// SPDX-License-Identifier: GPL-2.0-only /* * common.c - C code for kernel entry and exit * Copyright (c) 2015 Andrew Lutomirski * * Based on asm and ptrace code by many authors. The code here originated * in ptrace.c and signal.c. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef CONFIG_XEN_PV #include #include #endif #include #include #include #include #include #include #include #include #include #define CREATE_TRACE_POINTS #include #ifdef CONFIG_CONTEXT_TRACKING /** * enter_from_user_mode - Establish state when coming from user mode * * Syscall entry disables interrupts, but user mode is traced as interrupts * enabled. Also with NO_HZ_FULL RCU might be idle. * * 1) Tell lockdep that interrupts are disabled * 2) Invoke context tracking if enabled to reactivate RCU * 3) Trace interrupts off state */ static noinstr void enter_from_user_mode(void) { enum ctx_state state = ct_state(); lockdep_hardirqs_off(CALLER_ADDR0); user_exit_irqoff(); instrumentation_begin(); CT_WARN_ON(state != CONTEXT_USER); trace_hardirqs_off_finish(); instrumentation_end(); } #else static __always_inline void enter_from_user_mode(void) { lockdep_hardirqs_off(CALLER_ADDR0); instrumentation_begin(); trace_hardirqs_off_finish(); instrumentation_end(); } #endif /** * exit_to_user_mode - Fixup state when exiting to user mode * * Syscall exit enables interrupts, but the kernel state is interrupts * disabled when this is invoked. Also tell RCU about it. * * 1) Trace interrupts on state * 2) Invoke context tracking if enabled to adjust RCU state * 3) Clear CPU buffers if CPU is affected by MDS and the migitation is on. * 4) Tell lockdep that interrupts are enabled */ static __always_inline void exit_to_user_mode(void) { instrumentation_begin(); trace_hardirqs_on_prepare(); lockdep_hardirqs_on_prepare(CALLER_ADDR0); instrumentation_end(); user_enter_irqoff(); mds_user_clear_cpu_buffers(); lockdep_hardirqs_on(CALLER_ADDR0); } static void do_audit_syscall_entry(struct pt_regs *regs, u32 arch) { #ifdef CONFIG_X86_64 if (arch == AUDIT_ARCH_X86_64) { audit_syscall_entry(regs->orig_ax, regs->di, regs->si, regs->dx, regs->r10); } else #endif { audit_syscall_entry(regs->orig_ax, regs->bx, regs->cx, regs->dx, regs->si); } } /* * Returns the syscall nr to run (which should match regs->orig_ax) or -1 * to skip the syscall. */ static long syscall_trace_enter(struct pt_regs *regs) { u32 arch = in_ia32_syscall() ? AUDIT_ARCH_I386 : AUDIT_ARCH_X86_64; struct thread_info *ti = current_thread_info(); unsigned long ret = 0; u32 work; if (IS_ENABLED(CONFIG_DEBUG_ENTRY)) BUG_ON(regs != task_pt_regs(current)); work = READ_ONCE(ti->flags); if (work & (_TIF_SYSCALL_TRACE | _TIF_SYSCALL_EMU)) { ret = tracehook_report_syscall_entry(regs); if (ret || (work & _TIF_SYSCALL_EMU)) return -1L; } #ifdef CONFIG_SECCOMP /* * Do seccomp after ptrace, to catch any tracer changes. */ if (work & _TIF_SECCOMP) { struct seccomp_data sd; sd.arch = arch; sd.nr = regs->orig_ax; sd.instruction_pointer = regs->ip; #ifdef CONFIG_X86_64 if (arch == AUDIT_ARCH_X86_64) { sd.args[0] = regs->di; sd.args[1] = regs->si; sd.args[2] = regs->dx; sd.args[3] = regs->r10; sd.args[4] = regs->r8; sd.args[5] = regs->r9; } else #endif { sd.args[0] = regs->bx; sd.args[1] = regs->cx; sd.args[2] = regs->dx; sd.args[3] = regs->si; sd.args[4] = regs->di; sd.args[5] = regs->bp; } ret = __secure_computing(&sd); if (ret == -1) return ret; } #endif if (unlikely(test_thread_flag(TIF_SYSCALL_TRACEPOINT))) trace_sys_enter(regs, regs->orig_ax); do_audit_syscall_entry(regs, arch); return ret ?: regs->orig_ax; } #define EXIT_TO_USERMODE_LOOP_FLAGS \ (_TIF_SIGPENDING | _TIF_NOTIFY_RESUME | _TIF_UPROBE | \ _TIF_NEED_RESCHED | _TIF_USER_RETURN_NOTIFY | _TIF_PATCH_PENDING) static void exit_to_usermode_loop(struct pt_regs *regs, u32 cached_flags) { /* * In order to return to user mode, we need to have IRQs off with * none of EXIT_TO_USERMODE_LOOP_FLAGS set. Several of these flags * can be set at any time on preemptible kernels if we have IRQs on, * so we need to loop. Disabling preemption wouldn't help: doing the * work to clear some of the flags can sleep. */ while (true) { /* We have work to do. */ local_irq_enable(); if (cached_flags & _TIF_NEED_RESCHED) schedule(); if (cached_flags & _TIF_UPROBE) uprobe_notify_resume(regs); if (cached_flags & _TIF_PATCH_PENDING) klp_update_patch_state(current); /* deal with pending signal delivery */ if (cached_flags & _TIF_SIGPENDING) do_signal(regs); if (cached_flags & _TIF_NOTIFY_RESUME) { clear_thread_flag(TIF_NOTIFY_RESUME); tracehook_notify_resume(regs); rseq_handle_notify_resume(NULL, regs); } if (cached_flags & _TIF_USER_RETURN_NOTIFY) fire_user_return_notifiers(); /* Disable IRQs and retry */ local_irq_disable(); cached_flags = READ_ONCE(current_thread_info()->flags); if (!(cached_flags & EXIT_TO_USERMODE_LOOP_FLAGS)) break; } } static void __prepare_exit_to_usermode(struct pt_regs *regs) { struct thread_info *ti = current_thread_info(); u32 cached_flags; addr_limit_user_check(); lockdep_assert_irqs_disabled(); lockdep_sys_exit(); cached_flags = READ_ONCE(ti->flags); if (unlikely(cached_flags & EXIT_TO_USERMODE_LOOP_FLAGS)) exit_to_usermode_loop(regs, cached_flags); /* Reload ti->flags; we may have rescheduled above. */ cached_flags = READ_ONCE(ti->flags); if (unlikely(cached_flags & _TIF_IO_BITMAP)) tss_update_io_bitmap(); fpregs_assert_state_consistent(); if (unlikely(cached_flags & _TIF_NEED_FPU_LOAD)) switch_fpu_return(); #ifdef CONFIG_COMPAT /* * Compat syscalls set TS_COMPAT. Make sure we clear it before * returning to user mode. We need to clear it *after* signal * handling, because syscall restart has a fixup for compat * syscalls. The fixup is exercised by the ptrace_syscall_32 * selftest. * * We also need to clear TS_REGS_POKED_I386: the 32-bit tracer * special case only applies after poking regs and before the * very next return to user mode. */ ti->status &= ~(TS_COMPAT|TS_I386_REGS_POKED); #endif } __visible noinstr void prepare_exit_to_usermode(struct pt_regs *regs) { instrumentation_begin(); __prepare_exit_to_usermode(regs); instrumentation_end(); exit_to_user_mode(); } #define SYSCALL_EXIT_WORK_FLAGS \ (_TIF_SYSCALL_TRACE | _TIF_SYSCALL_AUDIT | \ _TIF_SINGLESTEP | _TIF_SYSCALL_TRACEPOINT) static void syscall_slow_exit_work(struct pt_regs *regs, u32 cached_flags) { bool step; audit_syscall_exit(regs); if (cached_flags & _TIF_SYSCALL_TRACEPOINT) trace_sys_exit(regs, regs->ax); /* * If TIF_SYSCALL_EMU is set, we only get here because of * TIF_SINGLESTEP (i.e. this is PTRACE_SYSEMU_SINGLESTEP). * We already reported this syscall instruction in * syscall_trace_enter(). */ step = unlikely( (cached_flags & (_TIF_SINGLESTEP | _TIF_SYSCALL_EMU)) == _TIF_SINGLESTEP); if (step || cached_flags & _TIF_SYSCALL_TRACE) tracehook_report_syscall_exit(regs, step); } static void __syscall_return_slowpath(struct pt_regs *regs) { struct thread_info *ti = current_thread_info(); u32 cached_flags = READ_ONCE(ti->flags); CT_WARN_ON(ct_state() != CONTEXT_KERNEL); if (IS_ENABLED(CONFIG_PROVE_LOCKING) && WARN(irqs_disabled(), "syscall %ld left IRQs disabled", regs->orig_ax)) local_irq_enable(); rseq_syscall(regs); /* * First do one-time work. If these work items are enabled, we * want to run them exactly once per syscall exit with IRQs on. */ if (unlikely(cached_flags & SYSCALL_EXIT_WORK_FLAGS)) syscall_slow_exit_work(regs, cached_flags); local_irq_disable(); __prepare_exit_to_usermode(regs); } /* * Called with IRQs on and fully valid regs. Returns with IRQs off in a * state such that we can immediately switch to user mode. */ __visible noinstr void syscall_return_slowpath(struct pt_regs *regs) { instrumentation_begin(); __syscall_return_slowpath(regs); instrumentation_end(); exit_to_user_mode(); } #ifdef CONFIG_X86_64 __visible noinstr void do_syscall_64(unsigned long nr, struct pt_regs *regs) { struct thread_info *ti; enter_from_user_mode(); instrumentation_begin(); local_irq_enable(); ti = current_thread_info(); if (READ_ONCE(ti->flags) & _TIF_WORK_SYSCALL_ENTRY) nr = syscall_trace_enter(regs); if (likely(nr < NR_syscalls)) { nr = array_index_nospec(nr, NR_syscalls); regs->ax = sys_call_table[nr](regs); #ifdef CONFIG_X86_X32_ABI } else if (likely((nr & __X32_SYSCALL_BIT) && (nr & ~__X32_SYSCALL_BIT) < X32_NR_syscalls)) { nr = array_index_nospec(nr & ~__X32_SYSCALL_BIT, X32_NR_syscalls); regs->ax = x32_sys_call_table[nr](regs); #endif } __syscall_return_slowpath(regs); instrumentation_end(); exit_to_user_mode(); } #endif #if defined(CONFIG_X86_32) || defined(CONFIG_IA32_EMULATION) /* * Does a 32-bit syscall. Called with IRQs on in CONTEXT_KERNEL. Does * all entry and exit work and returns with IRQs off. This function is * extremely hot in workloads that use it, and it's usually called from * do_fast_syscall_32, so forcibly inline it to improve performance. */ static void do_syscall_32_irqs_on(struct pt_regs *regs) { struct thread_info *ti = current_thread_info(); unsigned int nr = (unsigned int)regs->orig_ax; #ifdef CONFIG_IA32_EMULATION ti->status |= TS_COMPAT; #endif if (READ_ONCE(ti->flags) & _TIF_WORK_SYSCALL_ENTRY) { /* * Subtlety here: if ptrace pokes something larger than * 2^32-1 into orig_ax, this truncates it. This may or * may not be necessary, but it matches the old asm * behavior. */ nr = syscall_trace_enter(regs); } if (likely(nr < IA32_NR_syscalls)) { nr = array_index_nospec(nr, IA32_NR_syscalls); regs->ax = ia32_sys_call_table[nr](regs); } __syscall_return_slowpath(regs); } /* Handles int $0x80 */ __visible noinstr void do_int80_syscall_32(struct pt_regs *regs) { enter_from_user_mode(); instrumentation_begin(); local_irq_enable(); do_syscall_32_irqs_on(regs); instrumentation_end(); exit_to_user_mode(); } static bool __do_fast_syscall_32(struct pt_regs *regs) { int res; /* Fetch EBP from where the vDSO stashed it. */ if (IS_ENABLED(CONFIG_X86_64)) { /* * Micro-optimization: the pointer we're following is * explicitly 32 bits, so it can't be out of range. */ res = __get_user(*(u32 *)®s->bp, (u32 __user __force *)(unsigned long)(u32)regs->sp); } else { res = get_user(*(u32 *)®s->bp, (u32 __user __force *)(unsigned long)(u32)regs->sp); } if (res) { /* User code screwed up. */ regs->ax = -EFAULT; local_irq_disable(); __prepare_exit_to_usermode(regs); return false; } /* Now this is just like a normal syscall. */ do_syscall_32_irqs_on(regs); return true; } /* Returns 0 to return using IRET or 1 to return using SYSEXIT/SYSRETL. */ __visible noinstr long do_fast_syscall_32(struct pt_regs *regs) { /* * Called using the internal vDSO SYSENTER/SYSCALL32 calling * convention. Adjust regs so it looks like we entered using int80. */ unsigned long landing_pad = (unsigned long)current->mm->context.vdso + vdso_image_32.sym_int80_landing_pad; bool success; /* * SYSENTER loses EIP, and even SYSCALL32 needs us to skip forward * so that 'regs->ip -= 2' lands back on an int $0x80 instruction. * Fix it up. */ regs->ip = landing_pad; enter_from_user_mode(); instrumentation_begin(); local_irq_enable(); success = __do_fast_syscall_32(regs); instrumentation_end(); exit_to_user_mode(); /* If it failed, keep it simple: use IRET. */ if (!success) return 0; #ifdef CONFIG_X86_64 /* * Opportunistic SYSRETL: if possible, try to return using SYSRETL. * SYSRETL is available on all 64-bit CPUs, so we don't need to * bother with SYSEXIT. * * Unlike 64-bit opportunistic SYSRET, we can't check that CX == IP, * because the ECX fixup above will ensure that this is essentially * never the case. */ return regs->cs == __USER32_CS && regs->ss == __USER_DS && regs->ip == landing_pad && (regs->flags & (X86_EFLAGS_RF | X86_EFLAGS_TF)) == 0; #else /* * Opportunistic SYSEXIT: if possible, try to return using SYSEXIT. * * Unlike 64-bit opportunistic SYSRET, we can't check that CX == IP, * because the ECX fixup above will ensure that this is essentially * never the case. * * We don't allow syscalls at all from VM86 mode, but we still * need to check VM, because we might be returning from sys_vm86. */ return static_cpu_has(X86_FEATURE_SEP) && regs->cs == __USER_CS && regs->ss == __USER_DS && regs->ip == landing_pad && (regs->flags & (X86_EFLAGS_RF | X86_EFLAGS_TF | X86_EFLAGS_VM)) == 0; #endif } #endif SYSCALL_DEFINE0(ni_syscall) { return -ENOSYS; } /** * idtentry_enter_cond_rcu - Handle state tracking on idtentry with conditional * RCU handling * @regs: Pointer to pt_regs of interrupted context * * Invokes: * - lockdep irqflag state tracking as low level ASM entry disabled * interrupts. * * - Context tracking if the exception hit user mode. * * - The hardirq tracer to keep the state consistent as low level ASM * entry disabled interrupts. * * For kernel mode entries RCU handling is done conditional. If RCU is * watching then the only RCU requirement is to check whether the tick has * to be restarted. If RCU is not watching then rcu_irq_enter() has to be * invoked on entry and rcu_irq_exit() on exit. * * Avoiding the rcu_irq_enter/exit() calls is an optimization but also * solves the problem of kernel mode pagefaults which can schedule, which * is not possible after invoking rcu_irq_enter() without undoing it. * * For user mode entries enter_from_user_mode() must be invoked to * establish the proper context for NOHZ_FULL. Otherwise scheduling on exit * would not be possible. * * Returns: True if RCU has been adjusted on a kernel entry * False otherwise * * The return value must be fed into the rcu_exit argument of * idtentry_exit_cond_rcu(). */ bool noinstr idtentry_enter_cond_rcu(struct pt_regs *regs) { if (user_mode(regs)) { enter_from_user_mode(); return false; } /* * If this entry hit the idle task invoke rcu_irq_enter() whether * RCU is watching or not. * * Interupts can nest when the first interrupt invokes softirq * processing on return which enables interrupts. * * Scheduler ticks in the idle task can mark quiescent state and * terminate a grace period, if and only if the timer interrupt is * not nested into another interrupt. * * Checking for __rcu_is_watching() here would prevent the nesting * interrupt to invoke rcu_irq_enter(). If that nested interrupt is * the tick then rcu_flavor_sched_clock_irq() would wrongfully * assume that it is the first interupt and eventually claim * quiescient state and end grace periods prematurely. * * Unconditionally invoke rcu_irq_enter() so RCU state stays * consistent. * * TINY_RCU does not support EQS, so let the compiler eliminate * this part when enabled. */ if (!IS_ENABLED(CONFIG_TINY_RCU) && is_idle_task(current)) { /* * If RCU is not watching then the same careful * sequence vs. lockdep and tracing is required * as in enter_from_user_mode(). */ lockdep_hardirqs_off(CALLER_ADDR0); rcu_irq_enter(); instrumentation_begin(); trace_hardirqs_off_finish(); instrumentation_end(); return true; } /* * If RCU is watching then RCU only wants to check whether it needs * to restart the tick in NOHZ mode. rcu_irq_enter_check_tick() * already contains a warning when RCU is not watching, so no point * in having another one here. */ instrumentation_begin(); rcu_irq_enter_check_tick(); /* Use the combo lockdep/tracing function */ trace_hardirqs_off(); instrumentation_end(); return false; } static void idtentry_exit_cond_resched(struct pt_regs *regs, bool may_sched) { if (may_sched && !preempt_count()) { /* Sanity check RCU and thread stack */ rcu_irq_exit_check_preempt(); if (IS_ENABLED(CONFIG_DEBUG_ENTRY)) WARN_ON_ONCE(!on_thread_stack()); if (need_resched()) preempt_schedule_irq(); } /* Covers both tracing and lockdep */ trace_hardirqs_on(); } /** * idtentry_exit_cond_rcu - Handle return from exception with conditional RCU * handling * @regs: Pointer to pt_regs (exception entry regs) * @rcu_exit: Invoke rcu_irq_exit() if true * * Depending on the return target (kernel/user) this runs the necessary * preemption and work checks if possible and reguired and returns to * the caller with interrupts disabled and no further work pending. * * This is the last action before returning to the low level ASM code which * just needs to return to the appropriate context. * * Counterpart to idtentry_enter_cond_rcu(). The return value of the entry * function must be fed into the @rcu_exit argument. */ void noinstr idtentry_exit_cond_rcu(struct pt_regs *regs, bool rcu_exit) { lockdep_assert_irqs_disabled(); /* Check whether this returns to user mode */ if (user_mode(regs)) { prepare_exit_to_usermode(regs); } else if (regs->flags & X86_EFLAGS_IF) { /* * If RCU was not watching on entry this needs to be done * carefully and needs the same ordering of lockdep/tracing * and RCU as the return to user mode path. */ if (rcu_exit) { instrumentation_begin(); /* Tell the tracer that IRET will enable interrupts */ trace_hardirqs_on_prepare(); lockdep_hardirqs_on_prepare(CALLER_ADDR0); instrumentation_end(); rcu_irq_exit(); lockdep_hardirqs_on(CALLER_ADDR0); return; } instrumentation_begin(); idtentry_exit_cond_resched(regs, IS_ENABLED(CONFIG_PREEMPTION)); instrumentation_end(); } else { /* * IRQ flags state is correct already. Just tell RCU if it * was not watching on entry. */ if (rcu_exit) rcu_irq_exit(); } } /** * idtentry_enter_user - Handle state tracking on idtentry from user mode * @regs: Pointer to pt_regs of interrupted context * * Invokes enter_from_user_mode() to establish the proper context for * NOHZ_FULL. Otherwise scheduling on exit would not be possible. */ void noinstr idtentry_enter_user(struct pt_regs *regs) { enter_from_user_mode(); } /** * idtentry_exit_user - Handle return from exception to user mode * @regs: Pointer to pt_regs (exception entry regs) * * Runs the necessary preemption and work checks and returns to the caller * with interrupts disabled and no further work pending. * * This is the last action before returning to the low level ASM code which * just needs to return to the appropriate context. * * Counterpart to idtentry_enter_user(). */ void noinstr idtentry_exit_user(struct pt_regs *regs) { lockdep_assert_irqs_disabled(); prepare_exit_to_usermode(regs); } #ifdef CONFIG_XEN_PV #ifndef CONFIG_PREEMPTION /* * Some hypercalls issued by the toolstack can take many 10s of * seconds. Allow tasks running hypercalls via the privcmd driver to * be voluntarily preempted even if full kernel preemption is * disabled. * * Such preemptible hypercalls are bracketed by * xen_preemptible_hcall_begin() and xen_preemptible_hcall_end() * calls. */ DEFINE_PER_CPU(bool, xen_in_preemptible_hcall); EXPORT_SYMBOL_GPL(xen_in_preemptible_hcall); /* * In case of scheduling the flag must be cleared and restored after * returning from schedule as the task might move to a different CPU. */ static __always_inline bool get_and_clear_inhcall(void) { bool inhcall = __this_cpu_read(xen_in_preemptible_hcall); __this_cpu_write(xen_in_preemptible_hcall, false); return inhcall; } static __always_inline void restore_inhcall(bool inhcall) { __this_cpu_write(xen_in_preemptible_hcall, inhcall); } #else static __always_inline bool get_and_clear_inhcall(void) { return false; } static __always_inline void restore_inhcall(bool inhcall) { } #endif static void __xen_pv_evtchn_do_upcall(void) { irq_enter_rcu(); inc_irq_stat(irq_hv_callback_count); xen_hvm_evtchn_do_upcall(); irq_exit_rcu(); } __visible noinstr void xen_pv_evtchn_do_upcall(struct pt_regs *regs) { struct pt_regs *old_regs; bool inhcall, rcu_exit; rcu_exit = idtentry_enter_cond_rcu(regs); old_regs = set_irq_regs(regs); instrumentation_begin(); run_on_irqstack_cond(__xen_pv_evtchn_do_upcall, NULL, regs); instrumentation_begin(); set_irq_regs(old_regs); inhcall = get_and_clear_inhcall(); if (inhcall && !WARN_ON_ONCE(rcu_exit)) { instrumentation_begin(); idtentry_exit_cond_resched(regs, true); instrumentation_end(); restore_inhcall(inhcall); } else { idtentry_exit_cond_rcu(regs, rcu_exit); } } #endif /* CONFIG_XEN_PV */