// SPDX-License-Identifier: GPL-2.0-only /* * Copyright (C) 2020 BAIKAL ELECTRONICS, JSC * * Authors: * Serge Semin * Dmitry Dunaev * * Baikal-T1 CCU PLL interface driver */ #define pr_fmt(fmt) "bt1-ccu-pll: " fmt #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "ccu-pll.h" #define CCU_PLL_CTL 0x000 #define CCU_PLL_CTL_EN BIT(0) #define CCU_PLL_CTL_RST BIT(1) #define CCU_PLL_CTL_CLKR_FLD 2 #define CCU_PLL_CTL_CLKR_MASK GENMASK(7, CCU_PLL_CTL_CLKR_FLD) #define CCU_PLL_CTL_CLKF_FLD 8 #define CCU_PLL_CTL_CLKF_MASK GENMASK(20, CCU_PLL_CTL_CLKF_FLD) #define CCU_PLL_CTL_CLKOD_FLD 21 #define CCU_PLL_CTL_CLKOD_MASK GENMASK(24, CCU_PLL_CTL_CLKOD_FLD) #define CCU_PLL_CTL_BYPASS BIT(30) #define CCU_PLL_CTL_LOCK BIT(31) #define CCU_PLL_CTL1 0x004 #define CCU_PLL_CTL1_BWADJ_FLD 3 #define CCU_PLL_CTL1_BWADJ_MASK GENMASK(14, CCU_PLL_CTL1_BWADJ_FLD) #define CCU_PLL_LOCK_CHECK_RETRIES 50 #define CCU_PLL_NR_MAX \ ((CCU_PLL_CTL_CLKR_MASK >> CCU_PLL_CTL_CLKR_FLD) + 1) #define CCU_PLL_NF_MAX \ ((CCU_PLL_CTL_CLKF_MASK >> (CCU_PLL_CTL_CLKF_FLD + 1)) + 1) #define CCU_PLL_OD_MAX \ ((CCU_PLL_CTL_CLKOD_MASK >> CCU_PLL_CTL_CLKOD_FLD) + 1) #define CCU_PLL_NB_MAX \ ((CCU_PLL_CTL1_BWADJ_MASK >> CCU_PLL_CTL1_BWADJ_FLD) + 1) #define CCU_PLL_FDIV_MIN 427000UL #define CCU_PLL_FDIV_MAX 3500000000UL #define CCU_PLL_FOUT_MIN 200000000UL #define CCU_PLL_FOUT_MAX 2500000000UL #define CCU_PLL_FVCO_MIN 700000000UL #define CCU_PLL_FVCO_MAX 3500000000UL #define CCU_PLL_CLKOD_FACTOR 2 static inline unsigned long ccu_pll_lock_delay_us(unsigned long ref_clk, unsigned long nr) { u64 us = 500ULL * nr * USEC_PER_SEC; do_div(us, ref_clk); return us; } static inline unsigned long ccu_pll_calc_freq(unsigned long ref_clk, unsigned long nr, unsigned long nf, unsigned long od) { u64 tmp = ref_clk; do_div(tmp, nr); tmp *= nf; do_div(tmp, od); return tmp; } static int ccu_pll_reset(struct ccu_pll *pll, unsigned long ref_clk, unsigned long nr) { unsigned long ud, ut; u32 val; ud = ccu_pll_lock_delay_us(ref_clk, nr); ut = ud * CCU_PLL_LOCK_CHECK_RETRIES; regmap_update_bits(pll->sys_regs, pll->reg_ctl, CCU_PLL_CTL_RST, CCU_PLL_CTL_RST); return regmap_read_poll_timeout_atomic(pll->sys_regs, pll->reg_ctl, val, val & CCU_PLL_CTL_LOCK, ud, ut); } static int ccu_pll_enable(struct clk_hw *hw) { struct clk_hw *parent_hw = clk_hw_get_parent(hw); struct ccu_pll *pll = to_ccu_pll(hw); unsigned long flags; u32 val = 0; int ret; if (!parent_hw) { pr_err("Can't enable '%s' with no parent", clk_hw_get_name(hw)); return -EINVAL; } regmap_read(pll->sys_regs, pll->reg_ctl, &val); if (val & CCU_PLL_CTL_EN) return 0; spin_lock_irqsave(&pll->lock, flags); regmap_write(pll->sys_regs, pll->reg_ctl, val | CCU_PLL_CTL_EN); ret = ccu_pll_reset(pll, clk_hw_get_rate(parent_hw), FIELD_GET(CCU_PLL_CTL_CLKR_MASK, val) + 1); spin_unlock_irqrestore(&pll->lock, flags); if (ret) pr_err("PLL '%s' reset timed out\n", clk_hw_get_name(hw)); return ret; } static void ccu_pll_disable(struct clk_hw *hw) { struct ccu_pll *pll = to_ccu_pll(hw); unsigned long flags; spin_lock_irqsave(&pll->lock, flags); regmap_update_bits(pll->sys_regs, pll->reg_ctl, CCU_PLL_CTL_EN, 0); spin_unlock_irqrestore(&pll->lock, flags); } static int ccu_pll_is_enabled(struct clk_hw *hw) { struct ccu_pll *pll = to_ccu_pll(hw); u32 val = 0; regmap_read(pll->sys_regs, pll->reg_ctl, &val); return !!(val & CCU_PLL_CTL_EN); } static unsigned long ccu_pll_recalc_rate(struct clk_hw *hw, unsigned long parent_rate) { struct ccu_pll *pll = to_ccu_pll(hw); unsigned long nr, nf, od; u32 val = 0; regmap_read(pll->sys_regs, pll->reg_ctl, &val); nr = FIELD_GET(CCU_PLL_CTL_CLKR_MASK, val) + 1; nf = FIELD_GET(CCU_PLL_CTL_CLKF_MASK, val) + 1; od = FIELD_GET(CCU_PLL_CTL_CLKOD_MASK, val) + 1; return ccu_pll_calc_freq(parent_rate, nr, nf, od); } static void ccu_pll_calc_factors(unsigned long rate, unsigned long parent_rate, unsigned long *nr, unsigned long *nf, unsigned long *od) { unsigned long err, freq, min_err = ULONG_MAX; unsigned long num, denom, n1, d1, nri; unsigned long nr_max, nf_max, od_max; /* * Make sure PLL is working with valid input signal (Fdiv). If * you want to speed the function up just reduce CCU_PLL_NR_MAX. * This will cause a worse approximation though. */ nri = (parent_rate / CCU_PLL_FDIV_MAX) + 1; nr_max = min(parent_rate / CCU_PLL_FDIV_MIN, CCU_PLL_NR_MAX); /* * Find a closest [nr;nf;od] vector taking into account the * limitations like: 1) 700MHz <= Fvco <= 3.5GHz, 2) PLL Od is * either 1 or even number within the acceptable range (alas 1s * is also excluded by the next loop). */ for (; nri <= nr_max; ++nri) { /* Use Od factor to fulfill the limitation 2). */ num = CCU_PLL_CLKOD_FACTOR * rate; denom = parent_rate / nri; /* * Make sure Fvco is within the acceptable range to fulfill * the condition 1). Note due to the CCU_PLL_CLKOD_FACTOR value * the actual upper limit is also divided by that factor. * It's not big problem for us since practically there is no * need in clocks with that high frequency. */ nf_max = min(CCU_PLL_FVCO_MAX / denom, CCU_PLL_NF_MAX); od_max = CCU_PLL_OD_MAX / CCU_PLL_CLKOD_FACTOR; /* * Bypass the out-of-bound values, which can't be properly * handled by the rational fraction approximation algorithm. */ if (num / denom >= nf_max) { n1 = nf_max; d1 = 1; } else if (denom / num >= od_max) { n1 = 1; d1 = od_max; } else { rational_best_approximation(num, denom, nf_max, od_max, &n1, &d1); } /* Select the best approximation of the target rate. */ freq = ccu_pll_calc_freq(parent_rate, nri, n1, d1); err = abs((int64_t)freq - num); if (err < min_err) { min_err = err; *nr = nri; *nf = n1; *od = CCU_PLL_CLKOD_FACTOR * d1; } } } static long ccu_pll_round_rate(struct clk_hw *hw, unsigned long rate, unsigned long *parent_rate) { unsigned long nr = 1, nf = 1, od = 1; ccu_pll_calc_factors(rate, *parent_rate, &nr, &nf, &od); return ccu_pll_calc_freq(*parent_rate, nr, nf, od); } /* * This method is used for PLLs, which support the on-the-fly dividers * adjustment. So there is no need in gating such clocks. */ static int ccu_pll_set_rate_reset(struct clk_hw *hw, unsigned long rate, unsigned long parent_rate) { struct ccu_pll *pll = to_ccu_pll(hw); unsigned long nr, nf, od; unsigned long flags; u32 mask, val; int ret; ccu_pll_calc_factors(rate, parent_rate, &nr, &nf, &od); mask = CCU_PLL_CTL_CLKR_MASK | CCU_PLL_CTL_CLKF_MASK | CCU_PLL_CTL_CLKOD_MASK; val = FIELD_PREP(CCU_PLL_CTL_CLKR_MASK, nr - 1) | FIELD_PREP(CCU_PLL_CTL_CLKF_MASK, nf - 1) | FIELD_PREP(CCU_PLL_CTL_CLKOD_MASK, od - 1); spin_lock_irqsave(&pll->lock, flags); regmap_update_bits(pll->sys_regs, pll->reg_ctl, mask, val); ret = ccu_pll_reset(pll, parent_rate, nr); spin_unlock_irqrestore(&pll->lock, flags); if (ret) pr_err("PLL '%s' reset timed out\n", clk_hw_get_name(hw)); return ret; } /* * This method is used for PLLs, which don't support the on-the-fly dividers * adjustment. So the corresponding clocks are supposed to be gated first. */ static int ccu_pll_set_rate_norst(struct clk_hw *hw, unsigned long rate, unsigned long parent_rate) { struct ccu_pll *pll = to_ccu_pll(hw); unsigned long nr, nf, od; unsigned long flags; u32 mask, val; ccu_pll_calc_factors(rate, parent_rate, &nr, &nf, &od); /* * Disable PLL if it was enabled by default or left enabled by the * system bootloader. */ mask = CCU_PLL_CTL_CLKR_MASK | CCU_PLL_CTL_CLKF_MASK | CCU_PLL_CTL_CLKOD_MASK | CCU_PLL_CTL_EN; val = FIELD_PREP(CCU_PLL_CTL_CLKR_MASK, nr - 1) | FIELD_PREP(CCU_PLL_CTL_CLKF_MASK, nf - 1) | FIELD_PREP(CCU_PLL_CTL_CLKOD_MASK, od - 1); spin_lock_irqsave(&pll->lock, flags); regmap_update_bits(pll->sys_regs, pll->reg_ctl, mask, val); spin_unlock_irqrestore(&pll->lock, flags); return 0; } #ifdef CONFIG_DEBUG_FS struct ccu_pll_dbgfs_bit { struct ccu_pll *pll; const char *name; unsigned int reg; u32 mask; }; struct ccu_pll_dbgfs_fld { struct ccu_pll *pll; const char *name; unsigned int reg; unsigned int lsb; u32 mask; u32 min; u32 max; }; #define CCU_PLL_DBGFS_BIT_ATTR(_name, _reg, _mask) \ { \ .name = _name, \ .reg = _reg, \ .mask = _mask \ } #define CCU_PLL_DBGFS_FLD_ATTR(_name, _reg, _lsb, _mask, _min, _max) \ { \ .name = _name, \ .reg = _reg, \ .lsb = _lsb, \ .mask = _mask, \ .min = _min, \ .max = _max \ } static const struct ccu_pll_dbgfs_bit ccu_pll_bits[] = { CCU_PLL_DBGFS_BIT_ATTR("pll_en", CCU_PLL_CTL, CCU_PLL_CTL_EN), CCU_PLL_DBGFS_BIT_ATTR("pll_rst", CCU_PLL_CTL, CCU_PLL_CTL_RST), CCU_PLL_DBGFS_BIT_ATTR("pll_bypass", CCU_PLL_CTL, CCU_PLL_CTL_BYPASS), CCU_PLL_DBGFS_BIT_ATTR("pll_lock", CCU_PLL_CTL, CCU_PLL_CTL_LOCK) }; #define CCU_PLL_DBGFS_BIT_NUM ARRAY_SIZE(ccu_pll_bits) static const struct ccu_pll_dbgfs_fld ccu_pll_flds[] = { CCU_PLL_DBGFS_FLD_ATTR("pll_nr", CCU_PLL_CTL, CCU_PLL_CTL_CLKR_FLD, CCU_PLL_CTL_CLKR_MASK, 1, CCU_PLL_NR_MAX), CCU_PLL_DBGFS_FLD_ATTR("pll_nf", CCU_PLL_CTL, CCU_PLL_CTL_CLKF_FLD, CCU_PLL_CTL_CLKF_MASK, 1, CCU_PLL_NF_MAX), CCU_PLL_DBGFS_FLD_ATTR("pll_od", CCU_PLL_CTL, CCU_PLL_CTL_CLKOD_FLD, CCU_PLL_CTL_CLKOD_MASK, 1, CCU_PLL_OD_MAX), CCU_PLL_DBGFS_FLD_ATTR("pll_nb", CCU_PLL_CTL1, CCU_PLL_CTL1_BWADJ_FLD, CCU_PLL_CTL1_BWADJ_MASK, 1, CCU_PLL_NB_MAX) }; #define CCU_PLL_DBGFS_FLD_NUM ARRAY_SIZE(ccu_pll_flds) /* * It can be dangerous to change the PLL settings behind clock framework back, * therefore we don't provide any kernel config based compile time option for * this feature to enable. */ #undef CCU_PLL_ALLOW_WRITE_DEBUGFS #ifdef CCU_PLL_ALLOW_WRITE_DEBUGFS static int ccu_pll_dbgfs_bit_set(void *priv, u64 val) { const struct ccu_pll_dbgfs_bit *bit = priv; struct ccu_pll *pll = bit->pll; unsigned long flags; spin_lock_irqsave(&pll->lock, flags); regmap_update_bits(pll->sys_regs, pll->reg_ctl + bit->reg, bit->mask, val ? bit->mask : 0); spin_unlock_irqrestore(&pll->lock, flags); return 0; } static int ccu_pll_dbgfs_fld_set(void *priv, u64 val) { struct ccu_pll_dbgfs_fld *fld = priv; struct ccu_pll *pll = fld->pll; unsigned long flags; u32 data; val = clamp_t(u64, val, fld->min, fld->max); data = ((val - 1) << fld->lsb) & fld->mask; spin_lock_irqsave(&pll->lock, flags); regmap_update_bits(pll->sys_regs, pll->reg_ctl + fld->reg, fld->mask, data); spin_unlock_irqrestore(&pll->lock, flags); return 0; } #define ccu_pll_dbgfs_mode 0644 #else /* !CCU_PLL_ALLOW_WRITE_DEBUGFS */ #define ccu_pll_dbgfs_bit_set NULL #define ccu_pll_dbgfs_fld_set NULL #define ccu_pll_dbgfs_mode 0444 #endif /* !CCU_PLL_ALLOW_WRITE_DEBUGFS */ static int ccu_pll_dbgfs_bit_get(void *priv, u64 *val) { struct ccu_pll_dbgfs_bit *bit = priv; struct ccu_pll *pll = bit->pll; u32 data = 0; regmap_read(pll->sys_regs, pll->reg_ctl + bit->reg, &data); *val = !!(data & bit->mask); return 0; } DEFINE_DEBUGFS_ATTRIBUTE(ccu_pll_dbgfs_bit_fops, ccu_pll_dbgfs_bit_get, ccu_pll_dbgfs_bit_set, "%llu\n"); static int ccu_pll_dbgfs_fld_get(void *priv, u64 *val) { struct ccu_pll_dbgfs_fld *fld = priv; struct ccu_pll *pll = fld->pll; u32 data = 0; regmap_read(pll->sys_regs, pll->reg_ctl + fld->reg, &data); *val = ((data & fld->mask) >> fld->lsb) + 1; return 0; } DEFINE_DEBUGFS_ATTRIBUTE(ccu_pll_dbgfs_fld_fops, ccu_pll_dbgfs_fld_get, ccu_pll_dbgfs_fld_set, "%llu\n"); static void ccu_pll_debug_init(struct clk_hw *hw, struct dentry *dentry) { struct ccu_pll *pll = to_ccu_pll(hw); struct ccu_pll_dbgfs_bit *bits; struct ccu_pll_dbgfs_fld *flds; int idx; bits = kcalloc(CCU_PLL_DBGFS_BIT_NUM, sizeof(*bits), GFP_KERNEL); if (!bits) return; for (idx = 0; idx < CCU_PLL_DBGFS_BIT_NUM; ++idx) { bits[idx] = ccu_pll_bits[idx]; bits[idx].pll = pll; debugfs_create_file_unsafe(bits[idx].name, ccu_pll_dbgfs_mode, dentry, &bits[idx], &ccu_pll_dbgfs_bit_fops); } flds = kcalloc(CCU_PLL_DBGFS_FLD_NUM, sizeof(*flds), GFP_KERNEL); if (!flds) return; for (idx = 0; idx < CCU_PLL_DBGFS_FLD_NUM; ++idx) { flds[idx] = ccu_pll_flds[idx]; flds[idx].pll = pll; debugfs_create_file_unsafe(flds[idx].name, ccu_pll_dbgfs_mode, dentry, &flds[idx], &ccu_pll_dbgfs_fld_fops); } } #else /* !CONFIG_DEBUG_FS */ #define ccu_pll_debug_init NULL #endif /* !CONFIG_DEBUG_FS */ static const struct clk_ops ccu_pll_gate_to_set_ops = { .enable = ccu_pll_enable, .disable = ccu_pll_disable, .is_enabled = ccu_pll_is_enabled, .recalc_rate = ccu_pll_recalc_rate, .round_rate = ccu_pll_round_rate, .set_rate = ccu_pll_set_rate_norst, .debug_init = ccu_pll_debug_init }; static const struct clk_ops ccu_pll_straight_set_ops = { .enable = ccu_pll_enable, .disable = ccu_pll_disable, .is_enabled = ccu_pll_is_enabled, .recalc_rate = ccu_pll_recalc_rate, .round_rate = ccu_pll_round_rate, .set_rate = ccu_pll_set_rate_reset, .debug_init = ccu_pll_debug_init }; struct ccu_pll *ccu_pll_hw_register(const struct ccu_pll_init_data *pll_init) { struct clk_parent_data parent_data = { }; struct clk_init_data hw_init = { }; struct ccu_pll *pll; int ret; if (!pll_init) return ERR_PTR(-EINVAL); pll = kzalloc(sizeof(*pll), GFP_KERNEL); if (!pll) return ERR_PTR(-ENOMEM); /* * Note since Baikal-T1 System Controller registers are MMIO-backed * we won't check the regmap IO operations return status, because it * must be zero anyway. */ pll->hw.init = &hw_init; pll->reg_ctl = pll_init->base + CCU_PLL_CTL; pll->reg_ctl1 = pll_init->base + CCU_PLL_CTL1; pll->sys_regs = pll_init->sys_regs; pll->id = pll_init->id; spin_lock_init(&pll->lock); hw_init.name = pll_init->name; hw_init.flags = pll_init->flags; if (hw_init.flags & CLK_SET_RATE_GATE) hw_init.ops = &ccu_pll_gate_to_set_ops; else hw_init.ops = &ccu_pll_straight_set_ops; if (!pll_init->parent_name) { ret = -EINVAL; goto err_free_pll; } parent_data.fw_name = pll_init->parent_name; hw_init.parent_data = &parent_data; hw_init.num_parents = 1; ret = of_clk_hw_register(pll_init->np, &pll->hw); if (ret) goto err_free_pll; return pll; err_free_pll: kfree(pll); return ERR_PTR(ret); } void ccu_pll_hw_unregister(struct ccu_pll *pll) { clk_hw_unregister(&pll->hw); kfree(pll); }