// SPDX-License-Identifier: GPL-2.0-only /* * Kernel-based Virtual Machine driver for Linux * * AMD SVM support * * Copyright (C) 2006 Qumranet, Inc. * Copyright 2010 Red Hat, Inc. and/or its affiliates. * * Authors: * Yaniv Kamay * Avi Kivity */ #ifndef __SVM_SVM_H #define __SVM_SVM_H #include #include #include static const u32 host_save_user_msrs[] = { #ifdef CONFIG_X86_64 MSR_STAR, MSR_LSTAR, MSR_CSTAR, MSR_SYSCALL_MASK, MSR_KERNEL_GS_BASE, MSR_FS_BASE, #endif MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP, MSR_TSC_AUX, }; #define NR_HOST_SAVE_USER_MSRS ARRAY_SIZE(host_save_user_msrs) #define MSRPM_OFFSETS 16 extern u32 msrpm_offsets[MSRPM_OFFSETS] __read_mostly; extern bool npt_enabled; enum { VMCB_INTERCEPTS, /* Intercept vectors, TSC offset, pause filter count */ VMCB_PERM_MAP, /* IOPM Base and MSRPM Base */ VMCB_ASID, /* ASID */ VMCB_INTR, /* int_ctl, int_vector */ VMCB_NPT, /* npt_en, nCR3, gPAT */ VMCB_CR, /* CR0, CR3, CR4, EFER */ VMCB_DR, /* DR6, DR7 */ VMCB_DT, /* GDT, IDT */ VMCB_SEG, /* CS, DS, SS, ES, CPL */ VMCB_CR2, /* CR2 only */ VMCB_LBR, /* DBGCTL, BR_FROM, BR_TO, LAST_EX_FROM, LAST_EX_TO */ VMCB_AVIC, /* AVIC APIC_BAR, AVIC APIC_BACKING_PAGE, * AVIC PHYSICAL_TABLE pointer, * AVIC LOGICAL_TABLE pointer */ VMCB_DIRTY_MAX, }; /* TPR and CR2 are always written before VMRUN */ #define VMCB_ALWAYS_DIRTY_MASK ((1U << VMCB_INTR) | (1U << VMCB_CR2)) struct kvm_sev_info { bool active; /* SEV enabled guest */ unsigned int asid; /* ASID used for this guest */ unsigned int handle; /* SEV firmware handle */ int fd; /* SEV device fd */ unsigned long pages_locked; /* Number of pages locked */ struct list_head regions_list; /* List of registered regions */ }; struct kvm_svm { struct kvm kvm; /* Struct members for AVIC */ u32 avic_vm_id; struct page *avic_logical_id_table_page; struct page *avic_physical_id_table_page; struct hlist_node hnode; struct kvm_sev_info sev_info; }; struct kvm_vcpu; struct nested_state { struct vmcb *hsave; u64 hsave_msr; u64 vm_cr_msr; u64 vmcb; /* These are the merged vectors */ u32 *msrpm; /* gpa pointers to the real vectors */ u64 vmcb_msrpm; u64 vmcb_iopm; /* A VMEXIT is required but not yet emulated */ bool exit_required; /* cache for intercepts of the guest */ u32 intercept_cr; u32 intercept_dr; u32 intercept_exceptions; u64 intercept; /* Nested Paging related state */ u64 nested_cr3; }; struct vcpu_svm { struct kvm_vcpu vcpu; struct vmcb *vmcb; unsigned long vmcb_pa; struct svm_cpu_data *svm_data; uint64_t asid_generation; uint64_t sysenter_esp; uint64_t sysenter_eip; uint64_t tsc_aux; u64 msr_decfg; u64 next_rip; u64 host_user_msrs[NR_HOST_SAVE_USER_MSRS]; struct { u16 fs; u16 gs; u16 ldt; u64 gs_base; } host; u64 spec_ctrl; /* * Contains guest-controlled bits of VIRT_SPEC_CTRL, which will be * translated into the appropriate L2_CFG bits on the host to * perform speculative control. */ u64 virt_spec_ctrl; u32 *msrpm; ulong nmi_iret_rip; struct nested_state nested; bool nmi_singlestep; u64 nmi_singlestep_guest_rflags; unsigned int3_injected; unsigned long int3_rip; /* cached guest cpuid flags for faster access */ bool nrips_enabled : 1; u32 ldr_reg; u32 dfr_reg; struct page *avic_backing_page; u64 *avic_physical_id_cache; bool avic_is_running; /* * Per-vcpu list of struct amd_svm_iommu_ir: * This is used mainly to store interrupt remapping information used * when update the vcpu affinity. This avoids the need to scan for * IRTE and try to match ga_tag in the IOMMU driver. */ struct list_head ir_list; spinlock_t ir_list_lock; /* which host CPU was used for running this vcpu */ unsigned int last_cpu; }; struct svm_cpu_data { int cpu; u64 asid_generation; u32 max_asid; u32 next_asid; u32 min_asid; struct kvm_ldttss_desc *tss_desc; struct page *save_area; struct vmcb *current_vmcb; /* index = sev_asid, value = vmcb pointer */ struct vmcb **sev_vmcbs; }; DECLARE_PER_CPU(struct svm_cpu_data *, svm_data); void recalc_intercepts(struct vcpu_svm *svm); static inline struct kvm_svm *to_kvm_svm(struct kvm *kvm) { return container_of(kvm, struct kvm_svm, kvm); } static inline void mark_all_dirty(struct vmcb *vmcb) { vmcb->control.clean = 0; } static inline void mark_all_clean(struct vmcb *vmcb) { vmcb->control.clean = ((1 << VMCB_DIRTY_MAX) - 1) & ~VMCB_ALWAYS_DIRTY_MASK; } static inline void mark_dirty(struct vmcb *vmcb, int bit) { vmcb->control.clean &= ~(1 << bit); } static inline struct vcpu_svm *to_svm(struct kvm_vcpu *vcpu) { return container_of(vcpu, struct vcpu_svm, vcpu); } static inline struct vmcb *get_host_vmcb(struct vcpu_svm *svm) { if (is_guest_mode(&svm->vcpu)) return svm->nested.hsave; else return svm->vmcb; } static inline void set_cr_intercept(struct vcpu_svm *svm, int bit) { struct vmcb *vmcb = get_host_vmcb(svm); vmcb->control.intercept_cr |= (1U << bit); recalc_intercepts(svm); } static inline void clr_cr_intercept(struct vcpu_svm *svm, int bit) { struct vmcb *vmcb = get_host_vmcb(svm); vmcb->control.intercept_cr &= ~(1U << bit); recalc_intercepts(svm); } static inline bool is_cr_intercept(struct vcpu_svm *svm, int bit) { struct vmcb *vmcb = get_host_vmcb(svm); return vmcb->control.intercept_cr & (1U << bit); } static inline void set_dr_intercepts(struct vcpu_svm *svm) { struct vmcb *vmcb = get_host_vmcb(svm); vmcb->control.intercept_dr = (1 << INTERCEPT_DR0_READ) | (1 << INTERCEPT_DR1_READ) | (1 << INTERCEPT_DR2_READ) | (1 << INTERCEPT_DR3_READ) | (1 << INTERCEPT_DR4_READ) | (1 << INTERCEPT_DR5_READ) | (1 << INTERCEPT_DR6_READ) | (1 << INTERCEPT_DR7_READ) | (1 << INTERCEPT_DR0_WRITE) | (1 << INTERCEPT_DR1_WRITE) | (1 << INTERCEPT_DR2_WRITE) | (1 << INTERCEPT_DR3_WRITE) | (1 << INTERCEPT_DR4_WRITE) | (1 << INTERCEPT_DR5_WRITE) | (1 << INTERCEPT_DR6_WRITE) | (1 << INTERCEPT_DR7_WRITE); recalc_intercepts(svm); } static inline void clr_dr_intercepts(struct vcpu_svm *svm) { struct vmcb *vmcb = get_host_vmcb(svm); vmcb->control.intercept_dr = 0; recalc_intercepts(svm); } static inline void set_exception_intercept(struct vcpu_svm *svm, int bit) { struct vmcb *vmcb = get_host_vmcb(svm); vmcb->control.intercept_exceptions |= (1U << bit); recalc_intercepts(svm); } static inline void clr_exception_intercept(struct vcpu_svm *svm, int bit) { struct vmcb *vmcb = get_host_vmcb(svm); vmcb->control.intercept_exceptions &= ~(1U << bit); recalc_intercepts(svm); } static inline void set_intercept(struct vcpu_svm *svm, int bit) { struct vmcb *vmcb = get_host_vmcb(svm); vmcb->control.intercept |= (1ULL << bit); recalc_intercepts(svm); } static inline void clr_intercept(struct vcpu_svm *svm, int bit) { struct vmcb *vmcb = get_host_vmcb(svm); vmcb->control.intercept &= ~(1ULL << bit); recalc_intercepts(svm); } static inline bool is_intercept(struct vcpu_svm *svm, int bit) { return (svm->vmcb->control.intercept & (1ULL << bit)) != 0; } static inline bool vgif_enabled(struct vcpu_svm *svm) { return !!(svm->vmcb->control.int_ctl & V_GIF_ENABLE_MASK); } static inline void enable_gif(struct vcpu_svm *svm) { if (vgif_enabled(svm)) svm->vmcb->control.int_ctl |= V_GIF_MASK; else svm->vcpu.arch.hflags |= HF_GIF_MASK; } static inline void disable_gif(struct vcpu_svm *svm) { if (vgif_enabled(svm)) svm->vmcb->control.int_ctl &= ~V_GIF_MASK; else svm->vcpu.arch.hflags &= ~HF_GIF_MASK; } static inline bool gif_set(struct vcpu_svm *svm) { if (vgif_enabled(svm)) return !!(svm->vmcb->control.int_ctl & V_GIF_MASK); else return !!(svm->vcpu.arch.hflags & HF_GIF_MASK); } /* svm.c */ #define MSR_INVALID 0xffffffffU u32 svm_msrpm_offset(u32 msr); void svm_set_efer(struct kvm_vcpu *vcpu, u64 efer); void svm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0); int svm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4); void svm_flush_tlb(struct kvm_vcpu *vcpu, bool invalidate_gpa); void disable_nmi_singlestep(struct vcpu_svm *svm); /* nested.c */ #define NESTED_EXIT_HOST 0 /* Exit handled on host level */ #define NESTED_EXIT_DONE 1 /* Exit caused nested vmexit */ #define NESTED_EXIT_CONTINUE 2 /* Further checks needed */ /* This function returns true if it is save to enable the nmi window */ static inline bool nested_svm_nmi(struct vcpu_svm *svm) { if (!is_guest_mode(&svm->vcpu)) return true; if (!(svm->nested.intercept & (1ULL << INTERCEPT_NMI))) return true; svm->vmcb->control.exit_code = SVM_EXIT_NMI; svm->nested.exit_required = true; return false; } static inline bool svm_nested_virtualize_tpr(struct kvm_vcpu *vcpu) { return is_guest_mode(vcpu) && (vcpu->arch.hflags & HF_VINTR_MASK); } void enter_svm_guest_mode(struct vcpu_svm *svm, u64 vmcb_gpa, struct vmcb *nested_vmcb, struct kvm_host_map *map); int nested_svm_vmrun(struct vcpu_svm *svm); void nested_svm_vmloadsave(struct vmcb *from_vmcb, struct vmcb *to_vmcb); int nested_svm_vmexit(struct vcpu_svm *svm); int nested_svm_exit_handled(struct vcpu_svm *svm); int nested_svm_check_permissions(struct vcpu_svm *svm); int nested_svm_check_exception(struct vcpu_svm *svm, unsigned nr, bool has_error_code, u32 error_code); int svm_check_nested_events(struct kvm_vcpu *vcpu); int nested_svm_exit_special(struct vcpu_svm *svm); /* avic.c */ #define AVIC_LOGICAL_ID_ENTRY_GUEST_PHYSICAL_ID_MASK (0xFF) #define AVIC_LOGICAL_ID_ENTRY_VALID_BIT 31 #define AVIC_LOGICAL_ID_ENTRY_VALID_MASK (1 << 31) #define AVIC_PHYSICAL_ID_ENTRY_HOST_PHYSICAL_ID_MASK (0xFFULL) #define AVIC_PHYSICAL_ID_ENTRY_BACKING_PAGE_MASK (0xFFFFFFFFFFULL << 12) #define AVIC_PHYSICAL_ID_ENTRY_IS_RUNNING_MASK (1ULL << 62) #define AVIC_PHYSICAL_ID_ENTRY_VALID_MASK (1ULL << 63) #define VMCB_AVIC_APIC_BAR_MASK 0xFFFFFFFFFF000ULL extern int avic; static inline void avic_update_vapic_bar(struct vcpu_svm *svm, u64 data) { svm->vmcb->control.avic_vapic_bar = data & VMCB_AVIC_APIC_BAR_MASK; mark_dirty(svm->vmcb, VMCB_AVIC); } static inline bool avic_vcpu_is_running(struct kvm_vcpu *vcpu) { struct vcpu_svm *svm = to_svm(vcpu); u64 *entry = svm->avic_physical_id_cache; if (!entry) return false; return (READ_ONCE(*entry) & AVIC_PHYSICAL_ID_ENTRY_IS_RUNNING_MASK); } int avic_ga_log_notifier(u32 ga_tag); void avic_vm_destroy(struct kvm *kvm); int avic_vm_init(struct kvm *kvm); void avic_init_vmcb(struct vcpu_svm *svm); void svm_toggle_avic_for_irq_window(struct kvm_vcpu *vcpu, bool activate); int avic_incomplete_ipi_interception(struct vcpu_svm *svm); int avic_unaccelerated_access_interception(struct vcpu_svm *svm); int avic_init_vcpu(struct vcpu_svm *svm); void avic_vcpu_load(struct kvm_vcpu *vcpu, int cpu); void avic_vcpu_put(struct kvm_vcpu *vcpu); void avic_post_state_restore(struct kvm_vcpu *vcpu); void svm_set_virtual_apic_mode(struct kvm_vcpu *vcpu); void svm_refresh_apicv_exec_ctrl(struct kvm_vcpu *vcpu); bool svm_check_apicv_inhibit_reasons(ulong bit); void svm_pre_update_apicv_exec_ctrl(struct kvm *kvm, bool activate); void svm_load_eoi_exitmap(struct kvm_vcpu *vcpu, u64 *eoi_exit_bitmap); void svm_hwapic_irr_update(struct kvm_vcpu *vcpu, int max_irr); void svm_hwapic_isr_update(struct kvm_vcpu *vcpu, int max_isr); int svm_deliver_avic_intr(struct kvm_vcpu *vcpu, int vec); bool svm_dy_apicv_has_pending_interrupt(struct kvm_vcpu *vcpu); int svm_update_pi_irte(struct kvm *kvm, unsigned int host_irq, uint32_t guest_irq, bool set); void svm_vcpu_blocking(struct kvm_vcpu *vcpu); void svm_vcpu_unblocking(struct kvm_vcpu *vcpu); /* sev.c */ extern unsigned int max_sev_asid; static inline bool sev_guest(struct kvm *kvm) { #ifdef CONFIG_KVM_AMD_SEV struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; return sev->active; #else return false; #endif } static inline bool svm_sev_enabled(void) { return IS_ENABLED(CONFIG_KVM_AMD_SEV) ? max_sev_asid : 0; } void sev_vm_destroy(struct kvm *kvm); int svm_mem_enc_op(struct kvm *kvm, void __user *argp); int svm_register_enc_region(struct kvm *kvm, struct kvm_enc_region *range); int svm_unregister_enc_region(struct kvm *kvm, struct kvm_enc_region *range); void pre_sev_run(struct vcpu_svm *svm, int cpu); int __init sev_hardware_setup(void); void sev_hardware_teardown(void); #endif