefile b/tools/testing/selftests/kvm/Makefile new file mode 100644 index 000000000000..6aade26e9ca2 --- /dev/null +++ b/tools/testing/selftests/kvm/Makefile @@ -0,0 +1,38 @@ +all: + +top_srcdir = ../../../../ +UNAME_M := $(shell uname -m) + +LIBKVM = lib/assert.c lib/kvm_util.c lib/sparsebit.c +LIBKVM_x86_64 = lib/x86.c + +TEST_GEN_PROGS_x86_64 = set_sregs_test + +TEST_GEN_PROGS += $(TEST_GEN_PROGS_$(UNAME_M)) +LIBKVM += $(LIBKVM_$(UNAME_M)) + +INSTALL_HDR_PATH = $(top_srcdir)/usr +LINUX_HDR_PATH = $(INSTALL_HDR_PATH)/include/ +CFLAGS += -O2 -g -I$(LINUX_HDR_PATH) -Iinclude -I$( + +#include "sparsebit.h" + +/* + * Memslots can't cover the gfn starting at this gpa otherwise vCPUs can't be + * created. Only applies to VMs using EPT. + */ +#define KVM_DEFAULT_IDENTITY_MAP_ADDRESS 0xfffbc000ul + + +/* Callers of kvm_util only have an incomplete/opaque description of the + * structure kvm_util is using to maintain the state of a VM. + */ +struct kvm_vm; + +typedef uint64_t vm_paddr_t; /* Virtual Machine (Guest) physical address */ +typedef uint64_t vm_vaddr_t; /* Virtual Machine (Guest) virtual address */ + +/* Minimum allocated guest virtual and physical addresses */ +#define KVM_UTIL_MIN_VADDR 0x2000 + +#define DEFAULT_GUEST_PHY_PAGES 512 +#define DEFAULT_GUEST_STACK_VADDR_MIN 0xab6000 +#define DEFAULT_STACK_PGS 5 + +enum vm_guest_mode { + VM_MODE_FLAT48PG, +}; + +enum vm_mem_backing_src_type { + VM_MEM_SRC_ANONYMOUS, + VM_MEM_SRC_ANONYMOUS_THP, + VM_MEM_SRC_ANONYMOUS_HUGETLB, +}; + +int kvm_check_cap(long cap); + +struct kvm_vm *vm_create(enum vm_guest_mode mode, uint64_t phy_pages, int perm); +void kvm_vm_free(struct kvm_vm *vmp); + +int kvm_memcmp_hva_gva(void *hva, + struct kvm_vm *vm, const vm_vaddr_t gva, size_t len); + +void vm_dump(FILE *stream, struct kvm_vm *vm, uint8_t indent); +void vcpu_dump(FILE *stream, struct kvm_vm *vm, + uint32_t vcpuid, uint8_t indent); + +void vm_create_irqchip(struct kvm_vm *vm); + +void vm_userspace_mem_region_add(struct kvm_vm *vm, + enum vm_mem_backing_src_type src_type, + uint64_t guest_paddr, uint32_t slot, uint64_t npages, + uint32_t flags); + +void vcpu_ioctl(struct kvm_vm *vm, + uint32_t vcpuid, unsigned long ioctl, void *arg); +void vm_ioctl(struct kvm_vm *vm, unsigned long ioctl, void *arg); +void vm_mem_region_set_flags(struct kvm_vm *vm, uint32_t slot, uint32_t flags); +void vm_vcpu_add(struct kvm_vm *vm, uint32_t vcpuid); +vm_vaddr_t vm_vaddr_alloc(struct kvm_vm *vm, size_t sz, vm_vaddr_t vaddr_min, + uint32_t data_memslot, uint32_t pgd_memslot); +void *addr_gpa2hva(struct kvm_vm *vm, vm_paddr_t gpa); +void *addr_gva2hva(struct kvm_vm *vm, vm_vaddr_t gva); +vm_paddr_t addr_hva2gpa(struct kvm_vm *vm, void *hva); +vm_paddr_t addr_gva2gpa(struct kvm_vm *vm, vm_vaddr_t gva); + +struct kvm_run *vcpu_state(struct kvm_vm *vm, uint32_t vcpuid); +void vcpu_run(struct kvm_vm *vm, uint32_t vcpuid); +int _vcpu_run(struct kvm_vm *vm, uint32_t vcpuid); +void vcpu_set_mp_state(struct kvm_vm *vm, uint32_t vcpuid, + struct kvm_mp_state *mp_state); +void vcpu_regs_get(struct kvm_vm *vm, + uint32_t vcpuid, struct kvm_regs *regs); +void vcpu_regs_set(struct kvm_vm *vm, + uint32_t vcpuid, struct kvm_regs *regs); +void vcpu_args_set(struct kvm_vm *vm, uint32_t vcpuid, unsigned int num, ...); +void vcpu_sregs_get(struct kvm_vm *vm, + uint32_t vcpuid, struct kvm_sregs *sregs); +void vcpu_sregs_set(struct kvm_vm *vm, + uint32_t vcpuid, struct kvm_sregs *sregs); +int _vcpu_sregs_set(struct kvm_vm *vm, + uint32_t vcpuid, struct kvm_sregs *sregs); +void vcpu_events_get(struct kvm_vm *vm, uint32_t vcpuid, + struct kvm_vcpu_events *events); +void vcpu_events_set(struct kvm_vm *vm, uint32_t vcpuid, + struct kvm_vcpu_events *events); + +const char *exit_reason_str(unsigned int exit_reason); + +void virt_pgd_alloc(struct kvm_vm *vm, uint32_t pgd_memslot); +void virt_pg_map(struct kvm_vm *vm, uint64_t vaddr, uint64_t paddr, + uint32_t pgd_memslot); +vm_paddr_t vm_phy_page_alloc(struct kvm_vm *vm, + vm_paddr_t paddr_min, uint32_t memslot); + +void kvm_get_supported_cpuid(struct kvm_cpuid2 *cpuid); +void vcpu_set_cpuid( + struct kvm_vm *vm, uint32_t vcpuid, struct kvm_cpuid2 *cpuid); + +struct kvm_cpuid2 *allocate_kvm_cpuid2(void); +struct kvm_cpuid_entry2 * +find_cpuid_index_entry(struct kvm_cpuid2 *cpuid, uint32_t function, + uint32_t index); + +static inline struct kvm_cpuid_entry2 * +find_cpuid_entry(struct kvm_cpuid2 *cpuid, uint32_t function) +{ + return find_cpuid_index_entry(cpuid, function, 0); +} + +struct kvm_vm *vm_create_default(uint32_t vcpuid, void *guest_code); +void vm_vcpu_add_default(struct kvm_vm *vm, uint32_t vcpuid, void *guest_code); + +struct kvm_userspace_memory_region * +kvm_userspace_memory_region_find(struct kvm_vm *vm, uint64_t start, + uint64_t end); + +struct kvm_dirty_log * +allocate_kvm_dirty_log(struct kvm_userspace_memory_region *region); + +int vm_create_device(struct kvm_vm *vm, struct kvm_create_device *cd); + +#endif /* SELFTEST_KVM_UTIL_H */ diff --git a/tools/testing/selftests/kvm/include/sparsebit.h b/tools/testing/selftests/kvm/include/sparsebit.h new file mode 100644 index 000000000000..54cfeb6568d3 --- /dev/null +++ b/tools/testing/selftests/kvm/include/sparsebit.h @@ -0,0 +1,75 @@ +/* + * tools/testing/selftests/kvm/include/sparsebit.h + * + * Copyright (C) 2018, Google LLC. + * + * This work is licensed under the terms of the GNU GPL, version 2. + * + * + * Header file that describes API to the sparsebit library. + * This library provides a memory efficient means of storing + * the settings of bits indexed via a uint64_t. Memory usage + * is reasonable, significantly less than (2^64 / 8) bytes, as + * long as bits that are mostly set or mostly cleared are close + * to each other. This library is efficient in memory usage + * even in the case where most bits are set. + */ + +#ifndef _TEST_SPARSEBIT_H_ +#define _TEST_SPARSEBIT_H_ + +#include +#include +#include + +#ifdef __cplusplus +extern "C" { +#endif + +struct sparsebit; +typedef uint64_t sparsebit_idx_t; +typedef uint64_t sparsebit_num_t; + +struct sparsebit *sparsebit_alloc(void); +void sparsebit_free(struct sparsebit **sbitp); +void sparsebit_copy(struct sparsebit *dstp, struct sparsebit *src); + +bool sparsebit_is_set(struct sparsebit *sbit, sparsebit_idx_t idx); +bool sparsebit_is_set_num(struct sparsebit *sbit, + sparsebit_idx_t idx, sparsebit_num_t num); +bool sparsebit_is_clear(struct sparsebit *sbit, sparsebit_idx_t idx); +bool sparsebit_is_clear_num(struct sparsebit *sbit, + sparsebit_idx_t idx, sparsebit_num_t num); +sparsebit_num_t sparsebit_num_set(struct sparsebit *sbit); +bool sparsebit_any_set(struct sparsebit *sbit); +bool sparsebit_any_clear(struct sparsebit *sbit); +bool sparsebit_all_set(struct sparsebit *sbit); +bool sparsebit_all_clear(struct sparsebit *sbit); +sparsebit_idx_t sparsebit_first_set(struct sparsebit *sbit); +sparsebit_idx_t sparsebit_first_clear(struct sparsebit *sbit); +sparsebit_idx_t sparsebit_next_set(struct sparsebit *sbit, sparsebit_idx_t prev); +sparsebit_idx_t sparsebit_next_clear(struct sparsebit *sbit, sparsebit_idx_t prev); +sparsebit_idx_t sparsebit_next_set_num(struct sparsebit *sbit, + sparsebit_idx_t start, sparsebit_num_t num); +sparsebit_idx_t sparsebit_next_clear_num(struct sparsebit *sbit, + sparsebit_idx_t start, sparsebit_num_t num); + +void sparsebit_set(struct sparsebit *sbitp, sparsebit_idx_t idx); +void sparsebit_set_num(struct sparsebit *sbitp, sparsebit_idx_t start, + sparsebit_num_t num); +void sparsebit_set_all(struct sparsebit *sbitp); + +void sparsebit_clear(struct sparsebit *sbitp, sparsebit_idx_t idx); +void sparsebit_clear_num(struct sparsebit *sbitp, + sparsebit_idx_t start, sparsebit_num_t num); +void sparsebit_clear_all(struct sparsebit *sbitp); + +void sparsebit_dump(FILE *stream, struct sparsebit *sbit, + unsigned int indent); +void sparsebit_validate_internal(struct sparsebit *sbit); + +#ifdef __cplusplus +} +#endif + +#endif /* _TEST_SPARSEBIT_H_ */ diff --git a/tools/testing/selftests/kvm/include/test_util.h b/tools/testing/selftests/kvm/include/test_util.h new file mode 100644 index 000000000000..7ab98e41324f --- /dev/null +++ b/tools/testing/selftests/kvm/include/test_util.h @@ -0,0 +1,45 @@ +/* + * tools/testing/selftests/kvm/include/test_util.h + * + * Copyright (C) 2018, Google LLC. + * + * This work is licensed under the terms of the GNU GPL, version 2. + * + */ + +#ifndef TEST_UTIL_H +#define TEST_UTIL_H 1 + +#include +#include +#include +#include +#include +#include +#include +#include +#include + +ssize_t test_write(int fd, const void *buf, size_t count); +ssize_t test_read(int fd, void *buf, size_t count); +int test_seq_read(const char *path, char **bufp, size_t *sizep); + +void test_assert(bool exp, const char *exp_str, + const char *file, unsigned int line, const char *fmt, ...); + +#define ARRAY_SIZE(array) (sizeof(array) / sizeof((array)[0])) + +#define TEST_ASSERT(e, fmt, ...) \ + test_assert((e), #e, __FILE__, __LINE__, fmt, ##__VA_ARGS__) + +#define ASSERT_EQ(a, b) do { \ + typeof(a) __a = (a); \ + typeof(b) __b = (b); \ + TEST_ASSERT(__a == __b, \ + "ASSERT_EQ(%s, %s) failed.\n" \ + "\t%s is %#lx\n" \ + "\t%s is %#lx", \ + #a, #b, #a, (unsigned long) __a, #b, (unsigned long) __b); \ +} while (0) + +#endif /* TEST_UTIL_H */ diff --git a/tools/testing/selftests/kvm/include/x86.h b/tools/testing/selftests/kvm/include/x86.h new file mode 100644 index 000000000000..4a5b2c4c1a0f --- /dev/null +++ b/tools/testing/selftests/kvm/include/x86.h @@ -0,0 +1,1043 @@ +/* + * tools/testing/selftests/kvm/include/x86.h + * + * Copyright (C) 2018, Google LLC. + * + * This work is licensed under the terms of the GNU GPL, version 2. + * + */ + +#ifndef SELFTEST_KVM_X86_H +#define SELFTEST_KVM_X86_H + +#include +#include + +#define X86_EFLAGS_FIXED (1u << 1) + +#define X86_CR4_VME (1ul << 0) +#define X86_CR4_PVI (1ul << 1) +#define X86_CR4_TSD (1ul << 2) +#define X86_CR4_DE (1ul << 3) +#define X86_CR4_PSE (1ul << 4) +#define X86_CR4_PAE (1ul << 5) +#define X86_CR4_MCE (1ul << 6) +#define X86_CR4_PGE (1ul << 7) +#define X86_CR4_PCE (1ul << 8) +#define X86_CR4_OSFXSR (1ul << 9) +#define X86_CR4_OSXMMEXCPT (1ul << 10) +#define X86_CR4_UMIP (1ul << 11) +#define X86_CR4_VMXE (1ul << 13) +#define X86_CR4_SMXE (1ul << 14) +#define X86_CR4_FSGSBASE (1ul << 16) +#define X86_CR4_PCIDE (1ul << 17) +#define X86_CR4_OSXSAVE (1ul << 18) +#define X86_CR4_SMEP (1ul << 20) +#define X86_CR4_SMAP (1ul << 21) +#define X86_CR4_PKE (1ul << 22) + +/* The enum values match the intruction encoding of each register */ +enum x86_register { + RAX = 0, + RCX, + RDX, + RBX, + RSP, + RBP, + RSI, + RDI, + R8, + R9, + R10, + R11, + R12, + R13, + R14, + R15, +}; + +struct desc64 { + uint16_t limit0; + uint16_t base0; + unsigned base1:8, type:5, dpl:2, p:1; + unsigned limit1:4, zero0:3, g:1, base2:8; + uint32_t base3; + uint32_t zero1; +} __attribute__((packed)); + +struct desc_ptr { + uint16_t size; + uint64_t address; +} __attribute__((packed)); + +static inline uint64_t get_desc64_base(const struct desc64 *desc) +{ + return ((uint64_t)desc->base3 << 32) | + (desc->base0 | ((desc->base1) << 16) | ((desc->base2) << 24)); +} + +static inline uint64_t rdtsc(void) +{ + uint32_t eax, edx; + + /* + * The lfence is to wait (on Intel CPUs) until all previous + * instructions have been executed. + */ + __asm__ __volatile__("lfence; rdtsc" : "=a"(eax), "=d"(edx)); + return ((uint64_t)edx) << 32 | eax; +} + +static inline uint64_t rdtscp(uint32_t *aux) +{ + uint32_t eax, edx; + + __asm__ __volatile__("rdtscp" : "=a"(eax), "=d"(edx), "=c"(*aux)); + return ((uint64_t)edx) << 32 | eax; +} + +static inline uint64_t rdmsr(uint32_t msr) +{ + uint32_t a, d; + + __asm__ __volatile__("rdmsr" : "=a"(a), "=d"(d) : "c"(msr) : "memory"); + + return a | ((uint64_t) d << 32); +} + +static inline void wrmsr(uint32_t msr, uint64_t value) +{ + uint32_t a = value; + uint32_t d = value >> 32; + + __asm__ __volatile__("wrmsr" :: "a"(a), "d"(d), "c"(msr) : "memory"); +} + + +static inline uint16_t inw(uint16_t port) +{ + uint16_t tmp; + + __asm__ __volatile__("in %%dx, %%ax" + : /* output */ "=a" (tmp) + : /* input */ "d" (port)); + + return tmp; +} + +static inline uint16_t get_es(void) +{ + uint16_t es; + + __asm__ __volatile__("mov %%es, %[es]" + : /* output */ [es]"=rm"(es)); + return es; +} + +static inline uint16_t get_cs(void) +{ + uint16_t cs; + + __asm__ __volatile__("mov %%cs, %[cs]" + : /* output */ [cs]"=rm"(cs)); + return cs; +} + +static inline uint16_t get_ss(void) +{ + uint16_t ss; + + __asm__ __volatile__("mov %%ss, %[ss]" + : /* output */ [ss]"=rm"(ss)); + return ss; +} + +static inline uint16_t get_ds(void) +{ + uint16_t ds; + + __asm__ __volatile__("mov %%ds, %[ds]" + : /* output */ [ds]"=rm"(ds)); + return ds; +} + +static inline uint16_t get_fs(void) +{ + uint16_t fs; + + __asm__ __volatile__("mov %%fs, %[fs]" + : /* output */ [fs]"=rm"(fs)); + return fs; +} + +static inline uint16_t get_gs(void) +{ + uint16_t gs; + + __asm__ __volatile__("mov %%gs, %[gs]" + : /* output */ [gs]"=rm"(gs)); + return gs; +} + +static inline uint16_t get_tr(void) +{ + uint16_t tr; + + __asm__ __volatile__("str %[tr]" + : /* output */ [tr]"=rm"(tr)); + return tr; +} + +static inline uint64_t get_cr0(void) +{ + uint64_t cr0; + + __asm__ __volatile__("mov %%cr0, %[cr0]" + : /* output */ [cr0]"=r"(cr0)); + return cr0; +} + +static inline uint64_t get_cr3(void) +{ + uint64_t cr3; + + __asm__ __volatile__("mov %%cr3, %[cr3]" + : /* output */ [cr3]"=r"(cr3)); + return cr3; +} + +static inline uint64_t get_cr4(void) +{ + uint64_t cr4; + + __asm__ __volatile__("mov %%cr4, %[cr4]" + : /* output */ [cr4]"=r"(cr4)); + return cr4; +} + +static inline void set_cr4(uint64_t val) +{ + __asm__ __volatile__("mov %0, %%cr4" : : "r" (val) : "memory"); +} + +static inline uint64_t get_gdt_base(void) +{ + struct desc_ptr gdt; + __asm__ __volatile__("sgdt %[gdt]" + : /* output */ [gdt]"=m"(gdt)); + return gdt.address; +} + +static inline uint64_t get_idt_base(void) +{ + struct desc_ptr idt; + __asm__ __volatile__("sidt %[idt]" + : /* output */ [idt]"=m"(idt)); + return idt.address; +} + +#define SET_XMM(__var, __xmm) \ + asm volatile("movq %0, %%"#__xmm : : "r"(__var) : #__xmm) + +static inline void set_xmm(int n, unsigned long val) +{ + switch (n) { + case 0: + SET_XMM(val, xmm0); + break; + case 1: + SET_XMM(val, xmm1); + break; + case 2: + SET_XMM(val, xmm2); + break; + case 3: + SET_XMM(val, xmm3); + break; + case 4: + SET_XMM(val, xmm4); + break; + case 5: + SET_XMM(val, xmm5); + break; + case 6: + SET_XMM(val, xmm6); + break; + case 7: + SET_XMM(val, xmm7); + break; + } +} + +typedef unsigned long v1di __attribute__ ((vector_size (8))); +static inline unsigned long get_xmm(int n) +{ + assert(n >= 0 && n <= 7); + + register v1di xmm0 __asm__("%xmm0"); + register v1di xmm1 __asm__("%xmm1"); + register v1di xmm2 __asm__("%xmm2"); + register v1di xmm3 __asm__("%xmm3"); + register v1di xmm4 __asm__("%xmm4"); + register v1di xmm5 __asm__("%xmm5"); + register v1di xmm6 __asm__("%xmm6"); + register v1di xmm7 __asm__("%xmm7"); + switch (n) { + case 0: + return (unsigned long)xmm0; + case 1: + return (unsigned long)xmm1; + case 2: + return (unsigned long)xmm2; + case 3: + return (unsigned long)xmm3; + case 4: + return (unsigned long)xmm4; + case 5: + return (unsigned long)xmm5; + case 6: + return (unsigned long)xmm6; + case 7: + return (unsigned long)xmm7; + } + return 0; +} + +/* + * Basic CPU control in CR0 + */ +#define X86_CR0_PE (1UL<<0) /* Protection Enable */ +#define X86_CR0_MP (1UL<<1) /* Monitor Coprocessor */ +#define X86_CR0_EM (1UL<<2) /* Emulation */ +#define X86_CR0_TS (1UL<<3) /* Task Switched */ +#define X86_CR0_ET (1UL<<4) /* Extension Type */ +#define X86_CR0_NE (1UL<<5) /* Numeric Error */ +#define X86_CR0_WP (1UL<<16) /* Write Protect */ +#define X86_CR0_AM (1UL<<18) /* Alignment Mask */ +#define X86_CR0_NW (1UL<<29) /* Not Write-through */ +#define X86_CR0_CD (1UL<<30) /* Cache Disable */ +#define X86_CR0_PG (1UL<<31) /* Paging */ + +/* + * CPU model specific register (MSR) numbers. + */ + +/* x86-64 specific MSRs */ +#define MSR_EFER 0xc0000080 /* extended feature register */ +#define MSR_STAR 0xc0000081 /* legacy mode SYSCALL target */ +#define MSR_LSTAR 0xc0000082 /* long mode SYSCALL target */ +#define MSR_CSTAR 0xc0000083 /* compat mode SYSCALL target */ +#define MSR_SYSCALL_MASK 0xc0000084 /* EFLAGS mask for syscall */ +#define MSR_FS_BASE 0xc0000100 /* 64bit FS base */ +#define MSR_GS_BASE 0xc0000101 /* 64bit GS base */ +#define MSR_KERNEL_GS_BASE 0xc0000102 /* SwapGS GS shadow */ +#define MSR_TSC_AUX 0xc0000103 /* Auxiliary TSC */ + +/* EFER bits: */ +#define EFER_SCE (1<<0) /* SYSCALL/SYSRET */ +#define EFER_LME (1<<8) /* Long mode enable */ +#define EFER_LMA (1<<10) /* Long mode active (read-only) */ +#define EFER_NX (1<<11) /* No execute enable */ +#define EFER_SVME (1<<12) /* Enable virtualization */ +#define EFER_LMSLE (1<<13) /* Long Mode Segment Limit Enable */ +#define EFER_FFXSR (1<<14) /* Enable Fast FXSAVE/FXRSTOR */ + +/* Intel MSRs. Some also available on other CPUs */ + +#define MSR_PPIN_CTL 0x0000004e +#define MSR_PPIN 0x0000004f + +#define MSR_IA32_PERFCTR0 0x000000c1 +#define MSR_IA32_PERFCTR1 0x000000c2 +#define MSR_FSB_FREQ 0x000000cd +#define MSR_PLATFORM_INFO 0x000000ce +#define MSR_PLATFORM_INFO_CPUID_FAULT_BIT 31 +#define MSR_PLATFORM_INFO_CPUID_FAULT BIT_ULL(MSR_PLATFORM_INFO_CPUID_FAULT_BIT) + +#define MSR_PKG_CST_CONFIG_CONTROL 0x000000e2 +#define NHM_C3_AUTO_DEMOTE (1UL << 25) +#define NHM_C1_AUTO_DEMOTE (1UL << 26) +#define ATM_LNC_C6_AUTO_DEMOTE (1UL << 25) +#define SNB_C1_AUTO_UNDEMOTE (1UL << 27) +#define SNB_C3_AUTO_UNDEMOTE (1UL << 28) + +#define MSR_MTRRcap 0x000000fe +#define MSR_IA32_BBL_CR_CTL 0x00000119 +#define MSR_IA32_BBL_CR_CTL3 0x0000011e + +#define MSR_IA32_SYSENTER_CS 0x00000174 +#define MSR_IA32_SYSENTER_ESP 0x00000175 +#define MSR_IA32_SYSENTER_EIP 0x00000176 + +#define MSR_IA32_MCG_CAP 0x00000179 +#define MSR_IA32_MCG_STATUS 0x0000017a +#define MSR_IA32_MCG_CTL 0x0000017b +#define MSR_IA32_MCG_EXT_CTL 0x000004d0 + +#define MSR_OFFCORE_RSP_0 0x000001a6 +#define MSR_OFFCORE_RSP_1 0x000001a7 +#define MSR_TURBO_RATIO_LIMIT 0x000001ad +#define MSR_TURBO_RATIO_LIMIT1 0x000001ae +#define MSR_TURBO_RATIO_LIMIT2 0x000001af + +#define MSR_LBR_SELECT 0x000001c8 +#define MSR_LBR_TOS 0x000001c9 +#define MSR_LBR_NHM_FROM 0x00000680 +#define MSR_LBR_NHM_TO 0x000006c0 +#define MSR_LBR_CORE_FROM 0x00000040 +#define MSR_LBR_CORE_TO 0x00000060 + +#define MSR_LBR_INFO_0 0x00000dc0 /* ... 0xddf for _31 */ +#define LBR_INFO_MISPRED BIT_ULL(63) +#define LBR_INFO_IN_TX BIT_ULL(62) +#define LBR_INFO_ABORT BIT_ULL(61) +#define LBR_INFO_CYCLES 0xffff + +#define MSR_IA32_PEBS_ENABLE 0x000003f1 +#define MSR_IA32_DS_AREA 0x00000600 +#define MSR_IA32_PERF_CAPABILITIES 0x00000345 +#define MSR_PEBS_LD_LAT_THRESHOLD 0x000003f6 + +#define MSR_IA32_RTIT_CTL 0x00000570 +#define MSR_IA32_RTIT_STATUS 0x00000571 +#define MSR_IA32_RTIT_ADDR0_A 0x00000580 +#define MSR_IA32_RTIT_ADDR0_B 0x00000581 +#define MSR_IA32_RTIT_ADDR1_A 0x00000582 +#define MSR_IA32_RTIT_ADDR1_B 0x00000583 +#define MSR_IA32_RTIT_ADDR2_A 0x00000584 +#define MSR_IA32_RTIT_ADDR2_B 0x00000585 +#define MSR_IA32_RTIT_ADDR3_A 0x00000586 +#define MSR_IA32_RTIT_ADDR3_B 0x00000587 +#define MSR_IA32_RTIT_CR3_MATCH 0x00000572 +#define MSR_IA32_RTIT_OUTPUT_BASE 0x00000560 +#define MSR_IA32_RTIT_OUTPUT_MASK 0x00000561 + +#define MSR_MTRRfix64K_00000 0x00000250 +#define MSR_MTRRfix16K_80000 0x00000258 +#define MSR_MTRRfix16K_A0000 0x00000259 +#define MSR_MTRRfix4K_C0000 0x00000268 +#define MSR_MTRRfix4K_C8000 0x00000269 +#define MSR_MTRRfix4K_D0000 0x0000026a +#define MSR_MTRRfix4K_D8000 0x0000026b +#define MSR_MTRRfix4K_E0000 0x0000026c +#define MSR_MTRRfix4K_E8000 0x0000026d +#define MSR_MTRRfix4K_F0000 0x0000026e +#define MSR_MTRRfix4K_F8000 0x0000026f +#define MSR_MTRRdefType 0x000002ff + +#define MSR_IA32_CR_PAT 0x00000277 + +#define MSR_IA32_DEBUGCTLMSR 0x000001d9 +#define MSR_IA32_LASTBRANCHFROMIP 0x000001db +#define MSR_IA32_LASTBRANCHTOIP 0x000001dc +#define MSR_IA32_LASTINTFROMIP 0x000001dd +#define MSR_IA32_LASTINTTOIP 0x000001de + +/* DEBUGCTLMSR bits (others vary by model): */ +#define DEBUGCTLMSR_LBR (1UL << 0) /* last branch recording */ +#define DEBUGCTLMSR_BTF_SHIFT 1 +#define DEBUGCTLMSR_BTF (1UL << 1) /* single-step on branches */ +#define DEBUGCTLMSR_TR (1UL << 6) +#define DEBUGCTLMSR_BTS (1UL << 7) +#define DEBUGCTLMSR_BTINT (1UL << 8) +#define DEBUGCTLMSR_BTS_OFF_OS (1UL << 9) +#define DEBUGCTLMSR_BTS_OFF_USR (1UL << 10) +#define DEBUGCTLMSR_FREEZE_LBRS_ON_PMI (1UL << 11) +#define DEBUGCTLMSR_FREEZE_IN_SMM_BIT 14 +#define DEBUGCTLMSR_FREEZE_IN_SMM (1UL << DEBUGCTLMSR_FREEZE_IN_SMM_BIT) + +#define MSR_PEBS_FRONTEND 0x000003f7 + +#define MSR_IA32_POWER_CTL 0x000001fc + +#define MSR_IA32_MC0_CTL 0x00000400 +#define MSR_IA32_MC0_STATUS 0x00000401 +#define MSR_IA32_MC0_ADDR 0x00000402 +#define MSR_IA32_MC0_MISC 0x00000403 + +/* C-state Residency Counters */ +#define MSR_PKG_C3_RESIDENCY 0x000003f8 +#define MSR_PKG_C6_RESIDENCY 0x000003f9 +#define MSR_ATOM_PKG_C6_RESIDENCY 0x000003fa +#define MSR_PKG_C7_RESIDENCY 0x000003fa +#define MSR_CORE_C3_RESIDENCY 0x000003fc +#define MSR_CORE_C6_RESIDENCY 0x000003fd +#define MSR_CORE_C7_RESIDENCY 0x000003fe +#define MSR_KNL_CORE_C6_RESIDENCY 0x000003ff +#define MSR_PKG_C2_RESIDENCY 0x0000060d +#define MSR_PKG_C8_RESIDENCY 0x00000630 +#define MSR_PKG_C9_RESIDENCY 0x00000631 +#define MSR_PKG_C10_RESIDENCY 0x00000632 + +/* Interrupt Response Limit */ +#define MSR_PKGC3_IRTL 0x0000060a +#define MSR_PKGC6_IRTL 0x0000060b +#define MSR_PKGC7_IRTL 0x0000060c +#define MSR_PKGC8_IRTL 0x00000633 +#define MSR_PKGC9_IRTL 0x00000634 +#define MSR_PKGC10_IRTL 0x00000635 + +/* Run Time Average Power Limiting (RAPL) Interface */ + +#define MSR_RAPL_POWER_UNIT 0x00000606 + +#define MSR_PKG_POWER_LIMIT 0x00000610 +#define MSR_PKG_ENERGY_STATUS 0x00000611 +#define MSR_PKG_PERF_STATUS 0x00000613 +#define MSR_PKG_POWER_INFO 0x00000614 + +#define MSR_DRAM_POWER_LIMIT 0x00000618 +#define MSR_DRAM_ENERGY_STATUS 0x00000619 +#define MSR_DRAM_PERF_STATUS 0x0000061b +#define MSR_DRAM_POWER_INFO 0x0000061c + +#define MSR_PP0_POWER_LIMIT 0x00000638 +#define MSR_PP0_ENERGY_STATUS 0x00000639 +#define MSR_PP0_POLICY 0x0000063a +#define MSR_PP0_PERF_STATUS 0x0000063b + +#define MSR_PP1_POWER_LIMIT 0x00000640 +#define MSR_PP1_ENERGY_STATUS 0x00000641 +#define MSR_PP1_POLICY 0x00000642 + +/* Config TDP MSRs */ +#define MSR_CONFIG_TDP_NOMINAL 0x00000648 +#define MSR_CONFIG_TDP_LEVEL_1 0x00000649 +#define MSR_CONFIG_TDP_LEVEL_2 0x0000064A +#define MSR_CONFIG_TDP_CONTROL 0x0000064B +#define MSR_TURBO_ACTIVATION_RATIO 0x0000064C + +#define MSR_PLATFORM_ENERGY_STATUS 0x0000064D + +#define MSR_PKG_WEIGHTED_CORE_C0_RES 0x00000658 +#define MSR_PKG_ANY_CORE_C0_RES 0x00000659 +#define MSR_PKG_ANY_GFXE_C0_RES 0x0000065A +#define MSR_PKG_BOTH_CORE_GFXE_C0_RES 0x0000065B + +#define MSR_CORE_C1_RES 0x00000660 +#define MSR_MODULE_C6_RES_MS 0x00000664 + +#define MSR_CC6_DEMOTION_POLICY_CONFIG 0x00000668 +#define MSR_MC6_DEMOTION_POLICY_CONFIG 0x00000669 + +#define MSR_ATOM_CORE_RATIOS 0x0000066a +#define MSR_ATOM_CORE_VIDS 0x0000066b +#define MSR_ATOM_CORE_TURBO_RATIOS 0x0000066c +#define MSR_ATOM_CORE_TURBO_VIDS 0x0000066d + + +#define MSR_CORE_PERF_LIMIT_REASONS 0x00000690 +#define MSR_GFX_PERF_LIMIT_REASONS 0x000006B0 +#define MSR_RING_PERF_LIMIT_REASONS 0x000006B1 + +/* Hardware P state interface */ +#define MSR_PPERF 0x0000064e +#define MSR_PERF_LIMIT_REASONS 0x0000064f +#define MSR_PM_ENABLE 0x00000770 +#define MSR_HWP_CAPABILITIES 0x00000771 +#define MSR_HWP_REQUEST_PKG 0x00000772 +#define MSR_HWP_INTERRUPT 0x00000773 +#define MSR_HWP_REQUEST 0x00000774 +#define MSR_HWP_STATUS 0x00000777 + +/* CPUID.6.EAX */ +#define HWP_BASE_BIT (1<<7) +#define HWP_NOTIFICATIONS_BIT (1<<8) +#define HWP_ACTIVITY_WINDOW_BIT (1<<9) +#define HWP_ENERGY_PERF_PREFERENCE_BIT (1<<10) +#define HWP_PACKAGE_LEVEL_REQUEST_BIT (1<<11) + +/* IA32_HWP_CAPABILITIES */ +#define HWP_HIGHEST_PERF(x) (((x) >> 0) & 0xff) +#define HWP_GUARANTEED_PERF(x) (((x) >> 8) & 0xff) +#define HWP_MOSTEFFICIENT_PERF(x) (((x) >> 16) & 0xff) +#define HWP_LOWEST_PERF(x) (((x) >> 24) & 0xff) + +/* IA32_HWP_REQUEST */ +#define HWP_MIN_PERF(x) (x & 0xff) +#define HWP_MAX_PERF(x) ((x & 0xff) << 8) +#define HWP_DESIRED_PERF(x) ((x & 0xff) << 16) +#define HWP_ENERGY_PERF_PREFERENCE(x) (((unsigned long long) x & 0xff) << 24) +#define HWP_EPP_PERFORMANCE 0x00 +#define HWP_EPP_BALANCE_PERFORMANCE 0x80 +#define HWP_EPP_BALANCE_POWERSAVE 0xC0 +#define HWP_EPP_POWERSAVE 0xFF +#define HWP_ACTIVITY_WINDOW(x) ((unsigned long long)(x & 0xff3) << 32) +#define HWP_PACKAGE_CONTROL(x) ((unsigned long long)(x & 0x1) << 42) + +/* IA32_HWP_STATUS */ +#define HWP_GUARANTEED_CHANGE(x) (x & 0x1) +#define HWP_EXCURSION_TO_MINIMUM(x) (x & 0x4) + +/* IA32_HWP_INTERRUPT */ +#define HWP_CHANGE_TO_GUARANTEED_INT(x) (x & 0x1) +#define HWP_EXCURSION_TO_MINIMUM_INT(x) (x & 0x2) + +#define MSR_AMD64_MC0_MASK 0xc0010044 + +#define MSR_IA32_MCx_CTL(x) (MSR_IA32_MC0_CTL + 4*(x)) +#define MSR_IA32_MCx_STATUS(x) (MSR_IA32_MC0_STATUS + 4*(x)) +#define MSR_IA32_MCx_ADDR(x) (MSR_IA32_MC0_ADDR + 4*(x)) +#define MSR_IA32_MCx_MISC(x) (MSR_IA32_MC0_MISC + 4*(x)) + +#define MSR_AMD64_MCx_MASK(x) (MSR_AMD64_MC0_MASK + (x)) + +/* These are consecutive and not in the normal 4er MCE bank block */ +#define MSR_IA32_MC0_CTL2 0x00000280 +#define MSR_IA32_MCx_CTL2(x) (MSR_IA32_MC0_CTL2 + (x)) + +#define MSR_P6_PERFCTR0 0x000000c1 +#define MSR_P6_PERFCTR1 0x000000c2 +#define MSR_P6_EVNTSEL0 0x00000186 +#define MSR_P6_EVNTSEL1 0x00000187 + +#define MSR_KNC_PERFCTR0 0x00000020 +#define MSR_KNC_PERFCTR1 0x00000021 +#define MSR_KNC_EVNTSEL0 0x00000028 +#define MSR_KNC_EVNTSEL1 0x00000029 + +/* Alternative perfctr range with full access. */ +#define MSR_IA32_PMC0 0x000004c1 + +/* AMD64 MSRs. Not complete. See the architecture manual for a more + complete list. */ + +#define MSR_AMD64_PATCH_LEVEL 0x0000008b +#define MSR_AMD64_TSC_RATIO 0xc0000104 +#define MSR_AMD64_NB_CFG 0xc001001f +#define MSR_AMD64_PATCH_LOADER 0xc0010020 +#define MSR_AMD64_OSVW_ID_LENGTH 0xc0010140 +#define MSR_AMD64_OSVW_STATUS 0xc0010141 +#define MSR_AMD64_LS_CFG 0xc0011020 +#define MSR_AMD64_DC_CFG 0xc0011022 +#define MSR_AMD64_BU_CFG2 0xc001102a +#define MSR_AMD64_IBSFETCHCTL 0xc0011030 +#define MSR_AMD64_IBSFETCHLINAD 0xc0011031 +#define MSR_AMD64_IBSFETCHPHYSAD 0xc0011032 +#define MSR_AMD64_IBSFETCH_REG_COUNT 3 +#define MSR_AMD64_IBSFETCH_REG_MASK ((1UL< +#include + +/* Dumps the current stack trace to stderr. */ +static void __attribute__((noinline)) test_dump_stack(void); +static void test_dump_stack(void) +{ + /* + * Build and run this command: + * + * addr2line -s -e /proc/$PPID/exe -fpai {backtrace addresses} | \ + * grep -v test_dump_stack | cat -n 1>&2 + * + * Note that the spacing is different and there's no newline. + */ + size_t i; + size_t n = 20; + void *stack[n]; + const char *addr2line = "addr2line -s -e /proc/$PPID/exe -fpai"; + const char *pipeline = "|cat -n 1>&2"; + char cmd[strlen(addr2line) + strlen(pipeline) + + /* N bytes per addr * 2 digits per byte + 1 space per addr: */ + n * (((sizeof(void *)) * 2) + 1) + + /* Null terminator: */ + 1]; + char *c; + + n = backtrace(stack, n); + c = &cmd[0]; + c += sprintf(c, "%s", addr2line); + /* + * Skip the first 3 frames: backtrace, test_dump_stack, and + * test_assert. We hope that backtrace isn't inlined and the other two + * we've declared noinline. + */ + for (i = 2; i < n; i++) + c += sprintf(c, " %lx", ((unsigned long) stack[i]) - 1); + c += sprintf(c, "%s", pipeline); +#pragma GCC diagnostic push +#pragma GCC diagnostic ignored "-Wunused-result" + system(cmd); +#pragma GCC diagnostic pop +} + +static pid_t gettid(void) +{ + return syscall(SYS_gettid); +} + +void __attribute__((noinline)) +test_assert(bool exp, const char *exp_str, + const char *file, unsigned int line, const char *fmt, ...) +{ + va_list ap; + + if (!(exp)) { + va_start(ap, fmt); + + fprintf(stderr, "==== Test Assertion Failure ====\n" + " %s:%u: %s\n" + " pid=%d tid=%d\n", + file, line, exp_str, getpid(), gettid()); + test_dump_stack(); + if (fmt) { + fputs(" ", stderr); + vfprintf(stderr, fmt, ap); + fputs("\n", stderr); + } + va_end(ap); + + exit(254); + } + + return; +} diff --git a/tools/testing/selftests/kvm/lib/kvm_util.c b/tools/testing/selftests/kvm/lib/kvm_util.c new file mode 100644 index 000000000000..7ca1bb40c498 --- /dev/null +++ b/tools/testing/selftests/kvm/lib/kvm_util.c @@ -0,0 +1,1480 @@ +/* + * tools/testing/selftests/kvm/lib/kvm_util.c + * + * Copyright (C) 2018, Google LLC. + * + * This work is licensed under the terms of the GNU GPL, version 2. + */ + +#include "test_util.h" +#include "kvm_util.h" +#include "kvm_util_internal.h" + +#include +#include +#include +#include + +#define KVM_DEV_PATH "/dev/kvm" + +#define KVM_UTIL_PGS_PER_HUGEPG 512 +#define KVM_UTIL_MIN_PADDR 0x2000 + +/* Aligns x up to the next multiple of size. Size must be a power of 2. */ +static void *align(void *x, size_t size) +{ + size_t mask = size - 1; + TEST_ASSERT(size != 0 && !(size & (size - 1)), + "size not a power of 2: %lu", size); + return (void *) (((size_t) x + mask) & ~mask); +} + +/* Capability + * + * Input Args: + * cap - Capability + * + * Output Args: None + * + * Return: + * On success, the Value corresponding to the capability (KVM_CAP_*) + * specified by the value of cap. On failure a TEST_ASSERT failure + * is produced. + * + * Looks up and returns the value corresponding to the capability + * (KVM_CAP_*) given by cap. + */ +int kvm_check_cap(long cap) +{ + int ret; + int kvm_fd; + + kvm_fd = open(KVM_DEV_PATH, O_RDONLY); + TEST_ASSERT(kvm_fd >= 0, "open %s failed, rc: %i errno: %i", + KVM_DEV_PATH, kvm_fd, errno); + + ret = ioctl(kvm_fd, KVM_CHECK_EXTENSION, cap); + TEST_ASSERT(ret != -1, "KVM_CHECK_EXTENSION IOCTL failed,\n" + " rc: %i errno: %i", ret, errno); + + close(kvm_fd); + + return ret; +} + +/* VM Create + * + * Input Args: + * mode - VM Mode (e.g. VM_MODE_FLAT48PG) + * phy_pages - Physical memory pages + * perm - permission + * + * Output Args: None + * + * Return: + * Pointer to opaque structure that describes the created VM. + * + * Creates a VM with the mode specified by mode (e.g. VM_MODE_FLAT48PG). + * When phy_pages is non-zero, a memory region of phy_pages physical pages + * is created and mapped starting at guest physical address 0. The file + * descriptor to control the created VM is created with the permissions + * given by perm (e.g. O_RDWR). + */ +struct kvm_vm *vm_create(enum vm_guest_mode mode, uint64_t phy_pages, int perm) +{ + struct kvm_vm *vm; + int kvm_fd; + + /* Allocate memory. */ + vm = calloc(1, sizeof(*vm)); + TEST_ASSERT(vm != NULL, "Insufficent Memory"); + + vm->mode = mode; + kvm_fd = open(KVM_DEV_PATH, perm); + TEST_ASSERT(kvm_fd >= 0, "open %s failed, rc: %i errno: %i", + KVM_DEV_PATH, kvm_fd, errno); + + /* Create VM. */ + vm->fd = ioctl(kvm_fd, KVM_CREATE_VM, NULL); + TEST_ASSERT(vm->fd >= 0, "KVM_CREATE_VM ioctl failed, " + "rc: %i errno: %i", vm->fd, errno); + + close(kvm_fd); + + /* Setup mode specific traits. */ + switch (vm->mode) { + case VM_MODE_FLAT48PG: + vm->page_size = 0x1000; + vm->page_shift = 12; + + /* Limit to 48-bit canonical virtual addresses. */ + vm->vpages_valid = sparsebit_alloc(); + sparsebit_set_num(vm->vpages_valid, + 0, (1ULL << (48 - 1)) >> vm->page_shift); + sparsebit_set_num(vm->vpages_valid, + (~((1ULL << (48 - 1)) - 1)) >> vm->page_shift, + (1ULL << (48 - 1)) >> vm->page_shift); + + /* Limit physical addresses to 52-bits. */ + vm->max_gfn = ((1ULL << 52) >> vm->page_shift) - 1; + break; + + default: + TEST_ASSERT(false, "Unknown guest mode, mode: 0x%x", mode); + } + + /* Allocate and setup memory for guest. */ + vm->vpages_mapped = sparsebit_alloc(); + if (phy_pages != 0) + vm_userspace_mem_region_add(vm, VM_MEM_SRC_ANONYMOUS, + 0, 0, phy_pages, 0); + + return vm; +} + +/* Userspace Memory Region Find + * + * Input Args: + * vm - Virtual Machine + * start - Starting VM physical address + * end - Ending VM physical address, inclusive. + * + * Output Args: None + * + * Return: + * Pointer to overlapping region, NULL if no such region. + * + * Searches for a region with any physical memory that overlaps with + * any portion of the guest physical addresses from start to end + * inclusive. If multiple overlapping regions exist, a pointer to any + * of the regions is returned. Null is returned only when no overlapping + * region exists. + */ +static struct userspace_mem_region *userspace_mem_region_find( + struct kvm_vm *vm, uint64_t start, uint64_t end) +{ + struct userspace_mem_region *region; + + for (region = vm->userspace_mem_region_head; region; + region = region->next) { + uint64_t existing_start = region->region.guest_phys_addr; + uint64_t existing_end = region->region.guest_phys_addr + + region->region.memory_size - 1; + if (start <= existing_end && end >= existing_start) + return region; + } + + return NULL; +} + +/* KVM Userspace Memory Region Find + * + * Input Args: + * vm - Virtual Machine + * start - Starting VM physical address + * end - Ending VM physical address, inclusive. + * + * Output Args: None + * + * Return: + * Pointer to overlapping region, NULL if no such region. + * + * Public interface to userspace_mem_region_find. Allows tests to look up + * the memslot datastructure for a given range of guest physical memory. + */ +struct kvm_userspace_memory_region * +kvm_userspace_memory_region_find(struct kvm_vm *vm, uint64_t start, + uint64_t end) +{ + struct userspace_mem_region *region; + + region = userspace_mem_region_find(vm, start, end); + if (!region) + return NULL; + + return ®ion->region; +} + +/* VCPU Find + * + * Input Args: + * vm - Virtual Machine + * vcpuid - VCPU ID + * + * Output Args: None + * + * Return: + * Pointer to VCPU structure + * + * Locates a vcpu structure that describes the VCPU specified by vcpuid and + * returns a pointer to it. Returns NULL if the VM doesn't contain a VCPU + * for the specified vcpuid. + */ +struct vcpu *vcpu_find(struct kvm_vm *vm, + uint32_t vcpuid) +{ + struct vcpu *vcpup; + + for (vcpup = vm->vcpu_head; vcpup; vcpup = vcpup->next) { + if (vcpup->id == vcpuid) + return vcpup; + } + + return NULL; +} + +/* VM VCPU Remove + * + * Input Args: + * vm - Virtual Machine + * vcpuid - VCPU ID + * + * Output Args: None + * + * Return: None, TEST_ASSERT failures for all error conditions + * + * Within the VM specified by vm, removes the VCPU given by vcpuid. + */ +static void vm_vcpu_rm(struct kvm_vm *vm, uint32_t vcpuid) +{ + struct vcpu *vcpu = vcpu_find(vm, vcpuid); + + int ret = close(vcpu->fd); + TEST_ASSERT(ret == 0, "Close of VCPU fd failed, rc: %i " + "errno: %i", ret, errno); + + if (vcpu->next) + vcpu->next->prev = vcpu->prev; + if (vcpu->prev) + vcpu->prev->next = vcpu->next; + else + vm->vcpu_head = vcpu->next; + free(vcpu); +} + + +/* Destroys and frees the VM pointed to by vmp. + */ +void kvm_vm_free(struct kvm_vm *vmp) +{ + int ret; + + if (vmp == NULL) + return; + + /* Free userspace_mem_regions. */ + while (vmp->userspace_mem_region_head) { + struct userspace_mem_region *region + = vmp->userspace_mem_region_head; + + region->region.memory_size = 0; + ret = ioctl(vmp->fd, KVM_SET_USER_MEMORY_REGION, + ®ion->region); + TEST_ASSERT(ret == 0, "KVM_SET_USER_MEMORY_REGION IOCTL failed, " + "rc: %i errno: %i", ret, errno); + + vmp->userspace_mem_region_head = region->next; + sparsebit_free(®ion->unused_phy_pages); + ret = munmap(region->mmap_start, region->mmap_size); + TEST_ASSERT(ret == 0, "munmap failed, rc: %i errno: %i", + ret, errno); + + free(region); + } + + /* Free VCPUs. */ + while (vmp->vcpu_head) + vm_vcpu_rm(vmp, vmp->vcpu_head->id); + + /* Free sparsebit arrays. */ + sparsebit_free(&vmp->vpages_valid); + sparsebit_free(&vmp->vpages_mapped); + + /* Close file descriptor for the VM. */ + ret = close(vmp->fd); + TEST_ASSERT(ret == 0, "Close of vm fd failed,\n" + " vmp->fd: %i rc: %i errno: %i", vmp->fd, ret, errno); + + /* Free the structure describing the VM. */ + free(vmp); +} + +/* Memory Compare, host virtual to guest virtual + * + * Input Args: + * hva - Starting host virtual address + * vm - Virtual Machine + * gva - Starting guest virtual address + * len - number of bytes to compare + * + * Output Args: None + * + * Input/Output Args: None + * + * Return: + * Returns 0 if the bytes starting at hva for a length of len + * are equal the guest virtual bytes starting at gva. Returns + * a value < 0, if bytes at hva are less than those at gva. + * Otherwise a value > 0 is returned. + * + * Compares the bytes starting at the host virtual address hva, for + * a length of len, to the guest bytes starting at the guest virtual + * address given by gva. + */ +int kvm_memcmp_hva_gva(void *hva, + struct kvm_vm *vm, vm_vaddr_t gva, size_t len) +{ + size_t amt; + + /* Compare a batch of bytes until either a match is found + * or all the bytes have been compared. + */ + for (uintptr_t offset = 0; offset < len; offset += amt) { + uintptr_t ptr1 = (uintptr_t)hva + offset; + + /* Determine host address for guest virtual address + * at offset. + */ + uintptr_t ptr2 = (uintptr_t)addr_gva2hva(vm, gva + offset); + + /* Determine amount to compare on this pass. + * Don't allow the comparsion to cross a page boundary. + */ + amt = len - offset; + if ((ptr1 >> vm->page_shift) != ((ptr1 + amt) >> vm->page_shift)) + amt = vm->page_size - (ptr1 % vm->page_size); + if ((ptr2 >> vm->page_shift) != ((ptr2 + amt) >> vm->page_shift)) + amt = vm->page_size - (ptr2 % vm->page_size); + + assert((ptr1 >> vm->page_shift) == ((ptr1 + amt - 1) >> vm->page_shift)); + assert((ptr2 >> vm->page_shift) == ((ptr2 + amt - 1) >> vm->page_shift)); + + /* Perform the comparison. If there is a difference + * return that result to the caller, otherwise need + * to continue on looking for a mismatch. + */ + int ret = memcmp((void *)ptr1, (void *)ptr2, amt); + if (ret != 0) + return ret; + } + + /* No mismatch found. Let the caller know the two memory + * areas are equal. + */ + return 0; +} + +/* Allocate an instance of struct kvm_cpuid2 + * + * Input Args: None + * + * Output Args: None + * + * Return: A pointer to the allocated struct. The caller is responsible + * for freeing this struct. + * + * Since kvm_cpuid2 uses a 0-length array to allow a the size of the + * array to be decided at allocation time, allocation is slightly + * complicated. This function uses a reasonable default length for + * the array and performs the appropriate allocation. + */ +struct kvm_cpuid2 *allocate_kvm_cpuid2(void) +{ + struct kvm_cpuid2 *cpuid; + int nent = 100; + size_t size; + + size = sizeof(*cpuid); + size += nent * sizeof(struct kvm_cpuid_entry2); + cpuid = malloc(size); + if (!cpuid) { + perror("malloc"); + abort(); + } + + cpuid->nent = nent; + + return cpuid; +} + +/* KVM Supported CPUID Get + * + * Input Args: None + * + * Output Args: + * cpuid - The supported KVM CPUID + * + * Return: void + * + * Get the guest CPUID supported by KVM. + */ +void kvm_get_supported_cpuid(struct kvm_cpuid2 *cpuid) +{ + int ret; + int kvm_fd; + + kvm_fd = open(KVM_DEV_PATH, O_RDONLY); + TEST_ASSERT(kvm_fd >= 0, "open %s failed, rc: %i errno: %i", + KVM_DEV_PATH, kvm_fd, errno); + + ret = ioctl(kvm_fd, KVM_GET_SUPPORTED_CPUID, cpuid); + TEST_ASSERT(ret == 0, "KVM_GET_SUPPORTED_CPUID failed %d %d\n", + ret, errno); + + close(kvm_fd); +} + +/* Locate a cpuid entry. + * + * Input Args: + * cpuid: The cpuid. + * function: The function of the cpuid entry to find. + * + * Output Args: None + * + * Return: A pointer to the cpuid entry. Never returns NULL. + */ +struct kvm_cpuid_entry2 * +find_cpuid_index_entry(struct kvm_cpuid2 *cpuid, uint32_t function, + uint32_t index) +{ + struct kvm_cpuid_entry2 *entry = NULL; + int i; + + for (i = 0; i < cpuid->nent; i++) { + if (cpuid->entries[i].function == function && + cpuid->entries[i].index == index) { + entry = &cpuid->entries[i]; + break; + } + } + + TEST_ASSERT(entry, "Guest CPUID entry not found: (EAX=%x, ECX=%x).", + function, index); + return entry; +} + +/* VM Userspace Memory Region Add + * + * Input Args: + * vm - Virtual Machine + * backing_src - Storage source for this region. + * NULL to use anonymous memory. + * guest_paddr - Starting guest physical address + * slot - KVM region slot + * npages - Number of physical pages + * flags - KVM memory region flags (e.g. KVM_MEM_LOG_DIRTY_PAGES) + * + * Output Args: None + * + * Return: None + * + * Allocates a memory area of the number of pages specified by npages + * and maps it to the VM specified by vm, at a starting physical address + * given by guest_paddr. The region is created with a KVM region slot + * given by slot, which must be unique and < KVM_MEM_SLOTS_NUM. The + * region is created with the flags given by flags. + */ +void vm_userspace_mem_region_add(struct kvm_vm *vm, + enum vm_mem_backing_src_type src_type, + uint64_t guest_paddr, uint32_t slot, uint64_t npages, + uint32_t flags) +{ + int ret; + unsigned long pmem_size = 0; + struct userspace_mem_region *region; + size_t huge_page_size = KVM_UTIL_PGS_PER_HUGEPG * vm->page_size; + + TEST_ASSERT((guest_paddr % vm->page_size) == 0, "Guest physical " + "address not on a page boundary.\n" + " guest_paddr: 0x%lx vm->page_size: 0x%x", + guest_paddr, vm->page_size); + TEST_ASSERT((((guest_paddr >> vm->page_shift) + npages) - 1) + <= vm->max_gfn, "Physical range beyond maximum " + "supported physical address,\n" + " guest_paddr: 0x%lx npages: 0x%lx\n" + " vm->max_gfn: 0x%lx vm->page_size: 0x%x", + guest_paddr, npages, vm->max_gfn, vm->page_size); + + /* Confirm a mem region with an overlapping address doesn't + * already exist. + */ + region = (struct userspace_mem_region *) userspace_mem_region_find( + vm, guest_paddr, guest_paddr + npages * vm->page_size); + if (region != NULL) + TEST_ASSERT(false, "overlapping userspace_mem_region already " + "exists\n" + " requested guest_paddr: 0x%lx npages: 0x%lx " + "page_size: 0x%x\n" + " existing guest_paddr: 0x%lx size: 0x%lx", + guest_paddr, npages, vm->page_size, + (uint64_t) region->region.guest_phys_addr, + (uint64_t) region->region.memory_size); + + /* Confirm no region with the requested slot already exists. */ + for (region = vm->userspace_mem_region_head; region; + region = region->next) { + if (region->region.slot == slot) + break; + if ((guest_paddr <= (region->region.guest_phys_addr + + region->region.memory_size)) + && ((guest_paddr + npages * vm->page_size) + >= region->region.guest_phys_addr)) + break; + } + if (region != NULL) + TEST_ASSERT(false, "A mem region with the requested slot " + "or overlapping physical memory range already exists.\n" + " requested slot: %u paddr: 0x%lx npages: 0x%lx\n" + " existing slot: %u paddr: 0x%lx size: 0x%lx", + slot, guest_paddr, npages, + region->region.slot, + (uint64_t) region->region.guest_phys_addr, + (uint64_t) region->region.memory_size); + + /* Allocate and initialize new mem region structure. */ + region = calloc(1, sizeof(*region)); + TEST_ASSERT(region != NULL, "Insufficient Memory"); + region->mmap_size = npages * vm->page_size; + + /* Enough memory to align up to a huge page. */ + if (src_type == VM_MEM_SRC_ANONYMOUS_THP) + region->mmap_size += huge_page_size; + region->mmap_start = mmap(NULL, region->mmap_size, + PROT_READ | PROT_WRITE, + MAP_PRIVATE | MAP_ANONYMOUS + | (src_type == VM_MEM_SRC_ANONYMOUS_HUGETLB ? MAP_HUGETLB : 0), + -1, 0); + TEST_ASSERT(region->mmap_start != MAP_FAILED, + "test_malloc failed, mmap_start: %p errno: %i", + region->mmap_start, errno); + + /* Align THP allocation up to start of a huge page. */ + region->host_mem = align(region->mmap_start, + src_type == VM_MEM_SRC_ANONYMOUS_THP ? huge_page_size : 1); + + /* As needed perform madvise */ + if (src_type == VM_MEM_SRC_ANONYMOUS || src_type == VM_MEM_SRC_ANONYMOUS_THP) { + ret = madvise(region->host_mem, npages * vm->page_size, + src_type == VM_MEM_SRC_ANONYMOUS ? MADV_NOHUGEPAGE : MADV_HUGEPAGE); + TEST_ASSERT(ret == 0, "madvise failed,\n" + " addr: %p\n" + " length: 0x%lx\n" + " src_type: %x", + region->host_mem, npages * vm->page_size, src_type); + } + + region->unused_phy_pages = sparsebit_alloc(); + sparsebit_set_num(region->unused_phy_pages, + guest_paddr >> vm->page_shift, npages); + region->region.slot = slot; + region->region.flags = flags; + region->region.guest_phys_addr = guest_paddr; + region->region.memory_size = npages * vm->page_size; + region->region.userspace_addr = (uintptr_t) region->host_mem; + ret = ioctl(vm->fd, KVM_SET_USER_MEMORY_REGION, ®ion->region); + TEST_ASSERT(ret == 0, "KVM_SET_USER_MEMORY_REGION IOCTL failed,\n" + " rc: %i errno: %i\n" + " slot: %u flags: 0x%x\n" + " guest_phys_addr: 0x%lx size: 0x%lx", + ret, errno, slot, flags, + guest_paddr, (uint64_t) region->region.memory_size); + + /* Add to linked-list of memory regions. */ + if (vm->userspace_mem_region_head) + vm->userspace_mem_region_head->prev = region; + region->next = vm->userspace_mem_region_head; + vm->userspace_mem_region_head = region; +} + +/* Memslot to region + * + * Input Args: + * vm - Virtual Machine + * memslot - KVM memory slot ID + * + * Output Args: None + * + * Return: + * Pointer to memory region structure that describe memory region + * using kvm memory slot ID given by memslot. TEST_ASSERT failure + * on error (e.g. currently no memory region using memslot as a KVM + * memory slot ID). + */ +static struct userspace_mem_region *memslot2region(struct kvm_vm *vm, + uint32_t memslot) +{ + struct userspace_mem_region *region; + + for (region = vm->userspace_mem_region_head; region; + region = region->next) { + if (region->region.slot == memslot) + break; + } + if (region == NULL) { + fprintf(stderr, "No mem region with the requested slot found,\n" + " requested slot: %u\n", memslot); + fputs("---- vm dump ----\n", stderr); + vm_dump(stderr, vm, 2); + TEST_ASSERT(false, "Mem region not found"); + } + + return region; +} + +/* VM Memory Region Flags Set + * + * Input Args: + * vm - Virtual Machine + * flags - Starting guest physical address + * + * Output Args: None + * + * Return: None + * + * Sets the flags of the memory region specified by the value of slot, + * to the values given by flags. + */ +void vm_mem_region_set_flags(struct kvm_vm *vm, uint32_t slot, uint32_t flags) +{ + int ret; + struct userspace_mem_region *region; + + /* Locate memory region. */ + region = memslot2region(vm, slot); + + region->region.flags = flags; + + ret = ioctl(vm->fd, KVM_SET_USER_MEMORY_REGION, ®ion->region); + + TEST_ASSERT(ret == 0, "KVM_SET_USER_MEMORY_REGION IOCTL failed,\n" + " rc: %i errno: %i slot: %u flags: 0x%x", + ret, errno, slot, flags); +} + +/* VCPU mmap Size + * + * Input Args: None + * + * Output Args: None + * + * Return: + * Size of VCPU state + * + * Returns the size of the structure pointed to by the return value + * of vcpu_state(). + */ +static int vcpu_mmap_sz(void) +{ + int dev_fd, ret; + + dev_fd = open(KVM_DEV_PATH, O_RDONLY); + TEST_ASSERT(dev_fd >= 0, "%s open %s failed, rc: %i errno: %i", + __func__, KVM_DEV_PATH, dev_fd, errno); + + ret = ioctl(dev_fd, KVM_GET_VCPU_MMAP_SIZE, NULL); + TEST_ASSERT(ret >= sizeof(struct kvm_run), + "%s KVM_GET_VCPU_MMAP_SIZE ioctl failed, rc: %i errno: %i", + __func__, ret, errno); + + close(dev_fd); + + return ret; +} + +/* VM VCPU Add + * + * Input Args: + * vm - Virtual Machine + * vcpuid - VCPU ID + * + * Output Args: None + * + * Return: None + * + * Creates and adds to the VM specified by vm and virtual CPU with + * the ID given by vcpuid. + */ +void vm_vcpu_add(struct kvm_vm *vm, uint32_t vcpuid) +{ + struct vcpu *vcpu; + + /* Confirm a vcpu with the specified id doesn't already exist. */ + vcpu = vcpu_find(vm, vcpuid); + if (vcpu != NULL) + TEST_ASSERT(false, "vcpu with the specified id " + "already exists,\n" + " requested vcpuid: %u\n" + " existing vcpuid: %u state: %p", + vcpuid, vcpu->id, vcpu->state); + + /* Allocate and initialize new vcpu structure. */ + vcpu = calloc(1, sizeof(*vcpu)); + TEST_ASSERT(vcpu != NULL, "Insufficient Memory"); + vcpu->id = vcpuid; + vcpu->fd = ioctl(vm->fd, KVM_CREATE_VCPU, vcpuid); + TEST_ASSERT(vcpu->fd >= 0, "KVM_CREATE_VCPU failed, rc: %i errno: %i", + vcpu->fd, errno); + + TEST_ASSERT(vcpu_mmap_sz() >= sizeof(*vcpu->state), "vcpu mmap size " + "smaller than expected, vcpu_mmap_sz: %i expected_min: %zi", + vcpu_mmap_sz(), sizeof(*vcpu->state)); + vcpu->state = (struct kvm_run *) mmap(NULL, sizeof(*vcpu->state), + PROT_READ | PROT_WRITE, MAP_SHARED, vcpu->fd, 0); + TEST_ASSERT(vcpu->state != MAP_FAILED, "mmap vcpu_state failed, " + "vcpu id: %u errno: %i", vcpuid, errno); + + /* Add to linked-list of VCPUs. */ + if (vm->vcpu_head) + vm->vcpu_head->prev = vcpu; + vcpu->next = vm->vcpu_head; + vm->vcpu_head = vcpu; + + vcpu_setup(vm, vcpuid); +} + +/* VM Virtual Address Unused Gap + * + * Input Args: + * vm - Virtual Machine + * sz - Size (bytes) + * vaddr_min - Minimum Virtual Address + * + * Output Args: None + * + * Return: + * Lowest virtual address at or below vaddr_min, with at least + * sz unused bytes. TEST_ASSERT failure if no area of at least + * size sz is available. + * + * Within the VM specified by vm, locates the lowest starting virtual + * address >= vaddr_min, that has at least sz unallocated bytes. A + * TEST_ASSERT failure occurs for invalid input or no area of at least + * sz unallocated bytes >= vaddr_min is available. + */ +static vm_vaddr_t vm_vaddr_unused_gap(struct kvm_vm *vm, size_t sz, + vm_vaddr_t vaddr_min) +{ + uint64_t pages = (sz + vm->page_size - 1) >> vm->page_shift; + + /* Determine lowest permitted virtual page index. */ + uint64_t pgidx_start = (vaddr_min + vm->page_size - 1) >> vm->page_shift; + if ((pgidx_start * vm->page_size) < vaddr_min) + goto no_va_found; + + /* Loop over section with enough valid virtual page indexes. */ + if (!sparsebit_is_set_num(vm->vpages_valid, + pgidx_start, pages)) + pgidx_start = sparsebit_next_set_num(vm->vpages_valid, + pgidx_start, pages); + do { + /* + * Are there enough unused virtual pages available at + * the currently proposed starting virtual page index. + * If not, adjust proposed starting index to next + * possible. + */ + if (sparsebit_is_clear_num(vm->vpages_mapped, + pgidx_start, pages)) + goto va_found; + pgidx_start = sparsebit_next_clear_num(vm->vpages_mapped, + pgidx_start, pages); + if (pgidx_start == 0) + goto no_va_found; + + /* + * If needed, adjust proposed starting virtual address, + * to next range of valid virtual addresses. + */ + if (!sparsebit_is_set_num(vm->vpages_valid, + pgidx_start, pages)) { + pgidx_start = sparsebit_next_set_num( + vm->vpages_valid, pgidx_start, pages); + if (pgidx_start == 0) + goto no_va_found; + } + } while (pgidx_start != 0); + +no_va_found: + TEST_ASSERT(false, "No vaddr of specified pages available, " + "pages: 0x%lx", pages); + + /* NOT REACHED */ + return -1; + +va_found: + TEST_ASSERT(sparsebit_is_set_num(vm->vpages_valid, + pgidx_start, pages), + "Unexpected, invalid virtual page index range,\n" + " pgidx_start: 0x%lx\n" + " pages: 0x%lx", + pgidx_start, pages); + TEST_ASSERT(sparsebit_is_clear_num(vm->vpages_mapped, + pgidx_start, pages), + "Unexpected, pages already mapped,\n" + " pgidx_start: 0x%lx\n" + " pages: 0x%lx", + pgidx_start, pages); + + return pgidx_start * vm->page_size; +} + +/* VM Virtual Address Allocate + * + * Input Args: + * vm - Virtual Machine + * sz - Size in bytes + * vaddr_min - Minimum starting virtual address + * data_memslot - Memory region slot for data pages + * pgd_memslot - Memory region slot for new virtual translation tables + * + * Output Args: None + * + * Return: + * Starting guest virtual address + * + * Allocates at least sz bytes within the virtual address space of the vm + * given by vm. The allocated bytes are mapped to a virtual address >= + * the address given by vaddr_min. Note that each allocation uses a + * a unique set of pages, with the minimum real allocation being at least + * a page. + */ +vm_vaddr_t vm_vaddr_alloc(struct kvm_vm *vm, size_t sz, vm_vaddr_t vaddr_min, + uint32_t data_memslot, uint32_t pgd_memslot) +{ + uint64_t pages = (sz >> vm->page_shift) + ((sz % vm->page_size) != 0); + + virt_pgd_alloc(vm, pgd_memslot); + + /* Find an unused range of virtual page addresses of at least + * pages in length. + */ + vm_vaddr_t vaddr_start = vm_vaddr_unused_gap(vm, sz, vaddr_min); + + /* Map the virtual pages. */ + for (vm_vaddr_t vaddr = vaddr_start; pages > 0; + pages--, vaddr += vm->page_size) { + vm_paddr_t paddr; + + paddr = vm_phy_page_alloc(vm, KVM_UTIL_MIN_PADDR, data_memslot); + + virt_pg_map(vm, vaddr, paddr, pgd_memslot); + + sparsebit_set(vm->vpages_mapped, + vaddr >> vm->page_shift); + } + + return vaddr_start; +} + +/* Address VM Physical to Host Virtual + * + * Input Args: + * vm - Virtual Machine + * gpa - VM physical address + * + * Output Args: None + * + * Return: + * Equivalent host virtual address + * + * Locates the memory region containing the VM physical address given + * by gpa, within the VM given by vm. When found, the host virtual + * address providing the memory to the vm physical address is returned. + * A TEST_ASSERT failure occurs if no region containing gpa exists. + */ +void *addr_gpa2hva(struct kvm_vm *vm, vm_paddr_t gpa) +{ + struct userspace_mem_region *region; + for (region = vm->userspace_mem_region_head; region; + region = region->next) { + if ((gpa >= region->region.guest_phys_addr) + && (gpa <= (region->region.guest_phys_addr + + region->region.memory_size - 1))) + return (void *) ((uintptr_t) region->host_mem + + (gpa - region->region.guest_phys_addr)); + } + + TEST_ASSERT(false, "No vm physical memory at 0x%lx", gpa); + return NULL; +} + +/* Address Host Virtual to VM Physical + * + * Input Args: + * vm - Virtual Machine + * hva - Host virtual address + * + * Output Args: None + * + * Return: + * Equivalent VM physical address + * + * Locates the memory region containing the host virtual address given + * by hva, within the VM given by vm. When found, the equivalent + * VM physical address is returned. A TEST_ASSERT failure occurs if no + * region containing hva exists. + */ +vm_paddr_t addr_hva2gpa(struct kvm_vm *vm, void *hva) +{ + struct userspace_mem_region *region; + for (region = vm->userspace_mem_region_head; region; + region = region->next) { + if ((hva >= region->host_mem) + && (hva <= (region->host_mem + + region->region.memory_size - 1))) + return (vm_paddr_t) ((uintptr_t) + region->region.guest_phys_addr + + (hva - (uintptr_t) region->host_mem)); + } + + TEST_ASSERT(false, "No mapping to a guest physical address, " + "hva: %p", hva); + return -1; +} + +/* VM Create IRQ Chip + * + * Input Args: + * vm - Virtual Machine + * + * Output Args: None + * + * Return: None + * + * Creates an interrupt controller chip for the VM specified by vm. + */ +void vm_create_irqchip(struct kvm_vm *vm) +{ + int ret; + + ret = ioctl(vm->fd, KVM_CREATE_IRQCHIP, 0); + TEST_ASSERT(ret == 0, "KVM_CREATE_IRQCHIP IOCTL failed, " + "rc: %i errno: %i", ret, errno); +} + +/* VM VCPU State + * + * Input Args: + * vm - Virtual Machine + * vcpuid - VCPU ID + * + * Output Args: None + * + * Return: + * Pointer to structure that describes the state of the VCPU. + * + * Locates and returns a pointer to a structure that describes the + * state of the VCPU with the given vcpuid. + */ +struct kvm_run *vcpu_state(struct kvm_vm *vm, uint32_t vcpuid) +{ + struct vcpu *vcpu = vcpu_find(vm, vcpuid); + TEST_ASSERT(vcpu != NULL, "vcpu not found, vcpuid: %u", vcpuid); + + return vcpu->state; +} + +/* VM VCPU Run + * + * Input Args: + * vm - Virtual Machine + * vcpuid - VCPU ID + * + * Output Args: None + * + * Return: None + * + * Switch to executing the code for the VCPU given by vcpuid, within the VM + * given by vm. + */ +void vcpu_run(struct kvm_vm *vm, uint32_t vcpuid) +{ + int ret = _vcpu_run(vm, vcpuid); + TEST_ASSERT(ret == 0, "KVM_RUN IOCTL failed, " + "rc: %i errno: %i", ret, errno); +} + +int _vcpu_run(struct kvm_vm *vm, uint32_t vcpuid) +{ + struct vcpu *vcpu = vcpu_find(vm, vcpuid); + int rc; + + TEST_ASSERT(vcpu != NULL, "vcpu not found, vcpuid: %u", vcpuid); + do { + rc = ioctl(vcpu->fd, KVM_RUN, NULL); + } while (rc == -1 && errno == EINTR); + return rc; +} + +/* VM VCPU Set MP State + * + * Input Args: + * vm - Virtual Machine + * vcpuid - VCPU ID + * mp_state - mp_state to be set + * + * Output Args: None + * + * Return: None + * + * Sets the MP state of the VCPU given by vcpuid, to the state given + * by mp_state. + */ +void vcpu_set_mp_state(struct kvm_vm *vm, uint32_t vcpuid, + struct kvm_mp_state *mp_state) +{ + struct vcpu *vcpu = vcpu_find(vm, vcpuid); + int ret; + + TEST_ASSERT(vcpu != NULL, "vcpu not found, vcpuid: %u", vcpuid); + + ret = ioctl(vcpu->fd, KVM_SET_MP_STATE, mp_state); + TEST_ASSERT(ret == 0, "KVM_SET_MP_STATE IOCTL failed, " + "rc: %i errno: %i", ret, errno); +} + +/* VM VCPU Regs Get + * + * Input Args: + * vm - Virtual Machine + * vcpuid - VCPU ID + * + * Output Args: + * regs - current state of VCPU regs + * + * Return: None + * + * Obtains the current register state for the VCPU specified by vcpuid + * and stores it at the location given by regs. + */ +void vcpu_regs_get(struct kvm_vm *vm, + uint32_t vcpuid, struct kvm_regs *regs) +{ + struct vcpu *vcpu = vcpu_find(vm, vcpuid); + int ret; + + TEST_ASSERT(vcpu != NULL, "vcpu not found, vcpuid: %u", vcpuid); + + /* Get the regs. */ + ret = ioctl(vcpu->fd, KVM_GET_REGS, regs); + TEST_ASSERT(ret == 0, "KVM_GET_REGS failed, rc: %i errno: %i", + ret, errno); +} + +/* VM VCPU Regs Set + * + * Input Args: + * vm - Virtual Machine + * vcpuid - VCPU ID + * regs - Values to set VCPU regs to + * + * Output Args: None + * + * Return: None + * + * Sets the regs of the VCPU specified by vcpuid to the values + * given by regs. + */ +void vcpu_regs_set(struct kvm_vm *vm, + uint32_t vcpuid, struct kvm_regs *regs) +{ + struct vcpu *vcpu = vcpu_find(vm, vcpuid); + int ret; + + TEST_ASSERT(vcpu != NULL, "vcpu not found, vcpuid: %u", vcpuid); + + /* Set the regs. */ + ret = ioctl(vcpu->fd, KVM_SET_REGS, regs); + TEST_ASSERT(ret == 0, "KVM_SET_REGS failed, rc: %i errno: %i", + ret, errno); +} + +void vcpu_events_get(struct kvm_vm *vm, uint32_t vcpuid, + struct kvm_vcpu_events *events) +{ + struct vcpu *vcpu = vcpu_find(vm, vcpuid); + int ret; + + TEST_ASSERT(vcpu != NULL, "vcpu not found, vcpuid: %u", vcpuid); + + /* Get the regs. */ + ret = ioctl(vcpu->fd, KVM_GET_VCPU_EVENTS, events); + TEST_ASSERT(ret == 0, "KVM_GET_VCPU_EVENTS, failed, rc: %i errno: %i", + ret, errno); +} + +void vcpu_events_set(struct kvm_vm *vm, uint32_t vcpuid, + struct kvm_vcpu_events *events) +{ + struct vcpu *vcpu = vcpu_find(vm, vcpuid); + int ret; + + TEST_ASSERT(vcpu != NULL, "vcpu not found, vcpuid: %u", vcpuid); + + /* Set the regs. */ + ret = ioctl(vcpu->fd, KVM_SET_VCPU_EVENTS, events); + TEST_ASSERT(ret == 0, "KVM_SET_VCPU_EVENTS, failed, rc: %i errno: %i", + ret, errno); +} + +/* VM VCPU Args Set + * + * Input Args: + * vm - Virtual Machine + * vcpuid - VCPU ID + * num - number of arguments + * ... - arguments, each of type uint64_t + * + * Output Args: None + * + * Return: None + * + * Sets the first num function input arguments to the values + * given as variable args. Each of the variable args is expected to + * be of type uint64_t. + */ +void vcpu_args_set(struct kvm_vm *vm, uint32_t vcpuid, unsigned int num, ...) +{ + va_list ap; + struct kvm_regs regs; + + TEST_ASSERT(num >= 1 && num <= 6, "Unsupported number of args,\n" + " num: %u\n", + num); + + va_start(ap, num); + vcpu_regs_get(vm, vcpuid, ®s); + + if (num >= 1) + regs.rdi = va_arg(ap, uint64_t); + + if (num >= 2) + regs.rsi = va_arg(ap, uint64_t); + + if (num >= 3) + regs.rdx = va_arg(ap, uint64_t); + + if (num >= 4) + regs.rcx = va_arg(ap, uint64_t); + + if (num >= 5) + regs.r8 = va_arg(ap, uint64_t); + + if (num >= 6) + regs.r9 = va_arg(ap, uint64_t); + + vcpu_regs_set(vm, vcpuid, ®s); + va_end(ap); +} + +/* VM VCPU System Regs Get + * + * Input Args: + * vm - Virtual Machine + * vcpuid - VCPU ID + * + * Output Args: + * sregs - current state of VCPU system regs + * + * Return: None + * + * Obtains the current system register state for the VCPU specified by + * vcpuid and stores it at the location given by sregs. + */ +void vcpu_sregs_get(struct kvm_vm *vm, + uint32_t vcpuid, struct kvm_sregs *sregs) +{ + struct vcpu *vcpu = vcpu_find(vm, vcpuid); + int ret; + + TEST_ASSERT(vcpu != NULL, "vcpu not found, vcpuid: %u", vcpuid); + + /* Get the regs. */ + /* Get the regs. */ + ret = ioctl(vcpu->fd, KVM_GET_SREGS, sregs); + TEST_ASSERT(ret == 0, "KVM_GET_SREGS failed, rc: %i errno: %i", + ret, errno); +} + +/* VM VCPU System Regs Set + * + * Input Args: + * vm - Virtual Machine + * vcpuid - VCPU ID + * sregs - Values to set VCPU system regs to + * + * Output Args: None + * + * Return: None + * + * Sets the system regs of the VCPU specified by vcpuid to the values + * given by sregs. + */ +void vcpu_sregs_set(struct kvm_vm *vm, + uint32_t vcpuid, struct kvm_sregs *sregs) +{ + int ret = _vcpu_sregs_set(vm, vcpuid, sregs); + TEST_ASSERT(ret == 0, "KVM_RUN IOCTL failed, " + "rc: %i errno: %i", ret, errno); +} + +int _vcpu_sregs_set(struct kvm_vm *vm, + uint32_t vcpuid, struct kvm_sregs *sregs) +{ + struct vcpu *vcpu = vcpu_find(vm, vcpuid); + int ret; + + TEST_ASSERT(vcpu != NULL, "vcpu not found, vcpuid: %u", vcpuid); + + /* Get the regs. */ + return ioctl(vcpu->fd, KVM_SET_SREGS, sregs); +} + +/* VCPU Ioctl + * + * Input Args: + * vm - Virtual Machine + * vcpuid - VCPU ID + * cmd - Ioctl number + * arg - Argument to pass to the ioctl + * + * Return: None + * + * Issues an arbitrary ioctl on a VCPU fd. + */ +void vcpu_ioctl(struct kvm_vm *vm, + uint32_t vcpuid, unsigned long cmd, void *arg) +{ + struct vcpu *vcpu = vcpu_find(vm, vcpuid); + int ret; + + TEST_ASSERT(vcpu != NULL, "vcpu not found, vcpuid: %u", vcpuid); + + ret = ioctl(vcpu->fd, cmd, arg); + TEST_ASSERT(ret == 0, "vcpu ioctl %lu failed, rc: %i errno: %i (%s)", + cmd, ret, errno, strerror(errno)); +} + +/* VM Ioctl + * + * Input Args: + * vm - Virtual Machine + * cmd - Ioctl number + * arg - Argument to pass to the ioctl + * + * Return: None + * + * Issues an arbitrary ioctl on a VM fd. + */ +void vm_ioctl(struct kvm_vm *vm, unsigned long cmd, void *arg) +{ + int ret; + + ret = ioctl(vm->fd, cmd, arg); + TEST_ASSERT(ret == 0, "vm ioctl %lu failed, rc: %i errno: %i (%s)", + cmd, ret, errno, strerror(errno)); +} + +/* VM Dump + * + * Input Args: + * vm - Virtual Machine + * indent - Left margin indent amount + * + * Output Args: + * stream - Output FILE stream + * + * Return: None + * + * Dumps the current state of the VM given by vm, to the FILE stream + * given by stream. + */ +void vm_dump(FILE *stream, struct kvm_vm *vm, uint8_t indent) +{ + struct userspace_mem_region *region; + struct vcpu *vcpu; + + fprintf(stream, "%*smode: 0x%x\n", indent, "", vm->mode); + fprintf(stream, "%*sfd: %i\n", indent, "", vm->fd); + fprintf(stream, "%*spage_size: 0x%x\n", indent, "", vm->page_size); + fprintf(stream, "%*sMem Regions:\n", indent, ""); + for (region = vm->userspace_mem_region_head; region; + region = region->next) { + fprintf(stream, "%*sguest_phys: 0x%lx size: 0x%lx " + "host_virt: %p\n", indent + 2, "", + (uint64_t) region->region.guest_phys_addr, + (uint64_t) region->region.memory_size, + region->host_mem); + fprintf(stream, "%*sunused_phy_pages: ", indent + 2, ""); + sparsebit_dump(stream, region->unused_phy_pages, 0); + } + fprintf(stream, "%*sMapped Virtual Pages:\n", indent, ""); + sparsebit_dump(stream, vm->vpages_mapped, indent + 2); + fprintf(stream, "%*spgd_created: %u\n", indent, "", + vm->pgd_created); + if (vm->pgd_created) { + fprintf(stream, "%*sVirtual Translation Tables:\n", + indent + 2, ""); + virt_dump(stream, vm, indent + 4); + } + fprintf(stream, "%*sVCPUs:\n", indent, ""); + for (vcpu = vm->vcpu_head; vcpu; vcpu = vcpu->next) + vcpu_dump(stream, vm, vcpu->id, indent + 2); +} + +/* VM VCPU Dump + * + * Input Args: + * vm - Virtual Machine + * vcpuid - VCPU ID + * indent - Left margin indent amount + * + * Output Args: + * stream - Output FILE stream + * + * Return: None + * + * Dumps the current state of the VCPU specified by vcpuid, within the VM + * given by vm, to the FILE stream given by stream. + */ +void vcpu_dump(FILE *stream, struct kvm_vm *vm, + uint32_t vcpuid, uint8_t indent) +{ + struct kvm_regs regs; + struct kvm_sregs sregs; + + fprintf(stream, "%*scpuid: %u\n", indent, "", vcpuid); + + fprintf(stream, "%*sregs:\n", indent + 2, ""); + vcpu_regs_get(vm, vcpuid, ®s); + regs_dump(stream, ®s, indent + 4); + + fprintf(stream, "%*ssregs:\n", indent + 2, ""); + vcpu_sregs_get(vm, vcpuid, &sregs); + sregs_dump(stream, &sregs, indent + 4); +} + +/* Known KVM exit reasons */ +static struct exit_reason { + unsigned int reason; + const char *name; +} exit_reasons_known[] = { + {KVM_EXIT_UNKNOWN, "UNKNOWN"}, + {KVM_EXIT_EXCEPTION, "EXCEPTION"}, + {KVM_EXIT_IO, "IO"}, + {KVM_EXIT_HYPERCALL, "HYPERCALL"}, + {KVM_EXIT_DEBUG, "DEBUG"}, + {KVM_EXIT_HLT, "HLT"}, + {KVM_EXIT_MMIO, "MMIO"}, + {KVM_EXIT_IRQ_WINDOW_OPEN, "IRQ_WINDOW_OPEN"}, + {KVM_EXIT_SHUTDOWN, "SHUTDOWN"}, + {KVM_EXIT_FAIL_ENTRY, "FAIL_ENTRY"}, + {KVM_EXIT_INTR, "INTR"}, + {KVM_EXIT_SET_TPR, "SET_TPR"}, + {KVM_EXIT_TPR_ACCESS, "TPR_ACCESS"}, + {KVM_EXIT_S390_SIEIC, "S390_SIEIC"}, + {KVM_EXIT_S390_RESET, "S390_RESET"}, + {KVM_EXIT_DCR, "DCR"}, + {KVM_EXIT_NMI, "NMI"}, + {KVM_EXIT_INTERNAL_ERROR, "INTERNAL_ERROR"}, + {KVM_EXIT_OSI, "OSI"}, + {KVM_EXIT_PAPR_HCALL, "PAPR_HCALL"}, +#ifdef KVM_EXIT_MEMORY_NOT_PRESENT + {KVM_EXIT_MEMORY_NOT_PRESENT, "MEMORY_NOT_PRESENT"}, +#endif +}; + +/* Exit Reason String + * + * Input Args: + * exit_reason - Exit reason + * + * Output Args: None + * + * Return: + * Constant string pointer describing the exit reason. + * + * Locates and returns a constant string that describes the KVM exit + * reason given by exit_reason. If no such string is found, a constant + * string of "Unknown" is returned. + */ +const char *exit_reason_str(unsigned int exit_reason) +{ + unsigned int n1; + + for (n1 = 0; n1 < ARRAY_SIZE(exit_reasons_known); n1++) { + if (exit_reason == exit_reasons_known[n1].reason) + return exit_reasons_known[n1].name; + } + + return "Unknown"; +} + +/* Physical Page Allocate + * + * Input Args: + * vm - Virtual Machine + * paddr_min - Physical address minimum + * memslot - Memory region to allocate page from + * + * Output Args: None + * + * Return: + * Starting physical address + * + * Within the VM specified by vm, locates an available physical page + * at or above paddr_min. If found, the page is marked as in use + * and its address is returned. A TEST_ASSERT failure occurs if no + * page is available at or above paddr_min. + */ +vm_paddr_t vm_phy_page_alloc(struct kvm_vm *vm, + vm_paddr_t paddr_min, uint32_t memslot) +{ + struct userspace_mem_region *region; + sparsebit_idx_t pg; + + TEST_ASSERT((paddr_min % vm->page_size) == 0, "Min physical address " + "not divisable by page size.\n" + " paddr_min: 0x%lx page_size: 0x%x", + paddr_min, vm->page_size); + + /* Locate memory region. */ + region = memslot2region(vm, memslot); + + /* Locate next available physical page at or above paddr_min. */ + pg = paddr_min >> vm->page_shift; + + if (!sparsebit_is_set(region->unused_phy_pages, pg)) { + pg = sparsebit_next_set(region->unused_phy_pages, pg); + if (pg == 0) { + fprintf(stderr, "No guest physical page available, " + "paddr_min: 0x%lx page_size: 0x%x memslot: %u", + paddr_min, vm->page_size, memslot); + fputs("---- vm dump ----\n", stderr); + vm_dump(stderr, vm, 2); + abort(); + } + } + + /* Specify page as in use and return its address. */ + sparsebit_clear(region->unused_phy_pages, pg); + + return pg * vm->page_size; +} + +/* Address Guest Virtual to Host Virtual + * + * Input Args: + * vm - Virtual Machine + * gva - VM virtual address + * + * Output Args: None + * + * Return: + * Equivalent host virtual address + */ +void *addr_gva2hva(struct kvm_vm *vm, vm_vaddr_t gva) +{ + return addr_gpa2hva(vm, addr_gva2gpa(vm, gva)); +} diff --git a/tools/testing/selftests/kvm/lib/kvm_util_internal.h b/tools/testing/selftests/kvm/lib/kvm_util_internal.h new file mode 100644 index 000000000000..a0bd1980c81c --- /dev/null +++ b/tools/testing/selftests/kvm/lib/kvm_util_internal.h @@ -0,0 +1,67 @@ +/* + * tools/testing/selftests/kvm/lib/kvm_util.c + * + * Copyright (C) 2018, Google LLC. + * + * This work is licensed under the terms of the GNU GPL, version 2. + */ + +#ifndef KVM_UTIL_INTERNAL_H +#define KVM_UTIL_INTERNAL_H 1 + +#include "sparsebit.h" + +#ifndef BITS_PER_BYTE +#define BITS_PER_BYTE 8 +#endif + +#ifndef BITS_PER_LONG +#define BITS_PER_LONG (BITS_PER_BYTE * sizeof(long)) +#endif + +#define DIV_ROUND_UP(n, d) (((n) + (d) - 1) / (d)) +#define BITS_TO_LONGS(nr) DIV_ROUND_UP(nr, BITS_PER_LONG) + +/* Concrete definition of struct kvm_vm. */ +struct userspace_mem_region { + struct userspace_mem_region *next, *prev; + struct kvm_userspace_memory_region region; + struct sparsebit *unused_phy_pages; + int fd; + off_t offset; + void *host_mem; + void *mmap_start; + size_t mmap_size; +}; + +struct vcpu { + struct vcpu *next, *prev; + uint32_t id; + int fd; + struct kvm_run *state; +}; + +struct kvm_vm { + int mode; + int fd; + unsigned int page_size; + unsigned int page_shift; + uint64_t max_gfn; + struct vcpu *vcpu_head; + struct userspace_mem_region *userspace_mem_region_head; + struct sparsebit *vpages_valid; + struct sparsebit *vpages_mapped; + bool pgd_created; + vm_paddr_t pgd; +}; + +struct vcpu *vcpu_find(struct kvm_vm *vm, + uint32_t vcpuid); +void vcpu_setup(struct kvm_vm *vm, int vcpuid); +void virt_dump(FILE *stream, struct kvm_vm *vm, uint8_t indent); +void regs_dump(FILE *stream, struct kvm_regs *regs, + uint8_t indent); +void sregs_dump(FILE *stream, struct kvm_sregs *sregs, + uint8_t indent); + +#endif diff --git a/tools/testing/selftests/kvm/lib/sparsebit.c b/tools/testing/selftests/kvm/lib/sparsebit.c new file mode 100644 index 000000000000..0c5cf3e0cb6f --- /dev/null +++ b/tools/testing/selftests/kvm/lib/sparsebit.c @@ -0,0 +1,2087 @@ +/* + * Sparse bit array + * + * Copyright (C) 2018, Google LLC. + * Copyright (C) 2018, Red Hat, Inc. (code style cleanup and fuzzing driver) + * + * This work is licensed under the terms of the GNU GPL, version 2. + * + * This library provides functions to support a memory efficient bit array, + * with an index size of 2^64. A sparsebit array is allocated through + * the use sparsebit_alloc() and free'd via sparsebit_free(), + * such as in the following: + * + * struct sparsebit *s; + * s = sparsebit_alloc(); + * sparsebit_free(&s); + * + * The struct sparsebit type resolves down to a struct sparsebit. + * Note that, sparsebit_free() takes a pointer to the sparsebit + * structure. This is so that sparsebit_free() is able to poison + * the pointer (e.g. set it to NULL) to the struct sparsebit before + * returning to the caller. + * + * Between the return of sparsebit_alloc() and the call of + * sparsebit_free(), there are multiple query and modifying operations + * that can be performed on the allocated sparsebit array. All of + * these operations take as a parameter the value returned from + * sparsebit_alloc() and most also take a bit index. Frequently + * used routines include: + * + * ---- Query Operations + * sparsebit_is_set(s, idx) + * sparsebit_is_clear(s, idx) + * sparsebit_any_set(s) + * sparsebit_first_set(s) + * sparsebit_next_set(s, prev_idx) + * + * ---- Modifying Operations + * sparsebit_set(s, idx) + * sparsebit_clear(s, idx) + * sparsebit_set_num(s, idx, num); + * sparsebit_clear_num(s, idx, num); + * + * A common operation, is to itterate over all the bits set in a test + * sparsebit array. This can be done via code with the following structure: + * + * sparsebit_idx_t idx; + * if (sparsebit_any_set(s)) { + * idx = sparsebit_first_set(s); + * do { + * ... + * idx = sparsebit_next_set(s, idx); + * } while (idx != 0); + * } + * + * The index of the first bit set needs to be obtained via + * sparsebit_first_set(), because sparsebit_next_set(), needs + * the index of the previously set. The sparsebit_idx_t type is + * unsigned, so there is no previous index before 0 that is available. + * Also, the call to sparsebit_first_set() is not made unless there + * is at least 1 bit in the array set. This is because sparsebit_first_set() + * aborts if sparsebit_first_set() is called with no bits set. + * It is the callers responsibility to assure that the + * sparsebit array has at least a single bit set before calling + * sparsebit_first_set(). + * + * ==== Implementation Overview ==== + * For the most part the internal implementation of sparsebit is + * opaque to the caller. One important implementation detail that the + * caller may need to be aware of is the spatial complexity of the + * implementation. This implementation of a sparsebit array is not + * only sparse, in that it uses memory proportional to the number of bits + * set. It is also efficient in memory usage when most of the bits are + * set. + * + * At a high-level the state of the bit settings are maintained through + * the use of a binary-search tree, where each node contains at least + * the following members: + * + * typedef uint64_t sparsebit_idx_t; + * typedef uint64_t sparsebit_num_t; + * + * sparsebit_idx_t idx; + * uint32_t mask; + * sparsebit_num_t num_after; + * + * The idx member contains the bit index of the first bit described by this + * node, while the mask member stores the setting of the first 32-bits. + * The setting of the bit at idx + n, where 0 <= n < 32, is located in the + * mask member at 1 << n. + * + * Nodes are sorted by idx and the bits described by two nodes will never + * overlap. The idx member is always aligned to the mask size, i.e. a + * multiple of 32. + * + * Beyond a typical implementation, the nodes in this implementation also + * contains a member named num_after. The num_after member holds the + * number of bits immediately after the mask bits that are contiguously set. + * The use of the num_after member allows this implementation to efficiently + * represent cases where most bits are set. For example, the case of all + * but the last two bits set, is represented by the following two nodes: + * + * node 0 - idx: 0x0 mask: 0xffffffff num_after: 0xffffffffffffffc0 + * node 1 - idx: 0xffffffffffffffe0 mask: 0x3fffffff num_after: 0 + * + * ==== Invariants ==== + * This implementation usses the following invariants: + * + * + Node are only used to represent bits that are set. + * Nodes with a mask of 0 and num_after of 0 are not allowed. + * + * + Sum of bits set in all the nodes is equal to the value of + * the struct sparsebit_pvt num_set member. + * + * + The setting of at least one bit is always described in a nodes + * mask (mask >= 1). + * + * + A node with all mask bits set only occurs when the last bit + * described by the previous node is not equal to this nodes + * starting index - 1. All such occurences of this condition are + * avoided by moving the setting of the nodes mask bits into + * the previous nodes num_after setting. + * + * + Node starting index is evenly divisable by the number of bits + * within a nodes mask member. + * + * + Nodes never represent a range of bits that wrap around the + * highest supported index. + * + * (idx + MASK_BITS + num_after - 1) <= ((sparsebit_idx_t) 0) - 1) + * + * As a consequence of the above, the num_after member of a node + * will always be <=: + * + * maximum_index - nodes_starting_index - number_of_mask_bits + * + * + Nodes within the binary search tree are sorted based on each + * nodes starting index. + * + * + The range of bits described by any two nodes do not overlap. The + * range of bits described by a single node is: + * + * start: node->idx + * end (inclusive): node->idx + MASK_BITS + node->num_after - 1; + * + * Note, at times these invariants are temporarily violated for a + * specific portion of the code. For example, when setting a mask + * bit, there is a small delay between when the mask bit is set and the + * value in the struct sparsebit_pvt num_set member is updated. Other + * temporary violations occur when node_split() is called with a specified + * index and assures that a node where its mask represents the bit + * at the specified index exists. At times to do this node_split() + * must split an existing node into two nodes or create a node that + * has no bits set. Such temporary violations must be corrected before + * returning to the caller. These corrections are typically performed + * by the local function node_reduce(). + */ + +#include "test_util.h" +#include "sparsebit.h" +#include +#include + +#define DUMP_LINE_MAX 100 /* Does not include indent amount */ + +typedef uint32_t mask_t; +#define MASK_BITS (sizeof(mask_t) * CHAR_BIT) + +struct node { + struct node *parent; + struct node *left; + struct node *right; + sparsebit_idx_t idx; /* index of least-significant bit in mask */ + sparsebit_num_t num_after; /* num contiguously set after mask */ + mask_t mask; +}; + +struct sparsebit { + /* + * Points to root node of the binary search + * tree. Equal to NULL when no bits are set in + * the entire sparsebit array. + */ + struct node *root; + + /* + * A redundant count of the total number of bits set. Used for + * diagnostic purposes and to change the time complexity of + * sparsebit_num_set() from O(n) to O(1). + * Note: Due to overflow, a value of 0 means none or all set. + */ + sparsebit_num_t num_set; +}; + +/* Returns the number of set bits described by the settings + * of the node pointed to by nodep. + */ +static sparsebit_num_t node_num_set(struct node *nodep) +{ + return nodep->num_after + __builtin_popcount(nodep->mask); +} + +/* Returns a pointer to the node that describes the + * lowest bit index. + */ +static struct node *node_first(struct sparsebit *s) +{ + struct node *nodep; + + for (nodep = s->root; nodep && nodep->left; nodep = nodep->left) + ; + + return nodep; +} + +/* Returns a pointer to the node that describes the + * lowest bit index > the index of the node pointed to by np. + * Returns NULL if no node with a higher index exists. + */ +static struct node *node_next(struct sparsebit *s, struct node *np) +{ + struct node *nodep = np; + + /* + * If current node has a right child, next node is the left-most + * of the right child. + */ + if (nodep->right) { + for (nodep = nodep->right; nodep->left; nodep = nodep->left) + ; + return nodep; + } + + /* + * No right child. Go up until node is left child of a parent. + * That parent is then the next node. + */ + while (nodep->parent && nodep == nodep->parent->right) + nodep = nodep->parent; + + return nodep->parent; +} + +/* Searches for and returns a pointer to the node that describes the + * highest index < the index of the node pointed to by np. + * Returns NULL if no node with a lower index exists. + */ +static struct node *node_prev(struct sparsebit *s, struct node *np) +{ + struct node *nodep = np; + + /* + * If current node has a left child, next node is the right-most + * of the left child. + */ + if (nodep->left) { + for (nodep = nodep->left; nodep->right; nodep = nodep->right) + ; + return (struct node *) nodep; + } + + /* + * No left child. Go up until node is right child of a parent. + * That parent is then the next node. + */ + while (nodep->parent && nodep == nodep->parent->left) + nodep = nodep->parent; + + return (struct node *) nodep->parent; +} + + +/* Allocates space to hold a copy of the node sub-tree pointed to by + * subtree and duplicates the bit settings to the newly allocated nodes. + * Returns the newly allocated copy of subtree. + */ +static struct node *node_copy_subtree(struct node *subtree) +{ + struct node *root; + + /* Duplicate the node at the root of the subtree */ + root = calloc(1, sizeof(*root)); + if (!root) { + perror("calloc"); + abort(); + } + + root->idx = subtree->idx; + root->mask = subtree->mask; + root->num_after = subtree->num_after; + + /* As needed, recursively duplicate the left and right subtrees */ + if (subtree->left) { + root->left = node_copy_subtree(subtree->left); + root->left->parent = root; + } + + if (subtree->right) { + root->right = node_copy_subtree(subtree->right); + root->right->parent = root; + } + + return root; +} + +/* Searches for and returns a pointer to the node that describes the setting + * of the bit given by idx. A node describes the setting of a bit if its + * index is within the bits described by the mask bits or the number of + * contiguous bits set after the mask. Returns NULL if there is no such node. + */ +static struct node *node_find(struct sparsebit *s, sparsebit_idx_t idx) +{ + struct node *nodep; + + /* Find the node that describes the setting of the bit at idx */ + for (nodep = s->root; nodep; + nodep = nodep->idx > idx ? nodep->left : nodep->right) { + if (idx >= nodep->idx && + idx <= nodep->idx + MASK_BITS + nodep->num_after - 1) + break; + } + + return nodep; +} + +/* Entry Requirements: + * + A node that describes the setting of idx is not already present. + * + * Adds a new node to describe the setting of the bit at the index given + * by idx. Returns a pointer to the newly added node. + * + * TODO(lhuemill): Degenerate cases causes the tree to get unbalanced. + */ +static struct node *node_add(struct sparsebit *s, sparsebit_idx_t idx) +{ + struct node *nodep, *parentp, *prev; + + /* Allocate and initialize the new node. */ + nodep = calloc(1, sizeof(*nodep)); + if (!nodep) { + perror("calloc"); + abort(); + } + + nodep->idx = idx & -MASK_BITS; + + /* If no nodes, set it up as the root node. */ + if (!s->root) { + s->root = nodep; + return nodep; + } + + /* + * Find the parent where the new node should be attached + * and add the node there. + */ + parentp = s->root; + while (true) { + if (idx < parentp->idx) { + if (!parentp->left) { + parentp->left = nodep; + nodep->parent = parentp; + break; + } + parentp = parentp->left; + } else { + assert(idx > parentp->idx + MASK_BITS + parentp->num_after - 1); + if (!parentp->right) { + parentp->right = nodep; + nodep->parent = parentp; + break; + } + parentp = parentp->right; + } + } + + /* + * Does num_after bits of previous node overlap with the mask + * of the new node? If so set the bits in the new nodes mask + * and reduce the previous nodes num_after. + */ + prev = node_prev(s, nodep); + while (prev && prev->idx + MASK_BITS + prev->num_after - 1 >= nodep->idx) { + unsigned int n1 = (prev->idx + MASK_BITS + prev->num_after - 1) + - nodep->idx; + assert(prev->num_after > 0); + assert(n1 < MASK_BITS); + assert(!(nodep->mask & (1 << n1))); + nodep->mask |= (1 << n1); + prev->num_after--; + } + + return nodep; +} + +/* Returns whether all the bits in the sparsebit array are set. */ +bool sparsebit_all_set(struct sparsebit *s) +{ + /* + * If any nodes there must be at least one bit set. Only case + * where a bit is set and total num set is 0, is when all bits + * are set. + */ + return s->root && s->num_set == 0; +} + +/* Clears all bits described by the node pointed to by nodep, then + * removes the node. + */ +static void node_rm(struct sparsebit *s, struct node *nodep) +{ + struct node *tmp; + sparsebit_num_t num_set; + + num_set = node_num_set(nodep); + assert(s->num_set >= num_set || sparsebit_all_set(s)); + s->num_set -= node_num_set(nodep); + + /* Have both left and right child */ + if (nodep->left && nodep->right) { + /* + * Move left children to the leftmost leaf node + * of the right child. + */ + for (tmp = nodep->right; tmp->left; tmp = tmp->left) + ; + tmp->left = nodep->left; + nodep->left = NULL; + tmp->left->parent = tmp; + } + + /* Left only child */ + if (nodep->left) { + if (!nodep->parent) { + s->root = nodep->left; + nodep->left->parent = NULL; + } else { + nodep->left->parent = nodep->parent; + if (nodep == nodep->parent->left) + nodep->parent->left = nodep->left; + else { + assert(nodep == nodep->parent->right); + nodep->parent->right = nodep->left; + } + } + + nodep->parent = nodep->left = nodep->right = NULL; + free(nodep); + + return; + } + + + /* Right only child */ + if (nodep->right) { + if (!nodep->parent) { + s->root = nodep->right; + nodep->right->parent = NULL; + } else { + nodep->right->parent = nodep->parent; + if (nodep == nodep->parent->left) + nodep->parent->left = nodep->right; + else { + assert(nodep == nodep->parent->right); + nodep->parent->right = nodep->right; + } + } + + nodep->parent = nodep->left = nodep->right = NULL; + free(nodep); + + return; + } + + /* Leaf Node */ + if (!nodep->parent) { + s->root = NULL; + } else { + if (nodep->parent->left == nodep) + nodep->parent->left = NULL; + else { + assert(nodep == nodep->parent->right); + nodep->parent->right = NULL; + } + } + + nodep->parent = nodep->left = nodep->right = NULL; + free(nodep); + + return; +} + +/* Splits the node containing the bit at idx so that there is a node + * that starts at the specified index. If no such node exists, a new + * node at the specified index is created. Returns the new node. + * + * idx must start of a mask boundary. + */ +static struct node *node_split(struct sparsebit *s, sparsebit_idx_t idx) +{ + struct node *nodep1, *nodep2; + sparsebit_idx_t offset; + sparsebit_num_t orig_num_after; + + assert(!(idx % MASK_BITS)); + + /* + * Is there a node that describes the setting of idx? + * If not, add it. + */ + nodep1 = node_find(s, idx); + if (!nodep1) + return node_add(s, idx); + + /* + * All done if the starting index of the node is where the + * split should occur. + */ + if (nodep1->idx == idx) + return nodep1; + + /* + * Split point not at start of mask, so it must be part of + * bits described by num_after. + */ + + /* + * Calculate offset within num_after for where the split is + * to occur. + */ + offset = idx - (nodep1->idx + MASK_BITS); + orig_num_after = nodep1->num_after; + + /* + * Add a new node to describe the bits starting at + * the split point. + */ + nodep1->num_after = offset; + nodep2 = node_add(s, idx); + + /* Move bits after the split point into the new node */ + nodep2->num_after = orig_num_after - offset; + if (nodep2->num_after >= MASK_BITS) { + nodep2->mask = ~(mask_t) 0; + nodep2->num_after -= MASK_BITS; + } else { + nodep2->mask = (1 << nodep2->num_after) - 1; + nodep2->num_after = 0; + } + + return nodep2; +} + +/* Iteratively reduces the node pointed to by nodep and its adjacent + * nodes into a more compact form. For example, a node with a mask with + * all bits set adjacent to a previous node, will get combined into a + * single node with an increased num_after setting. + * + * After each reduction, a further check is made to see if additional + * reductions are possible with the new previous and next nodes. Note, + * a search for a reduction is only done across the nodes nearest nodep + * and those that became part of a reduction. Reductions beyond nodep + * and the adjacent nodes that are reduced are not discovered. It is the + * responsibility of the caller to pass a nodep that is within one node + * of each possible reduction. + * + * This function does not fix the temporary violation of all invariants. + * For example it does not fix the case where the bit settings described + * by two or more nodes overlap. Such a violation introduces the potential + * complication of a bit setting for a specific index having different settings + * in different nodes. This would then introduce the further complication + * of which node has the correct setting of the bit and thus such conditions + * are not allowed. + * + * This function is designed to fix invariant violations that are introduced + * by node_split() and by changes to the nodes mask or num_after members. + * For example, when setting a bit within a nodes mask, the function that + * sets the bit doesn't have to worry about whether the setting of that + * bit caused the mask to have leading only or trailing only bits set. + * Instead, the function can call node_reduce(), with nodep equal to the + * node address that it set a mask bit in, and node_reduce() will notice + * the cases of leading or trailing only bits and that there is an + * adjacent node that the bit settings could be merged into. + * + * This implementation specifically detects and corrects violation of the + * following invariants: + * + * + Node are only used to represent bits that are set. + * Nodes with a mask of 0 and num_after of 0 are not allowed. + * + * + The setting of at least one bit is always described in a nodes + * mask (mask >= 1). + * + * + A node with all mask bits set only occurs when the last bit + * described by the previous node is not equal to this nodes + * starting index - 1. All such occurences of this condition are + * avoided by moving the setting of the nodes mask bits into + * the previous nodes num_after setting. + */ +static void node_reduce(struct sparsebit *s, struct node *nodep) +{ + bool reduction_performed; + + do { + reduction_performed = false; + struct node *prev, *next, *tmp; + + /* 1) Potential reductions within the current node. */ + + /* Nodes with all bits cleared may be removed. */ + if (nodep->mask == 0 && nodep->num_after == 0) { + /* + * About to remove the node pointed to by + * nodep, which normally would cause a problem + * for the next pass through the reduction loop, + * because the node at the starting point no longer + * exists. This potential problem is handled + * by first remembering the location of the next + * or previous nodes. Doesn't matter which, because + * once the node at nodep is removed, there will be + * no other nodes between prev and next. + * + * Note, the checks performed on nodep against both + * both prev and next both check for an adjacent + * node that can be reduced into a single node. As + * such, after removing the node at nodep, doesn't + * matter whether the nodep for the next pass + * through the loop is equal to the previous pass + * prev or next node. Either way, on the next pass + * the one not selected will become either the + * prev or next node. + */ + tmp = node_next(s, nodep); + if (!tmp) + tmp = node_prev(s, nodep); + + node_rm(s, nodep); + nodep = NULL; + + nodep = tmp; + reduction_performed = true; + continue; + } + + /* + * When the mask is 0, can reduce the amount of num_after + * bits by moving the initial num_after bits into the mask. + */ + if (nodep->mask == 0) { + assert(nodep->num_after != 0); + assert(nodep->idx + MASK_BITS > nodep->idx); + + nodep->idx += MASK_BITS; + + if (nodep->num_after >= MASK_BITS) { + nodep->mask = ~0; + nodep->num_after -= MASK_BITS; + } else { + nodep->mask = (1u << nodep->num_after) - 1; + nodep->num_after = 0; + } + + reduction_performed = true; + continue; + } + + /* + * 2) Potential reductions between the current and + * previous nodes. + */ + prev = node_prev(s, nodep); + if (prev) { + sparsebit_idx_t prev_highest_bit; + + /* Nodes with no bits set can be removed. */ + if (prev->mask == 0 && prev->num_after == 0) { + node_rm(s, prev); + + reduction_performed = true; + continue; + } + + /* + * All mask bits set and previous node has + * adjacent index. + */ + if (nodep->mask + 1 == 0 && + prev->idx + MASK_BITS == nodep->idx) { + prev->num_after += MASK_BITS + nodep->num_after; + nodep->mask = 0; + nodep->num_after = 0; + + reduction_performed = true; + continue; + } + + /* + * Is node adjacent to previous node and the node + * contains a single contiguous range of bits + * starting from the beginning of the mask? + */ + prev_highest_bit = prev->idx + MASK_BITS - 1 + prev->num_after; + if (prev_highest_bit + 1 == nodep->idx && + (nodep->mask | (nodep->mask >> 1)) == nodep->mask) { + /* + * How many contiguous bits are there? + * Is equal to the total number of set + * bits, due to an earlier check that + * there is a single contiguous range of + * set bits. + */ + unsigned int num_contiguous + = __builtin_popcount(nodep->mask); + assert((num_contiguous > 0) && + ((1ULL << num_contiguous) - 1) == nodep->mask); + + prev->num_after += num_contiguous; + nodep->mask = 0; + + /* + * For predictable performance, handle special + * case where all mask bits are set and there + * is a non-zero num_after setting. This code + * is functionally correct without the following + * conditionalized statements, but without them + * the value of num_after is only reduced by + * the number of mask bits per pass. There are + * cases where num_after can be close to 2^64. + * Without this code it could take nearly + * (2^64) / 32 passes to perform the full + * reduction. + */ + if (num_contiguous == MASK_BITS) { + prev->num_after += nodep->num_after; + nodep->num_after = 0; + } + + reduction_performed = true; + continue; + } + } + + /* + * 3) Potential reductions between the current and + * next nodes. + */ + next = node_next(s, nodep); + if (next) { + /* Nodes with no bits set can be removed. */ + if (next->mask == 0 && next->num_after == 0) { + node_rm(s, next); + reduction_performed = true; + continue; + } + + /* + * Is next node index adjacent to current node + * and has a mask with all bits set? + */ + if (next->idx == nodep->idx + MASK_BITS + nodep->num_after && + next->mask == ~(mask_t) 0) { + nodep->num_after += MASK_BITS; + next->mask = 0; + nodep->num_after += next->num_after; + next->num_after = 0; + + node_rm(s, next); + next = NULL; + + reduction_performed = true; + continue; + } + } + } while (nodep && reduction_performed); +} + +/* Returns whether the bit at the index given by idx, within the + * sparsebit array is set or not. + */ +bool sparsebit_is_set(struct sparsebit *s, sparsebit_idx_t idx) +{ + struct node *nodep; + + /* Find the node that describes the setting of the bit at idx */ + for (nodep = s->root; nodep; + nodep = nodep->idx > idx ? nodep->left : nodep->right) + if (idx >= nodep->idx && + idx <= nodep->idx + MASK_BITS + nodep->num_after - 1) + goto have_node; + + return false; + +have_node: + /* Bit is set if it is any of the bits described by num_after */ + if (nodep->num_after && idx >= nodep->idx + MASK_BITS) + return true; + + /* Is the corresponding mask bit set */ + assert(idx >= nodep->idx && idx - nodep->idx < MASK_BITS); + return !!(nodep->mask & (1 << (idx - nodep->idx))); +} + +/* Within the sparsebit array pointed to by s, sets the bit + * at the index given by idx. + */ +static void bit_set(struct sparsebit *s, sparsebit_idx_t idx) +{ + struct node *nodep; + + /* Skip bits that are already set */ + if (sparsebit_is_set(s, idx)) + return; + + /* + * Get a node where the bit at idx is described by the mask. + * The node_split will also create a node, if there isn't + * already a node that describes the setting of bit. + */ + nodep = node_split(s, idx & -MASK_BITS); + + /* Set the bit within the nodes mask */ + assert(idx >= nodep->idx && idx <= nodep->idx + MASK_BITS - 1); + assert(!(nodep->mask & (1 << (idx - nodep->idx)))); + nodep->mask |= 1 << (idx - nodep->idx); + s->num_set++; + + node_reduce(s, nodep); +} + +/* Within the sparsebit array pointed to by s, clears the bit + * at the index given by idx. + */ +static void bit_clear(struct sparsebit *s, sparsebit_idx_t idx) +{ + struct node *nodep; + + /* Skip bits that are already cleared */ + if (!sparsebit_is_set(s, idx)) + return; + + /* Is there a node that describes the setting of this bit? */ + nodep = node_find(s, idx); + if (!nodep) + return; + + /* + * If a num_after bit, split the node, so that the bit is + * part of a node mask. + */ + if (idx >= nodep->idx + MASK_BITS) + nodep = node_split(s, idx & -MASK_BITS); + + /* + * After node_split above, bit at idx should be within the mask. + * Clear that bit. + */ + assert(idx >= nodep->idx && idx <= nodep->idx + MASK_BITS - 1); + assert(nodep->mask & (1 << (idx - nodep->idx))); + nodep->mask &= ~(1 << (idx - nodep->idx)); + assert(s->num_set > 0 || sparsebit_all_set(s)); + s->num_set--; + + node_reduce(s, nodep); +} + +/* Recursively dumps to the FILE stream given by stream the contents + * of the sub-tree of nodes pointed to by nodep. Each line of output + * is prefixed by the number of spaces given by indent. On each + * recursion, the indent amount is increased by 2. This causes nodes + * at each level deeper into the binary search tree to be displayed + * with a greater indent. + */ +static void dump_nodes(FILE *stream, struct node *nodep, + unsigned int indent) +{ + char *node_type; + + /* Dump contents of node */ + if (!nodep->parent) + node_type = "root"; + else if (nodep == nodep->parent->left) + node_type = "left"; + else { + assert(nodep == nodep->parent->right); + node_type = "right"; + } + fprintf(stream, "%*s---- %s nodep: %p\n", indent, "", node_type, nodep); + fprintf(stream, "%*s parent: %p left: %p right: %p\n", indent, "", + nodep->parent, nodep->left, nodep->right); + fprintf(stream, "%*s idx: 0x%lx mask: 0x%x num_after: 0x%lx\n", + indent, "", nodep->idx, nodep->mask, nodep->num_after); + + /* If present, dump contents of left child nodes */ + if (nodep->left) + dump_nodes(stream, nodep->left, indent + 2); + + /* If present, dump contents of right child nodes */ + if (nodep->right) + dump_nodes(stream, nodep->right, indent + 2); +} + +static inline sparsebit_idx_t node_first_set(struct node *nodep, int start) +{ + mask_t leading = (mask_t)1 << start; + int n1 = __builtin_ctz(nodep->mask & -leading); + + return nodep->idx + n1; +} + +static inline sparsebit_idx_t node_first_clear(struct node *nodep, int start) +{ + mask_t leading = (mask_t)1 << start; + int n1 = __builtin_ctz(~nodep->mask & -leading); + + return nodep->idx + n1; +} + +/* Dumps to the FILE stream specified by stream, the implementation dependent + * internal state of s. Each line of output is prefixed with the number + * of spaces given by indent. The output is completely implementation + * dependent and subject to change. Output from this function should only + * be used for diagnostic purposes. For example, this function can be + * used by test cases after they detect an unexpected condition, as a means + * to capture diagnostic information. + */ +static void sparsebit_dump_internal(FILE *stream, struct sparsebit *s, + unsigned int indent) +{ + /* Dump the contents of s */ + fprintf(stream, "%*sroot: %p\n", indent, "", s->root); + fprintf(stream, "%*snum_set: 0x%lx\n", indent, "", s->num_set); + + if (s->root) + dump_nodes(stream, s->root, indent); +} + +/* Allocates and returns a new sparsebit array. The initial state + * of the newly allocated sparsebit array has all bits cleared. + */ +struct sparsebit *sparsebit_alloc(void) +{ + struct sparsebit *s; + + /* Allocate top level structure. */ + s = calloc(1, sizeof(*s)); + if (!s) { + perror("calloc"); + abort(); + } + + return s; +} + +/* Frees the implementation dependent data for the sparsebit array + * pointed to by s and poisons the pointer to that data. + */ +void sparsebit_free(struct sparsebit **sbitp) +{ + struct sparsebit *s = *sbitp; + + if (!s) + return; + + sparsebit_clear_all(s); + free(s); + *sbitp = NULL; +} + +/* Makes a copy of the sparsebit array given by s, to the sparsebit + * array given by d. Note, d must have already been allocated via + * sparsebit_alloc(). It can though already have bits set, which + * if different from src will be cleared. + */ +void sparsebit_copy(struct sparsebit *d, struct sparsebit *s) +{ + /* First clear any bits already set in the destination */ + sparsebit_clear_all(d); + + if (s->root) { + d->root = node_copy_subtree(s->root); + d->num_set = s->num_set; + } +} + +/* Returns whether num consecutive bits starting at idx are all set. */ +bool sparsebit_is_set_num(struct sparsebit *s, + sparsebit_idx_t idx, sparsebit_num_t num) +{ + sparsebit_idx_t next_cleared; + + assert(num > 0); + assert(idx + num - 1 >= idx); + + /* With num > 0, the first bit must be set. */ + if (!sparsebit_is_set(s, idx)) + return false; + + /* Find the next cleared bit */ + next_cleared = sparsebit_next_clear(s, idx); + + /* + * If no cleared bits beyond idx, then there are at least num + * set bits. idx + num doesn't wrap. Otherwise check if + * there are enough set bits between idx and the next cleared bit. + */ + return next_cleared == 0 || next_cleared - idx >= num; +} + +/* Returns whether the bit at the index given by idx. */ +bool sparsebit_is_clear(struct sparsebit *s, + sparsebit_idx_t idx) +{ + return !sparsebit_is_set(s, idx); +} + +/* Returns whether num consecutive bits starting at idx are all cleared. */ +bool sparsebit_is_clear_num(struct sparsebit *s, + sparsebit_idx_t idx, sparsebit_num_t num) +{ + sparsebit_idx_t next_set; + + assert(num > 0); + assert(idx + num - 1 >= idx); + + /* With num > 0, the first bit must be cleared. */ + if (!sparsebit_is_clear(s, idx)) + return false; + + /* Find the next set bit */ + next_set = sparsebit_next_set(s, idx); + + /* + * If no set bits beyond idx, then there are at least num + * cleared bits. idx + num doesn't wrap. Otherwise check if + * there are enough cleared bits between idx and the next set bit. + */ + return next_set == 0 || next_set - idx >= num; +} + +/* Returns the total number of bits set. Note: 0 is also returned for + * the case of all bits set. This is because with all bits set, there + * is 1 additional bit set beyond what can be represented in the return + * value. Use sparsebit_any_set(), instead of sparsebit_num_set() > 0, + * to determine if the sparsebit array has any bits set. + */ +sparsebit_num_t sparsebit_num_set(struct sparsebit *s) +{ + return s->num_set; +} + +/* Returns whether any bit is set in the sparsebit array. */ +bool sparsebit_any_set(struct sparsebit *s) +{ + /* + * Nodes only describe set bits. If any nodes then there + * is at least 1 bit set. + */ + if (!s->root) + return false; + + /* + * Every node should have a non-zero mask. For now will + * just assure that the root node has a non-zero mask, + * which is a quick check that at least 1 bit is set. + */ + assert(s->root->mask != 0); + assert(s->num_set > 0 || + (s->root->num_after == ((sparsebit_num_t) 0) - MASK_BITS && + s->root->mask == ~(mask_t) 0)); + + return true; +} + +/* Returns whether all the bits in the sparsebit array are cleared. */ +bool sparsebit_all_clear(struct sparsebit *s) +{ + return !sparsebit_any_set(s); +} + +/* Returns whether all the bits in the sparsebit array are set. */ +bool sparsebit_any_clear(struct sparsebit *s) +{ + return !sparsebit_all_set(s); +} + +/* Returns the index of the first set bit. Abort if no bits are set. + */ +sparsebit_idx_t sparsebit_first_set(struct sparsebit *s) +{ + struct node *nodep; + + /* Validate at least 1 bit is set */ + assert(sparsebit_any_set(s)); + + nodep = node_first(s); + return node_first_set(nodep, 0); +} + +/* Returns the index of the first cleared bit. Abort if + * no bits are cleared. + */ +sparsebit_idx_t sparsebit_first_clear(struct sparsebit *s) +{ + struct node *nodep1, *nodep2; + + /* Validate at least 1 bit is cleared. */ + assert(sparsebit_any_clear(s)); + + /* If no nodes or first node index > 0 then lowest cleared is 0 */ + nodep1 = node_first(s); + if (!nodep1 || nodep1->idx > 0) + return 0; + + /* Does the mask in the first node contain any cleared bits. */ + if (nodep1->mask != ~(mask_t) 0) + return node_first_clear(nodep1, 0); + + /* + * All mask bits set in first node. If there isn't a second node + * then the first cleared bit is the first bit after the bits + * described by the first node. + */ + nodep2 = node_next(s, nodep1); + if (!nodep2) { + /* + * No second node. First cleared bit is first bit beyond + * bits described by first node. + */ + assert(nodep1->mask == ~(mask_t) 0); + assert(nodep1->idx + MASK_BITS + nodep1->num_after != (sparsebit_idx_t) 0); + return nodep1->idx + MASK_BITS + nodep1->num_after; + } + + /* + * There is a second node. + * If it is not adjacent to the first node, then there is a gap + * of cleared bits between the nodes, and the first cleared bit + * is the first bit within the gap. + */ + if (nodep1->idx + MASK_BITS + nodep1->num_after != nodep2->idx) + return nodep1->idx + MASK_BITS + nodep1->num_after; + + /* + * Second node is adjacent to the first node. + * Because it is adjacent, its mask should be non-zero. If all + * its mask bits are set, then with it being adjacent, it should + * have had the mask bits moved into the num_after setting of the + * previous node. + */ + return node_first_clear(nodep2, 0); +} + +/* Returns index of next bit set within s after the index given by prev. + * Returns 0 if there are no bits after prev that are set. + */ +sparsebit_idx_t sparsebit_next_set(struct sparsebit *s, + sparsebit_idx_t prev) +{ + sparsebit_idx_t lowest_possible = prev + 1; + sparsebit_idx_t start; + struct node *nodep; + + /* A bit after the highest index can't be set. */ + if (lowest_possible == 0) + return 0; + + /* + * Find the leftmost 'candidate' overlapping or to the right + * of lowest_possible. + */ + struct node *candidate = NULL; + + /* True iff lowest_possible is within candidate */ + bool contains = false; + + /* + * Find node that describes setting of bit at lowest_possible. + * If such a node doesn't exist, find the node with the lowest + * starting index that is > lowest_possible. + */ + for (nodep = s->root; nodep;) { + if ((nodep->idx + MASK_BITS + nodep->num_after - 1) + >= lowest_possible) { + candidate = nodep; + if (candidate->idx <= lowest_possible) { + contains = true; + break; + } + nodep = nodep->left; + } else { + nodep = nodep->right; + } + } + if (!candidate) + return 0; + + assert(candidate->mask != 0); + + /* Does the candidate node describe the setting of lowest_possible? */ + if (!contains) { + /* + * Candidate doesn't describe setting of bit at lowest_possible. + * Candidate points to the first node with a starting index + * > lowest_possible. + */ + assert(candidate->idx > lowest_possible); + + return node_first_set(candidate, 0); + } + + /* + * Candidate describes setting of bit at lowest_possible. + * Note: although the node describes the setting of the bit + * at lowest_possible, its possible that its setting and the + * setting of all latter bits described by this node are 0. + * For now, just handle the cases where this node describes + * a bit at or after an index of lowest_possible that is set. + */ + start = lowest_possible - candidate->idx; + + if (start < MASK_BITS && candidate->mask >= (1 << start)) + return node_first_set(candidate, start); + + if (candidate->num_after) { + sparsebit_idx_t first_num_after_idx = candidate->idx + MASK_BITS; + + return lowest_possible < first_num_after_idx + ? first_num_after_idx : lowest_possible; + } + + /* + * Although candidate node describes setting of bit at + * the index of lowest_possible, all bits at that index and + * latter that are described by candidate are cleared. With + * this, the next bit is the first bit in the next node, if + * such a node exists. If a next node doesn't exist, then + * there is no next set bit. + */ + candidate = node_next(s, candidate); + if (!candidate) + return 0; + + return node_first_set(candidate, 0); +} + +/* Returns index of next bit cleared within s after the index given by prev. + * Returns 0 if there are no bits after prev that are cleared. + */ +sparsebit_idx_t sparsebit_next_clear(struct sparsebit *s, + sparsebit_idx_t prev) +{ + sparsebit_idx_t lowest_possible = prev + 1; + sparsebit_idx_t idx; + struct node *nodep1, *nodep2; + + /* A bit after the highest index can't be set. */ + if (lowest_possible == 0) + return 0; + + /* + * Does a node describing the setting of lowest_possible exist? + * If not, the bit at lowest_possible is cleared. + */ + nodep1 = node_find(s, lowest_possible); + if (!nodep1) + return lowest_possible; + + /* Does a mask bit in node 1 describe the next cleared bit. */ + for (idx = lowest_possible - nodep1->idx; idx < MASK_BITS; idx++) + if (!(nodep1->mask & (1 << idx))) + return nodep1->idx + idx; + + /* + * Next cleared bit is not described by node 1. If there + * isn't a next node, then next cleared bit is described + * by bit after the bits described by the first node. + */ + nodep2 = node_next(s, nodep1); + if (!nodep2) + return nodep1->idx + MASK_BITS + nodep1->num_after; + + /* + * There is a second node. + * If it is not adjacent to the first node, then there is a gap + * of cleared bits between the nodes, and the next cleared bit + * is the first bit within the gap. + */ + if (nodep1->idx + MASK_BITS + nodep1->num_after != nodep2->idx) + return nodep1->idx + MASK_BITS + nodep1->num_after; + + /* + * Second node is adjacent to the first node. + * Because it is adjacent, its mask should be non-zero. If all + * its mask bits are set, then with it being adjacent, it should + * have had the mask bits moved into the num_after setting of the + * previous node. + */ + return node_first_clear(nodep2, 0); +} + +/* Starting with the index 1 greater than the index given by start, finds + * and returns the index of the first sequence of num consecutively set + * bits. Returns a value of 0 of no such sequence exists. + */ +sparsebit_idx_t sparsebit_next_set_num(struct sparsebit *s, + sparsebit_idx_t start, sparsebit_num_t num) +{ + sparsebit_idx_t idx; + + assert(num >= 1); + + for (idx = sparsebit_next_set(s, start); + idx != 0 && idx + num - 1 >= idx; + idx = sparsebit_next_set(s, idx)) { + assert(sparsebit_is_set(s, idx)); + + /* + * Does the sequence of bits starting at idx consist of + * num set bits? + */ + if (sparsebit_is_set_num(s, idx, num)) + return idx; + + /* + * Sequence of set bits at idx isn't large enough. + * Skip this entire sequence of set bits. + */ + idx = sparsebit_next_clear(s, idx); + if (idx == 0) + return 0; + } + + return 0; +} + +/* Starting with the index 1 greater than the index given by start, finds + * and returns the index of the first sequence of num consecutively cleared + * bits. Returns a value of 0 of no such sequence exists. + */ +sparsebit_idx_t sparsebit_next_clear_num(struct sparsebit *s, + sparsebit_idx_t start, sparsebit_num_t num) +{ + sparsebit_idx_t idx; + + assert(num >= 1); + + for (idx = sparsebit_next_clear(s, start); + idx != 0 && idx + num - 1 >= idx; + idx = sparsebit_next_clear(s, idx)) { + assert(sparsebit_is_clear(s, idx)); + + /* + * Does the sequence of bits starting at idx consist of + * num cleared bits? + */ + if (sparsebit_is_clear_num(s, idx, num)) + return idx; + + /* + * Sequence of cleared bits at idx isn't large enough. + * Skip this entire sequence of cleared bits. + */ + idx = sparsebit_next_set(s, idx); + if (idx == 0) + return 0; + } + + return 0; +} + +/* Sets the bits * in the inclusive range idx through idx + num - 1. */ +void sparsebit_set_num(struct sparsebit *s, + sparsebit_idx_t start, sparsebit_num_t num) +{ + struct node *nodep, *next; + unsigned int n1; + sparsebit_idx_t idx; + sparsebit_num_t n; + sparsebit_idx_t middle_start, middle_end; + + assert(num > 0); + assert(start + num - 1 >= start); + + /* + * Leading - bits before first mask boundary. + * + * TODO(lhuemill): With some effort it may be possible to + * replace the following loop with a sequential sequence + * of statements. High level sequence would be: + * + * 1. Use node_split() to force node that describes setting + * of idx to be within the mask portion of a node. + * 2. Form mask of bits to be set. + * 3. Determine number of mask bits already set in the node + * and store in a local variable named num_already_set. + * 4. Set the appropriate mask bits within the node. + * 5. Increment struct sparsebit_pvt num_set member + * by the number of bits that were actually set. + * Exclude from the counts bits that were already set. + * 6. Before returning to the caller, use node_reduce() to + * handle the multiple corner cases that this method + * introduces. + */ + for (idx = start, n = num; n > 0 && idx % MASK_BITS != 0; idx++, n--) + bit_set(s, idx); + + /* Middle - bits spanning one or more entire mask */ + middle_start = idx; + middle_end = middle_start + (n & -MASK_BITS) - 1; + if (n >= MASK_BITS) { + nodep = node_split(s, middle_start); + + /* + * As needed, split just after end of middle bits. + * No split needed if end of middle bits is at highest + * supported bit index. + */ + if (middle_end + 1 > middle_end) + (void) node_split(s, middle_end + 1); + + /* Delete nodes that only describe bits within the middle. */ + for (next = node_next(s, nodep); + next && (next->idx < middle_end); + next = node_next(s, nodep)) { + assert(next->idx + MASK_BITS + next->num_after - 1 <= middle_end); + node_rm(s, next); + next = NULL; + } + + /* As needed set each of the mask bits */ + for (n1 = 0; n1 < MASK_BITS; n1++) { + if (!(nodep->mask & (1 << n1))) { + nodep->mask |= 1 << n1; + s->num_set++; + } + } + + s->num_set -= nodep->num_after; + nodep->num_after = middle_end - middle_start + 1 - MASK_BITS; + s->num_set += nodep->num_after; + + node_reduce(s, nodep); + } + idx = middle_end + 1; + n -= middle_end - middle_start + 1; + + /* Trailing - bits at and beyond last mask boundary */ + assert(n < MASK_BITS); + for (; n > 0; idx++, n--) + bit_set(s, idx); +} + +/* Clears the bits * in the inclusive range idx through idx + num - 1. */ +void sparsebit_clear_num(struct sparsebit *s, + sparsebit_idx_t start, sparsebit_num_t num) +{ + struct node *nodep, *next; + unsigned int n1; + sparsebit_idx_t idx; + sparsebit_num_t n; + sparsebit_idx_t middle_start, middle_end; + + assert(num > 0); + assert(start + num - 1 >= start); + + /* Leading - bits before first mask boundary */ + for (idx = start, n = num; n > 0 && idx % MASK_BITS != 0; idx++, n--) + bit_clear(s, idx); + + /* Middle - bits spanning one or more entire mask */ + middle_start = idx; + middle_end = middle_start + (n & -MASK_BITS) - 1; + if (n >= MASK_BITS) { + nodep = node_split(s, middle_start); + + /* + * As needed, split just after end of middle bits. + * No split needed if end of middle bits is at highest + * supported bit index. + */ + if (middle_end + 1 > middle_end) + (void) node_split(s, middle_end + 1); + + /* Delete nodes that only describe bits within the middle. */ + for (next = node_next(s, nodep); + next && (next->idx < middle_end); + next = node_next(s, nodep)) { + assert(next->idx + MASK_BITS + next->num_after - 1 <= middle_end); + node_rm(s, next); + next = NULL; + } + + /* As needed clear each of the mask bits */ + for (n1 = 0; n1 < MASK_BITS; n1++) { + if (nodep->mask & (1 << n1)) { + nodep->mask &= ~(1 << n1); + s->num_set--; + } + } + + /* Clear any bits described by num_after */ + s->num_set -= nodep->num_after; + nodep->num_after = 0; + + /* + * Delete the node that describes the beginning of + * the middle bits and perform any allowed reductions + * with the nodes prev or next of nodep. + */ + node_reduce(s, nodep); + nodep = NULL; + } + idx = middle_end + 1; + n -= middle_end - middle_start + 1; + + /* Trailing - bits at and beyond last mask boundary */ + assert(n < MASK_BITS); + for (; n > 0; idx++, n--) + bit_clear(s, idx); +} + +/* Sets the bit at the index given by idx. */ +void sparsebit_set(struct sparsebit *s, sparsebit_idx_t idx) +{ + sparsebit_set_num(s, idx, 1); +} + +/* Clears the bit at the index given by idx. */ +void sparsebit_clear(struct sparsebit *s, sparsebit_idx_t idx) +{ + sparsebit_clear_num(s, idx, 1); +} + +/* Sets the bits in the entire addressable range of the sparsebit array. */ +void sparsebit_set_all(struct sparsebit *s) +{ + sparsebit_set(s, 0); + sparsebit_set_num(s, 1, ~(sparsebit_idx_t) 0); + assert(sparsebit_all_set(s)); +} + +/* Clears the bits in the entire addressable range of the sparsebit array. */ +void sparsebit_clear_all(struct sparsebit *s) +{ + sparsebit_clear(s, 0); + sparsebit_clear_num(s, 1, ~(sparsebit_idx_t) 0); + assert(!sparsebit_any_set(s)); +} + +static size_t display_range(FILE *stream, sparsebit_idx_t low, + sparsebit_idx_t high, bool prepend_comma_space) +{ + char *fmt_str; + size_t sz; + + /* Determine the printf format string */ + if (low == high) + fmt_str = prepend_comma_space ? ", 0x%lx" : "0x%lx"; + else + fmt_str = prepend_comma_space ? ", 0x%lx:0x%lx" : "0x%lx:0x%lx"; + + /* + * When stream is NULL, just determine the size of what would + * have been printed, else print the range. + */ + if (!stream) + sz = snprintf(NULL, 0, fmt_str, low, high); + else + sz = fprintf(stream, fmt_str, low, high); + + return sz; +} + + +/* Dumps to the FILE stream given by stream, the bit settings + * of s. Each line of output is prefixed with the number of + * spaces given by indent. The length of each line is implementation + * dependent and does not depend on the indent amount. The following + * is an example output of a sparsebit array that has bits: + * + * 0x5, 0x8, 0xa:0xe, 0x12 + * + * This corresponds to a sparsebit whose bits 5, 8, 10, 11, 12, 13, 14, 18 + * are set. Note that a ':', instead of a '-' is used to specify a range of + * contiguous bits. This is done because '-' is used to specify command-line + * options, and sometimes ranges are specified as command-line arguments. + */ +void sparsebit_dump(FILE *stream, struct sparsebit *s, + unsigned int indent) +{ + size_t current_line_len = 0; + size_t sz; + struct node *nodep; + + if (!sparsebit_any_set(s)) + return; + + /* Display initial indent */ + fprintf(stream, "%*s", indent, ""); + + /* For each node */ + for (nodep = node_first(s); nodep; nodep = node_next(s, nodep)) { + unsigned int n1; + sparsebit_idx_t low, high; + + /* For each group of bits in the mask */ + for (n1 = 0; n1 < MASK_BITS; n1++) { + if (nodep->mask & (1 << n1)) { + low = high = nodep->idx + n1; + + for (; n1 < MASK_BITS; n1++) { + if (nodep->mask & (1 << n1)) + high = nodep->idx + n1; + else + break; + } + + if ((n1 == MASK_BITS) && nodep->num_after) + high += nodep->num_after; + + /* + * How much room will it take to display + * this range. + */ + sz = display_range(NULL, low, high, + current_line_len != 0); + + /* + * If there is not enough room, display + * a newline plus the indent of the next + * line. + */ + if (current_line_len + sz > DUMP_LINE_MAX) { + fputs("\n", stream); + fprintf(stream, "%*s", indent, ""); + current_line_len = 0; + } + + /* Display the range */ + sz = display_range(stream, low, high, + current_line_len != 0); + current_line_len += sz; + } + } + + /* + * If num_after and most significant-bit of mask is not + * set, then still need to display a range for the bits + * described by num_after. + */ + if (!(nodep->mask & (1 << (MASK_BITS - 1))) && nodep->num_after) { + low = nodep->idx + MASK_BITS; + high = nodep->idx + MASK_BITS + nodep->num_after - 1; + + /* + * How much room will it take to display + * this range. + */ + sz = display_range(NULL, low, high, + current_line_len != 0); + + /* + * If there is not enough room, display + * a newline plus the indent of the next + * line. + */ + if (current_line_len + sz > DUMP_LINE_MAX) { + fputs("\n", stream); + fprintf(stream, "%*s", indent, ""); + current_line_len = 0; + } + + /* Display the range */ + sz = display_range(stream, low, high, + current_line_len != 0); + current_line_len += sz; + } + } + fputs("\n", stream); +} + +/* Validates the internal state of the sparsebit array given by + * s. On error, diagnostic information is printed to stderr and + * abort is called. + */ +void sparsebit_validate_internal(struct sparsebit *s) +{ + bool error_detected = false; + struct node *nodep, *prev = NULL; + sparsebit_num_t total_bits_set = 0; + unsigned int n1; + + /* For each node */ + for (nodep = node_first(s); nodep; + prev = nodep, nodep = node_next(s, nodep)) { + + /* + * Increase total bits set by the number of bits set + * in this node. + */ + for (n1 = 0; n1 < MASK_BITS; n1++) + if (nodep->mask & (1 << n1)) + total_bits_set++; + + total_bits_set += nodep->num_after; + + /* + * Arbitrary choice as to whether a mask of 0 is allowed + * or not. For diagnostic purposes it is beneficial to + * have only one valid means to represent a set of bits. + * To support this an arbitrary choice has been made + * to not allow a mask of zero. + */ + if (nodep->mask == 0) { + fprintf(stderr, "Node mask of zero, " + "nodep: %p nodep->mask: 0x%x", + nodep, nodep->mask); + error_detected = true; + break; + } + + /* + * Validate num_after is not greater than the max index + * - the number of mask bits. The num_after member + * uses 0-based indexing and thus has no value that + * represents all bits set. This limitation is handled + * by requiring a non-zero mask. With a non-zero mask, + * MASK_BITS worth of bits are described by the mask, + * which makes the largest needed num_after equal to: + * + * (~(sparsebit_num_t) 0) - MASK_BITS + 1 + */ + if (nodep->num_after + > (~(sparsebit_num_t) 0) - MASK_BITS + 1) { + fprintf(stderr, "num_after too large, " + "nodep: %p nodep->num_after: 0x%lx", + nodep, nodep->num_after); + error_detected = true; + break; + } + + /* Validate node index is divisible by the mask size */ + if (nodep->idx % MASK_BITS) { + fprintf(stderr, "Node index not divisable by " + "mask size,\n" + " nodep: %p nodep->idx: 0x%lx " + "MASK_BITS: %lu\n", + nodep, nodep->idx, MASK_BITS); + error_detected = true; + break; + } + + /* + * Validate bits described by node don't wrap beyond the + * highest supported index. + */ + if ((nodep->idx + MASK_BITS + nodep->num_after - 1) < nodep->idx) { + fprintf(stderr, "Bits described by node wrap " + "beyond highest supported index,\n" + " nodep: %p nodep->idx: 0x%lx\n" + " MASK_BITS: %lu nodep->num_after: 0x%lx", + nodep, nodep->idx, MASK_BITS, nodep->num_after); + error_detected = true; + break; + } + + /* Check parent pointers. */ + if (nodep->left) { + if (nodep->left->parent != nodep) { + fprintf(stderr, "Left child parent pointer " + "doesn't point to this node,\n" + " nodep: %p nodep->left: %p " + "nodep->left->parent: %p", + nodep, nodep->left, + nodep->left->parent); + error_detected = true; + break; + } + } + + if (nodep->right) { + if (nodep->right->parent != nodep) { + fprintf(stderr, "Right child parent pointer " + "doesn't point to this node,\n" + " nodep: %p nodep->right: %p " + "nodep->right->parent: %p", + nodep, nodep->right, + nodep->right->parent); + error_detected = true; + break; + } + } + + if (!nodep->parent) { + if (s->root != nodep) { + fprintf(stderr, "Unexpected root node, " + "s->root: %p nodep: %p", + s->root, nodep); + error_detected = true; + break; + } + } + + if (prev) { + /* + * Is index of previous node before index of + * current node? + */ + if (prev->idx >= nodep->idx) { + fprintf(stderr, "Previous node index " + ">= current node index,\n" + " prev: %p prev->idx: 0x%lx\n" + " nodep: %p nodep->idx: 0x%lx", + prev, prev->idx, nodep, nodep->idx); + error_detected = true; + break; + } + + /* + * Nodes occur in asscending order, based on each + * nodes starting index. + */ + if ((prev->idx + MASK_BITS + prev->num_after - 1) + >= nodep->idx) { + fprintf(stderr, "Previous node bit range " + "overlap with current node bit range,\n" + " prev: %p prev->idx: 0x%lx " + "prev->num_after: 0x%lx\n" + " nodep: %p nodep->idx: 0x%lx " + "nodep->num_after: 0x%lx\n" + " MASK_BITS: %lu", + prev, prev->idx, prev->num_after, + nodep, nodep->idx, nodep->num_after, + MASK_BITS); + error_detected = true; + break; + } + + /* + * When the node has all mask bits set, it shouldn't + * be adjacent to the last bit described by the + * previous node. + */ + if (nodep->mask == ~(mask_t) 0 && + prev->idx + MASK_BITS + prev->num_after == nodep->idx) { + fprintf(stderr, "Current node has mask with " + "all bits set and is adjacent to the " + "previous node,\n" + " prev: %p prev->idx: 0x%lx " + "prev->num_after: 0x%lx\n" + " nodep: %p nodep->idx: 0x%lx " + "nodep->num_after: 0x%lx\n" + " MASK_BITS: %lu", + prev, prev->idx, prev->num_after, + nodep, nodep->idx, nodep->num_after, + MASK_BITS); + + error_detected = true; + break; + } + } + } + + if (!error_detected) { + /* + * Is sum of bits set in each node equal to the count + * of total bits set. + */ + if (s->num_set != total_bits_set) { + fprintf(stderr, "Number of bits set missmatch,\n" + " s->num_set: 0x%lx total_bits_set: 0x%lx", + s->num_set, total_bits_set); + + error_detected = true; + } + } + + if (error_detected) { + fputs(" dump_internal:\n", stderr); + sparsebit_dump_internal(stderr, s, 4); + abort(); + } +} + + +#ifdef FUZZ +/* A simple but effective fuzzing driver. Look for bugs with the help + * of some invariants and of a trivial representation of sparsebit. + * Just use 512 bytes of /dev/zero and /dev/urandom as inputs, and let + * afl-fuzz do the magic. :) + */ + +#include +#include + +struct range { + sparsebit_idx_t first, last; + bool set; +}; + +struct sparsebit *s; +struct range ranges[1000]; +int num_ranges; + +static bool get_value(sparsebit_idx_t idx) +{ + int i; + + for (i = num_ranges; --i >= 0; ) + if (ranges[i].first <= idx && idx <= ranges[i].last) + return ranges[i].set; + + return false; +} + +static void operate(int code, sparsebit_idx_t first, sparsebit_idx_t last) +{ + sparsebit_num_t num; + sparsebit_idx_t next; + + if (first < last) { + num = last - first + 1; + } else { + num = first - last + 1; + first = last; + last = first + num - 1; + } + + switch (code) { + case 0: + sparsebit_set(s, first); + assert(sparsebit_is_set(s, first)); + assert(!sparsebit_is_clear(s, first)); + assert(sparsebit_any_set(s)); + assert(!sparsebit_all_clear(s)); + if (get_value(first)) + return; + if (num_ranges == 1000) + exit(0); + ranges[num_ranges++] = (struct range) + { .first = first, .last = first, .set = true }; + break; + case 1: + sparsebit_clear(s, first); + assert(!sparsebit_is_set(s, first)); + assert(sparsebit_is_clear(s, first)); + assert(sparsebit_any_clear(s)); + assert(!sparsebit_all_set(s)); + if (!get_value(first)) + return; + if (num_ranges == 1000) + exit(0); + ranges[num_ranges++] = (struct range) + { .first = first, .last = first, .set = false }; + break; + case 2: + assert(sparsebit_is_set(s, first) == get_value(first)); + assert(sparsebit_is_clear(s, first) == !get_value(first)); + break; + case 3: + if (sparsebit_any_set(s)) + assert(get_value(sparsebit_first_set(s))); + if (sparsebit_any_clear(s)) + assert(!get_value(sparsebit_first_clear(s))); + sparsebit_set_all(s); + assert(!sparsebit_any_clear(s)); + assert(sparsebit_all_set(s)); + num_ranges = 0; + ranges[num_ranges++] = (struct range) + { .first = 0, .last = ~(sparsebit_idx_t)0, .set = true }; + break; + case 4: + if (sparsebit_any_set(s)) + assert(get_value(sparsebit_first_set(s))); + if (sparsebit_any_clear(s)) + assert(!get_value(sparsebit_first_clear(s))); + sparsebit_clear_all(s); + assert(!sparsebit_any_set(s)); + assert(sparsebit_all_clear(s)); + num_ranges = 0; + break; + case 5: + next = sparsebit_next_set(s, first); + assert(next == 0 || next > first); + assert(next == 0 || get_value(next)); + break; + case 6: + next = sparsebit_next_clear(s, first); + assert(next == 0 || next > first); + assert(next == 0 || !get_value(next)); + break; + case 7: + next = sparsebit_next_clear(s, first); + if (sparsebit_is_set_num(s, first, num)) { + assert(next == 0 || next > last); + if (first) + next = sparsebit_next_set(s, first - 1); + else if (sparsebit_any_set(s)) + next = sparsebit_first_set(s); + else + return; + assert(next == first); + } else { + assert(sparsebit_is_clear(s, first) || next <= last); + } + break; + case 8: + next = sparsebit_next_set(s, first); + if (sparsebit_is_clear_num(s, first, num)) { + assert(next == 0 || next > last); + if (first) + next = sparsebit_next_clear(s, first - 1); + else if (sparsebit_any_clear(s)) + next = sparsebit_first_clear(s); + else + return; + assert(next == first); + } else { + assert(sparsebit_is_set(s, first) || next <= last); + } + break; + case 9: + sparsebit_set_num(s, first, num); + assert(sparsebit_is_set_num(s, first, num)); + assert(!sparsebit_is_clear_num(s, first, num)); + assert(sparsebit_any_set(s)); + assert(!sparsebit_all_clear(s)); + if (num_ranges == 1000) + exit(0); + ranges[num_ranges++] = (struct range) + { .first = first, .last = last, .set = true }; + break; + case 10: + sparsebit_clear_num(s, first, num); + assert(!sparsebit_is_set_num(s, first, num)); + assert(sparsebit_is_clear_num(s, first, num)); + assert(sparsebit_any_clear(s)); + assert(!sparsebit_all_set(s)); + if (num_ranges == 1000) + exit(0); + ranges[num_ranges++] = (struct range) + { .first = first, .last = last, .set = false }; + break; + case 11: + sparsebit_validate_internal(s); + break; + default: + break; + } +} + +unsigned char get8(void) +{ + int ch; + + ch = getchar(); + if (ch == EOF) + exit(0); + return ch; +} + +uint64_t get64(void) +{ + uint64_t x; + + x = get8(); + x = (x << 8) | get8(); + x = (x << 8) | get8(); + x = (x << 8) | get8(); + x = (x << 8) | get8(); + x = (x << 8) | get8(); + x = (x << 8) | get8(); + return (x << 8) | get8(); +} + +int main(void) +{ + s = sparsebit_alloc(); + for (;;) { + uint8_t op = get8() & 0xf; + uint64_t first = get64(); + uint64_t last = get64(); + + operate(op, first, last); + } +} +#endif diff --git a/tools/testing/selftests/kvm/lib/x86.c b/tools/testing/selftests/kvm/lib/x86.c new file mode 100644 index 000000000000..12df46280b23 --- /dev/null +++ b/tools/testing/selftests/kvm/lib/x86.c @@ -0,0 +1,697 @@ +/* + * tools/testing/selftests/kvm/lib/x86.c + * + * Copyright (C) 2018, Google LLC. + * + * This work is licensed under the terms of the GNU GPL, version 2. + */ + +#define _GNU_SOURCE /* for program_invocation_name */ + +#include "test_util.h" +#include "kvm_util.h" +#include "kvm_util_internal.h" +#include "x86.h" + +/* Minimum physical address used for virtual translation tables. */ +#define KVM_GUEST_PAGE_TABLE_MIN_PADDR 0x180000 + +/* Virtual translation table structure declarations */ +struct pageMapL4Entry { + uint64_t present:1; + uint64_t writable:1; + uint64_t user:1; + uint64_t write_through:1; + uint64_t cache_disable:1; + uint64_t accessed:1; + uint64_t ignored_06:1; + uint64_t page_size:1; + uint64_t ignored_11_08:4; + uint64_t address:40; + uint64_t ignored_62_52:11; + uint64_t execute_disable:1; +}; + +struct pageDirectoryPointerEntry { + uint64_t present:1; + uint64_t writable:1; + uint64_t user:1; + uint64_t write_through:1; + uint64_t cache_disable:1; + uint64_t accessed:1; + uint64_t ignored_06:1; + uint64_t page_size:1; + uint64_t ignored_11_08:4; + uint64_t address:40; + uint64_t ignored_62_52:11; + uint64_t execute_disable:1; +}; + +struct pageDirectoryEntry { + uint64_t present:1; + uint64_t writable:1; + uint64_t user:1; + uint64_t write_through:1; + uint64_t cache_disable:1; + uint64_t accessed:1; + uint64_t ignored_06:1; + uint64_t page_size:1; + uint64_t ignored_11_08:4; + uint64_t address:40; + uint64_t ignored_62_52:11; + uint64_t execute_disable:1; +}; + +struct pageTableEntry { + uint64_t present:1; + uint64_t writable:1; + uint64_t user:1; + uint64_t write_through:1; + uint64_t cache_disable:1; + uint64_t accessed:1; + uint64_t dirty:1; + uint64_t reserved_07:1; + uint64_t global:1; + uint64_t ignored_11_09:3; + uint64_t address:40; + uint64_t ignored_62_52:11; + uint64_t execute_disable:1; +}; + +/* Register Dump + * + * Input Args: + * indent - Left margin indent amount + * regs - register + * + * Output Args: + * stream - Output FILE stream + * + * Return: None + * + * Dumps the state of the registers given by regs, to the FILE stream + * given by steam. + */ +void regs_dump(FILE *stream, struct kvm_regs *regs, + uint8_t indent) +{ + fprintf(stream, "%*srax: 0x%.16llx rbx: 0x%.16llx " + "rcx: 0x%.16llx rdx: 0x%.16llx\n", + indent, "", + regs->rax, regs->rbx, regs->rcx, regs->rdx); + fprintf(stream, "%*srsi: 0x%.16llx rdi: 0x%.16llx " + "rsp: 0x%.16llx rbp: 0x%.16llx\n", + indent, "", + regs->rsi, regs->rdi, regs->rsp, regs->rbp); + fprintf(stream, "%*sr8: 0x%.16llx r9: 0x%.16llx " + "r10: 0x%.16llx r11: 0x%.16llx\n", + indent, "", + regs->r8, regs->r9, regs->r10, regs->r11); + fprintf(stream, "%*sr12: 0x%.16llx r13: 0x%.16llx " + "r14: 0x%.16llx r15: 0x%.16llx\n", + indent, "", + regs->r12, regs->r13, regs->r14, regs->r15); + fprintf(stream, "%*srip: 0x%.16llx rfl: 0x%.16llx\n", + indent, "", + regs->rip, regs->rflags); +} + +/* Segment Dump + * + * Input Args: + * indent - Left margin indent amount + * segment - KVM segment + * + * Output Args: + * stream - Output FILE stream + * + * Return: None + * + * Dumps the state of the KVM segment given by segment, to the FILE stream + * given by steam. + */ +static void segment_dump(FILE *stream, struct kvm_segment *segment, + uint8_t indent) +{ + fprintf(stream, "%*sbase: 0x%.16llx limit: 0x%.8x " + "selector: 0x%.4x type: 0x%.2x\n", + indent, "", segment->base, segment->limit, + segment->selector, segment->type); + fprintf(stream, "%*spresent: 0x%.2x dpl: 0x%.2x " + "db: 0x%.2x s: 0x%.2x l: 0x%.2x\n", + indent, "", segment->present, segment->dpl, + segment->db, segment->s, segment->l); + fprintf(stream, "%*sg: 0x%.2x avl: 0x%.2x " + "unusable: 0x%.2x padding: 0x%.2x\n", + indent, "", segment->g, segment->avl, + segment->unusable, segment->padding); +} + +/* dtable Dump + * + * Input Args: + * indent - Left margin indent amount + * dtable - KVM dtable + * + * Output Args: + * stream - Output FILE stream + * + * Return: None + * + * Dumps the state of the KVM dtable given by dtable, to the FILE stream + * given by steam. + */ +static void dtable_dump(FILE *stream, struct kvm_dtable *dtable, + uint8_t indent) +{ + fprintf(stream, "%*sbase: 0x%.16llx limit: 0x%.4x " + "padding: 0x%.4x 0x%.4x 0x%.4x\n", + indent, "", dtable->base, dtable->limit, + dtable->padding[0], dtable->padding[1], dtable->padding[2]); +} + +/* System Register Dump + * + * Input Args: + * indent - Left margin indent amount + * sregs - System registers + * + * Output Args: + * stream - Output FILE stream + * + * Return: None + * + * Dumps the state of the system registers given by sregs, to the FILE stream + * given by steam. + */ +void sregs_dump(FILE *stream, struct kvm_sregs *sregs, + uint8_t indent) +{ + unsigned int i; + + fprintf(stream, "%*scs:\n", indent, ""); + segment_dump(stream, &sregs->cs, indent + 2); + fprintf(stream, "%*sds:\n", indent, ""); + segment_dump(stream, &sregs->ds, indent + 2); + fprintf(stream, "%*ses:\n", indent, ""); + segment_dump(stream, &sregs->es, indent + 2); + fprintf(stream, "%*sfs:\n", indent, ""); + segment_dump(stream, &sregs->fs, indent + 2); + fprintf(stream, "%*sgs:\n", indent, ""); + segment_dump(stream, &sregs->gs, indent + 2); + fprintf(stream, "%*sss:\n", indent, ""); + segment_dump(stream, &sregs->ss, indent + 2); + fprintf(stream, "%*str:\n", indent, ""); + segment_dump(stream, &sregs->tr, indent + 2); + fprintf(stream, "%*sldt:\n", indent, ""); + segment_dump(stream, &sregs->ldt, indent + 2); + + fprintf(stream, "%*sgdt:\n", indent, ""); + dtable_dump(stream, &sregs->gdt, indent + 2); + fprintf(stream, "%*sidt:\n", indent, ""); + dtable_dump(stream, &sregs->idt, indent + 2); + + fprintf(stream, "%*scr0: 0x%.16llx cr2: 0x%.16llx " + "cr3: 0x%.16llx cr4: 0x%.16llx\n", + indent, "", + sregs->cr0, sregs->cr2, sregs->cr3, sregs->cr4); + fprintf(stream, "%*scr8: 0x%.16llx efer: 0x%.16llx " + "apic_base: 0x%.16llx\n", + indent, "", + sregs->cr8, sregs->efer, sregs->apic_base); + + fprintf(stream, "%*sinterrupt_bitmap:\n", indent, ""); + for (i = 0; i < (KVM_NR_INTERRUPTS + 63) / 64; i++) { + fprintf(stream, "%*s%.16llx\n", indent + 2, "", + sregs->interrupt_bitmap[i]); + } +} + +void virt_pgd_alloc(struct kvm_vm *vm, uint32_t pgd_memslot) +{ + int rc; + + TEST_ASSERT(vm->mode == VM_MODE_FLAT48PG, "Attempt to use " + "unknown or unsupported guest mode, mode: 0x%x", vm->mode); + + /* If needed, create page map l4 table. */ + if (!vm->pgd_created) { + vm_paddr_t paddr = vm_phy_page_alloc(vm, + KVM_GUEST_PAGE_TABLE_MIN_PADDR, pgd_memslot); + vm->pgd = paddr; + + /* Set pointer to pgd tables in all the VCPUs that + * have already been created. Future VCPUs will have + * the value set as each one is created. + */ + for (struct vcpu *vcpu = vm->vcpu_head; vcpu; + vcpu = vcpu->next) { + struct kvm_sregs sregs; + + /* Obtain the current system register settings */ + vcpu_sregs_get(vm, vcpu->id, &sregs); + + /* Set and store the pointer to the start of the + * pgd tables. + */ + sregs.cr3 = vm->pgd; + vcpu_sregs_set(vm, vcpu->id, &sregs); + } + + vm->pgd_created = true; + } +} + +/* VM Virtual Page Map + * + * Input Args: + * vm - Virtual Machine + * vaddr - VM Virtual Address + * paddr - VM Physical Address + * pgd_memslot - Memory region slot for new virtual translation tables + * + * Output Args: None + * + * Return: None + * + * Within the VM given by vm, creates a virtual translation for the page + * starting at vaddr to the page starting at paddr. + */ +void virt_pg_map(struct kvm_vm *vm, uint64_t vaddr, uint64_t paddr, + uint32_t pgd_memslot) +{ + uint16_t index[4]; + struct pageMapL4Entry *pml4e; + + TEST_ASSERT(vm->mode == VM_MODE_FLAT48PG, "Attempt to use " + "unknown or unsupported guest mode, mode: 0x%x", vm->mode); + + TEST_ASSERT((vaddr % vm->page_size) == 0, + "Virtual address not on page boundary,\n" + " vaddr: 0x%lx vm->page_size: 0x%x", + vaddr, vm->page_size); + TEST_ASSERT(sparsebit_is_set(vm->vpages_valid, + (vaddr >> vm->page_shift)), + "Invalid virtual address, vaddr: 0x%lx", + vaddr); + TEST_ASSERT((paddr % vm->page_size) == 0, + "Physical address not on page boundary,\n" + " paddr: 0x%lx vm->page_size: 0x%x", + paddr, vm->page_size); + TEST_ASSERT((paddr >> vm->page_shift) <= vm->max_gfn, + "Physical address beyond beyond maximum supported,\n" + " paddr: 0x%lx vm->max_gfn: 0x%lx vm->page_size: 0x%x", + paddr, vm->max_gfn, vm->page_size); + + index[0] = (vaddr >> 12) & 0x1ffu; + index[1] = (vaddr >> 21) & 0x1ffu; + index[2] = (vaddr >> 30) & 0x1ffu; + index[3] = (vaddr >> 39) & 0x1ffu; + + /* Allocate page directory pointer table if not present. */ + pml4e = addr_gpa2hva(vm, vm->pgd); + if (!pml4e[index[3]].present) { + pml4e[index[3]].address = vm_phy_page_alloc(vm, + KVM_GUEST_PAGE_TABLE_MIN_PADDR, pgd_memslot) + >> vm->page_shift; + pml4e[index[3]].writable = true; + pml4e[index[3]].present = true; + } + + /* Allocate page directory table if not present. */ + struct pageDirectoryPointerEntry *pdpe; + pdpe = addr_gpa2hva(vm, pml4e[index[3]].address * vm->page_size); + if (!pdpe[index[2]].present) { + pdpe[index[2]].address = vm_phy_page_alloc(vm, + KVM_GUEST_PAGE_TABLE_MIN_PADDR, pgd_memslot) + >> vm->page_shift; + pdpe[index[2]].writable = true; + pdpe[index[2]].present = true; + } + + /* Allocate page table if not present. */ + struct pageDirectoryEntry *pde; + pde = addr_gpa2hva(vm, pdpe[index[2]].address * vm->page_size); + if (!pde[index[1]].present) { + pde[index[1]].address = vm_phy_page_alloc(vm, + KVM_GUEST_PAGE_TABLE_MIN_PADDR, pgd_memslot) + >> vm->page_shift; + pde[index[1]].writable = true; + pde[index[1]].present = true; + } + + /* Fill in page table entry. */ + struct pageTableEntry *pte; + pte = addr_gpa2hva(vm, pde[index[1]].address * vm->page_size); + pte[index[0]].address = paddr >> vm->page_shift; + pte[index[0]].writable = true; + pte[index[0]].present = 1; +} + +/* Virtual Translation Tables Dump + * + * Input Args: + * vm - Virtual Machine + * indent - Left margin indent amount + * + * Output Args: + * stream - Output FILE stream + * + * Return: None + * + * Dumps to the FILE stream given by stream, the contents of all the + * virtual translation tables for the VM given by vm. + */ +void virt_dump(FILE *stream, struct kvm_vm *vm, uint8_t indent) +{ + struct pageMapL4Entry *pml4e, *pml4e_start; + struct pageDirectoryPointerEntry *pdpe, *pdpe_start; + struct pageDirectoryEntry *pde, *pde_start; + struct pageTableEntry *pte, *pte_start; + + if (!vm->pgd_created) + return; + + fprintf(stream, "%*s " + " no\n", indent, ""); + fprintf(stream, "%*s index hvaddr gpaddr " + "addr w exec dirty\n", + indent, ""); + pml4e_start = (struct pageMapL4Entry *) addr_gpa2hva(vm, + vm->pgd); + for (uint16_t n1 = 0; n1 <= 0x1ffu; n1++) { + pml4e = &pml4e_start[n1]; + if (!pml4e->present) + continue; + fprintf(stream, "%*spml4e 0x%-3zx %p 0x%-12lx 0x%-10lx %u " + " %u\n", + indent, "", + pml4e - pml4e_start, pml4e, + addr_hva2gpa(vm, pml4e), (uint64_t) pml4e->address, + pml4e->writable, pml4e->execute_disable); + + pdpe_start = addr_gpa2hva(vm, pml4e->address + * vm->page_size); + for (uint16_t n2 = 0; n2 <= 0x1ffu; n2++) { + pdpe = &pdpe_start[n2]; + if (!pdpe->present) + continue; + fprintf(stream, "%*spdpe 0x%-3zx %p 0x%-12lx 0x%-10lx " + "%u %u\n", + indent, "", + pdpe - pdpe_start, pdpe, + addr_hva2gpa(vm, pdpe), + (uint64_t) pdpe->address, pdpe->writable, + pdpe->execute_disable); + + pde_start = addr_gpa2hva(vm, + pdpe->address * vm->page_size); + for (uint16_t n3 = 0; n3 <= 0x1ffu; n3++) { + pde = &pde_start[n3]; + if (!pde->present) + continue; + fprintf(stream, "%*spde 0x%-3zx %p " + "0x%-12lx 0x%-10lx %u %u\n", + indent, "", pde - pde_start, pde, + addr_hva2gpa(vm, pde), + (uint64_t) pde->address, pde->writable, + pde->execute_disable); + + pte_start = addr_gpa2hva(vm, + pde->address * vm->page_size); + for (uint16_t n4 = 0; n4 <= 0x1ffu; n4++) { + pte = &pte_start[n4]; + if (!pte->present) + continue; + fprintf(stream, "%*spte 0x%-3zx %p " + "0x%-12lx 0x%-10lx %u %u " + " %u 0x%-10lx\n", + indent, "", + pte - pte_start, pte, + addr_hva2gpa(vm, pte), + (uint64_t) pte->address, + pte->writable, + pte->execute_disable, + pte->dirty, + ((uint64_t) n1 << 27) + | ((uint64_t) n2 << 18) + | ((uint64_t) n3 << 9) + | ((uint64_t) n4)); + } + } + } + } +} + +/* Set Unusable Segment + * + * Input Args: None + * + * Output Args: + * segp - Pointer to segment register + * + * Return: None + * + * Sets the segment register pointed to by segp to an unusable state. + */ +static void kvm_seg_set_unusable(struct kvm_segment *segp) +{ + memset(segp, 0, sizeof(*segp)); + segp->unusable = true; +} + +/* Set Long Mode Flat Kernel Code Segment + * + * Input Args: + * selector - selector value + * + * Output Args: + * segp - Pointer to KVM segment + * + * Return: None + * + * Sets up the KVM segment pointed to by segp, to be a code segment + * with the selector value given by selector. + */ +static void kvm_seg_set_kernel_code_64bit(uint16_t selector, + struct kvm_segment *segp) +{ + memset(segp, 0, sizeof(*segp)); + segp->selector = selector; + segp->limit = 0xFFFFFFFFu; + segp->s = 0x1; /* kTypeCodeData */ + segp->type = 0x08 | 0x01 | 0x02; /* kFlagCode | kFlagCodeAccessed + * | kFlagCodeReadable + */ + segp->g = true; + segp->l = true; + segp->present = 1; +} + +/* Set Long Mode Flat Kernel Data Segment + * + * Input Args: + * selector - selector value + * + * Output Args: + * segp - Pointer to KVM segment + * + * Return: None + * + * Sets up the KVM segment pointed to by segp, to be a data segment + * with the selector value given by selector. + */ +static void kvm_seg_set_kernel_data_64bit(uint16_t selector, + struct kvm_segment *segp) +{ + memset(segp, 0, sizeof(*segp)); + segp->selector = selector; + segp->limit = 0xFFFFFFFFu; + segp->s = 0x1; /* kTypeCodeData */ + segp->type = 0x00 | 0x01 | 0x02; /* kFlagData | kFlagDataAccessed + * | kFlagDataWritable + */ + segp->g = true; + segp->present = true; +} + +/* Address Guest Virtual to Guest Physical + * + * Input Args: + * vm - Virtual Machine + * gpa - VM virtual address + * + * Output Args: None + * + * Return: + * Equivalent VM physical address + * + * Translates the VM virtual address given by gva to a VM physical + * address and then locates the memory region containing the VM + * physical address, within the VM given by vm. When found, the host + * virtual address providing the memory to the vm physical address is returned. + * A TEST_ASSERT failure occurs if no region containing translated + * VM virtual address exists. + */ +vm_paddr_t addr_gva2gpa(struct kvm_vm *vm, vm_vaddr_t gva) +{ + uint16_t index[4]; + struct pageMapL4Entry *pml4e; + struct pageDirectoryPointerEntry *pdpe; + struct pageDirectoryEntry *pde; + struct pageTableEntry *pte; + void *hva; + + TEST_ASSERT(vm->mode == VM_MODE_FLAT48PG, "Attempt to use " + "unknown or unsupported guest mode, mode: 0x%x", vm->mode); + + index[0] = (gva >> 12) & 0x1ffu; + index[1] = (gva >> 21) & 0x1ffu; + index[2] = (gva >> 30) & 0x1ffu; + index[3] = (gva >> 39) & 0x1ffu; + + if (!vm->pgd_created) + goto unmapped_gva; + pml4e = addr_gpa2hva(vm, vm->pgd); + if (!pml4e[index[3]].present) + goto unmapped_gva; + + pdpe = addr_gpa2hva(vm, pml4e[index[3]].address * vm->page_size); + if (!pdpe[index[2]].present) + goto unmapped_gva; + + pde = addr_gpa2hva(vm, pdpe[index[2]].address * vm->page_size); + if (!pde[index[1]].present) + goto unmapped_gva; + + pte = addr_gpa2hva(vm, pde[index[1]].address * vm->page_size); + if (!pte[index[0]].present) + goto unmapped_gva; + + return (pte[index[0]].address * vm->page_size) + (gva & 0xfffu); + +unmapped_gva: + TEST_ASSERT(false, "No mapping for vm virtual address, " + "gva: 0x%lx", gva); +} + +void vcpu_setup(struct kvm_vm *vm, int vcpuid) +{ + struct kvm_sregs sregs; + + /* Set mode specific system register values. */ + vcpu_sregs_get(vm, vcpuid, &sregs); + + switch (vm->mode) { + case VM_MODE_FLAT48PG: + sregs.cr0 = X86_CR0_PE | X86_CR0_NE | X86_CR0_PG; + sregs.cr4 |= X86_CR4_PAE; + sregs.efer |= (EFER_LME | EFER_LMA | EFER_NX); + + kvm_seg_set_unusable(&sregs.ldt); + kvm_seg_set_kernel_code_64bit(0x8, &sregs.cs); + kvm_seg_set_kernel_data_64bit(0x10, &sregs.ds); + kvm_seg_set_kernel_data_64bit(0x10, &sregs.es); + break; + + default: + TEST_ASSERT(false, "Unknown guest mode, mode: 0x%x", vm->mode); + } + vcpu_sregs_set(vm, vcpuid, &sregs); + + /* If virtual translation table have been setup, set system register + * to point to the tables. It's okay if they haven't been setup yet, + * in that the code that sets up the virtual translation tables, will + * go back through any VCPUs that have already been created and set + * their values. + */ + if (vm->pgd_created) { + struct kvm_sregs sregs; + + vcpu_sregs_get(vm, vcpuid, &sregs); + + sregs.cr3 = vm->pgd; + vcpu_sregs_set(vm, vcpuid, &sregs); + } +} +/* Adds a vCPU with reasonable defaults (i.e., a stack) + * + * Input Args: + * vcpuid - The id of the VCPU to add to the VM. + * guest_code - The vCPU's entry point + */ +void vm_vcpu_add_default(struct kvm_vm *vm, uint32_t vcpuid, void *guest_code) +{ + struct kvm_mp_state mp_state; + struct kvm_regs regs; + vm_vaddr_t stack_vaddr; + stack_vaddr = vm_vaddr_alloc(vm, DEFAULT_STACK_PGS * getpagesize(), + DEFAULT_GUEST_STACK_VADDR_MIN, 0, 0); + + /* Create VCPU */ + vm_vcpu_add(vm, vcpuid); + + /* Setup guest general purpose registers */ + vcpu_regs_get(vm, vcpuid, ®s); + regs.rflags = regs.rflags | 0x2; + regs.rsp = stack_vaddr + (DEFAULT_STACK_PGS * getpagesize()); + regs.rip = (unsigned long) guest_code; + vcpu_regs_set(vm, vcpuid, ®s); + + /* Setup the MP state */ + mp_state.mp_state = 0; + vcpu_set_mp_state(vm, vcpuid, &mp_state); +} + +/* VM VCPU CPUID Set + * + * Input Args: + * vm - Virtual Machine + * vcpuid - VCPU id + * cpuid - The CPUID values to set. + * + * Output Args: None + * + * Return: void + * + * Set the VCPU's CPUID. + */ +void vcpu_set_cpuid(struct kvm_vm *vm, + uint32_t vcpuid, struct kvm_cpuid2 *cpuid) +{ + struct vcpu *vcpu = vcpu_find(vm, vcpuid); + int rc; + + TEST_ASSERT(vcpu != NULL, "vcpu not found, vcpuid: %u", vcpuid); + + rc = ioctl(vcpu->fd, KVM_SET_CPUID2, cpuid); + TEST_ASSERT(rc == 0, "KVM_SET_CPUID2 failed, rc: %i errno: %i", + rc, errno); + +} +/* Create a VM with reasonable defaults + * + * Input Args: + * vcpuid - The id of the single VCPU to add to the VM. + * guest_code - The vCPU's entry point + * + * Output Args: None + * + * Return: + * Pointer to opaque structure that describes the created VM. + */ +struct kvm_vm *vm_create_default(uint32_t vcpuid, void *guest_code) +{ + struct kvm_vm *vm; + + /* Create VM */ + vm = vm_create(VM_MODE_FLAT48PG, DEFAULT_GUEST_PHY_PAGES, O_RDWR); + + /* Setup IRQ Chip */ + vm_create_irqchip(vm); + + /* Add the first vCPU. */ + vm_vcpu_add_default(vm, vcpuid, guest_code); + + return vm; +} diff --git a/tools/testing/selftests/kvm/set_sregs_test.c b/tools/testing/selftests/kvm/set_sregs_test.c new file mode 100644 index 000000000000..090fd3f19352 --- /dev/null +++ b/tools/testing/selftests/kvm/set_sregs_test.c @@ -0,0 +1,54 @@ +/* + * KVM_SET_SREGS tests + * + * Copyright (C) 2018, Google LLC. + * + * This work is licensed under the terms of the GNU GPL, version 2. + * + * This is a regression test for the bug fixed by the following commit: + * d3802286fa0f ("kvm: x86: Disallow illegal IA32_APIC_BASE MSR values") + * + * That bug allowed a user-mode program that called the KVM_SET_SREGS + * ioctl to put a VCPU's local APIC into an invalid state. + * + */ +#define _GNU_SOURCE /* for program_invocation_short_name */ +#include +#include +#include +#include +#include + +#include "test_util.h" + +#include "kvm_util.h" +#include "x86.h" + +#define VCPU_ID 5 + +int main(int argc, char *argv[]) +{ + struct kvm_sregs sregs; + struct kvm_vm *vm; + int rc; + + /* Tell stdout not to buffer its content */ + setbuf(stdout, NULL); + + /* Create VM */ + vm = vm_create_default(VCPU_ID, NULL); + + vcpu_sregs_get(vm, VCPU_ID, &sregs); + sregs.apic_base = 1 << 10; + rc = _vcpu_sregs_set(vm, VCPU_ID, &sregs); + TEST_ASSERT(rc, "Set IA32_APIC_BASE to %llx (invalid)", + sregs.apic_base); + sregs.apic_base = 1 << 11; + rc = _vcpu_sregs_set(vm, VCPU_ID, &sregs); + TEST_ASSERT(!rc, "Couldn't set IA32_APIC_BASE to %llx (valid)", + sregs.apic_base); + + kvm_vm_free(vm); + + return 0; +} -- cgit v1.2.3-59-g8ed1b