// SPDX-License-Identifier: GPL-2.0 /* * Clocksource driver for the synthetic counter and timers * provided by the Hyper-V hypervisor to guest VMs, as described * in the Hyper-V Top Level Functional Spec (TLFS). This driver * is instruction set architecture independent. * * Copyright (C) 2019, Microsoft, Inc. * * Author: Michael Kelley */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include static struct clock_event_device __percpu *hv_clock_event; static u64 hv_sched_clock_offset __ro_after_init; /* * If false, we're using the old mechanism for stimer0 interrupts * where it sends a VMbus message when it expires. The old * mechanism is used when running on older versions of Hyper-V * that don't support Direct Mode. While Hyper-V provides * four stimer's per CPU, Linux uses only stimer0. * * Because Direct Mode does not require processing a VMbus * message, stimer interrupts can be enabled earlier in the * process of booting a CPU, and consistent with when timer * interrupts are enabled for other clocksource drivers. * However, for legacy versions of Hyper-V when Direct Mode * is not enabled, setting up stimer interrupts must be * delayed until VMbus is initialized and can process the * interrupt message. */ static bool direct_mode_enabled; static int stimer0_irq = -1; static int stimer0_message_sint; static __maybe_unused DEFINE_PER_CPU(long, stimer0_evt); /* * Common code for stimer0 interrupts coming via Direct Mode or * as a VMbus message. */ void hv_stimer0_isr(void) { struct clock_event_device *ce; ce = this_cpu_ptr(hv_clock_event); ce->event_handler(ce); } EXPORT_SYMBOL_GPL(hv_stimer0_isr); /* * stimer0 interrupt handler for architectures that support * per-cpu interrupts, which also implies Direct Mode. */ static irqreturn_t __maybe_unused hv_stimer0_percpu_isr(int irq, void *dev_id) { hv_stimer0_isr(); return IRQ_HANDLED; } static int hv_ce_set_next_event(unsigned long delta, struct clock_event_device *evt) { u64 current_tick; current_tick = hv_read_reference_counter(); current_tick += delta; hv_set_msr(HV_MSR_STIMER0_COUNT, current_tick); return 0; } static int hv_ce_shutdown(struct clock_event_device *evt) { hv_set_msr(HV_MSR_STIMER0_COUNT, 0); hv_set_msr(HV_MSR_STIMER0_CONFIG, 0); if (direct_mode_enabled && stimer0_irq >= 0) disable_percpu_irq(stimer0_irq); return 0; } static int hv_ce_set_oneshot(struct clock_event_device *evt) { union hv_stimer_config timer_cfg; timer_cfg.as_uint64 = 0; timer_cfg.enable = 1; timer_cfg.auto_enable = 1; if (direct_mode_enabled) { /* * When it expires, the timer will directly interrupt * on the specified hardware vector/IRQ. */ timer_cfg.direct_mode = 1; timer_cfg.apic_vector = HYPERV_STIMER0_VECTOR; if (stimer0_irq >= 0) enable_percpu_irq(stimer0_irq, IRQ_TYPE_NONE); } else { /* * When it expires, the timer will generate a VMbus message, * to be handled by the normal VMbus interrupt handler. */ timer_cfg.direct_mode = 0; timer_cfg.sintx = stimer0_message_sint; } hv_set_msr(HV_MSR_STIMER0_CONFIG, timer_cfg.as_uint64); return 0; } /* * hv_stimer_init - Per-cpu initialization of the clockevent */ static int hv_stimer_init(unsigned int cpu) { struct clock_event_device *ce; if (!hv_clock_event) return 0; ce = per_cpu_ptr(hv_clock_event, cpu); ce->name = "Hyper-V clockevent"; ce->features = CLOCK_EVT_FEAT_ONESHOT; ce->cpumask = cpumask_of(cpu); ce->rating = 1000; ce->set_state_shutdown = hv_ce_shutdown; ce->set_state_oneshot = hv_ce_set_oneshot; ce->set_next_event = hv_ce_set_next_event; clockevents_config_and_register(ce, HV_CLOCK_HZ, HV_MIN_DELTA_TICKS, HV_MAX_MAX_DELTA_TICKS); return 0; } /* * hv_stimer_cleanup - Per-cpu cleanup of the clockevent */ int hv_stimer_cleanup(unsigned int cpu) { struct clock_event_device *ce; if (!hv_clock_event) return 0; /* * In the legacy case where Direct Mode is not enabled * (which can only be on x86/64), stimer cleanup happens * relatively early in the CPU offlining process. We * must unbind the stimer-based clockevent device so * that the LAPIC timer can take over until clockevents * are no longer needed in the offlining process. Note * that clockevents_unbind_device() eventually calls * hv_ce_shutdown(). * * The unbind should not be done when Direct Mode is * enabled because we may be on an architecture where * there are no other clockevent devices to fallback to. */ ce = per_cpu_ptr(hv_clock_event, cpu); if (direct_mode_enabled) hv_ce_shutdown(ce); else clockevents_unbind_device(ce, cpu); return 0; } EXPORT_SYMBOL_GPL(hv_stimer_cleanup); /* * These placeholders are overridden by arch specific code on * architectures that need special setup of the stimer0 IRQ because * they don't support per-cpu IRQs (such as x86/x64). */ void __weak hv_setup_stimer0_handler(void (*handler)(void)) { }; void __weak hv_remove_stimer0_handler(void) { }; #ifdef CONFIG_ACPI /* Called only on architectures with per-cpu IRQs (i.e., not x86/x64) */ static int hv_setup_stimer0_irq(void) { int ret; ret = acpi_register_gsi(NULL, HYPERV_STIMER0_VECTOR, ACPI_EDGE_SENSITIVE, ACPI_ACTIVE_HIGH); if (ret < 0) { pr_err("Can't register Hyper-V stimer0 GSI. Error %d", ret); return ret; } stimer0_irq = ret; ret = request_percpu_irq(stimer0_irq, hv_stimer0_percpu_isr, "Hyper-V stimer0", &stimer0_evt); if (ret) { pr_err("Can't request Hyper-V stimer0 IRQ %d. Error %d", stimer0_irq, ret); acpi_unregister_gsi(stimer0_irq); stimer0_irq = -1; } return ret; } static void hv_remove_stimer0_irq(void) { if (stimer0_irq == -1) { hv_remove_stimer0_handler(); } else { free_percpu_irq(stimer0_irq, &stimer0_evt); acpi_unregister_gsi(stimer0_irq); stimer0_irq = -1; } } #else static int hv_setup_stimer0_irq(void) { return 0; } static void hv_remove_stimer0_irq(void) { } #endif /* hv_stimer_alloc - Global initialization of the clockevent and stimer0 */ int hv_stimer_alloc(bool have_percpu_irqs) { int ret; /* * Synthetic timers are always available except on old versions of * Hyper-V on x86. In that case, return as error as Linux will use a * clockevent based on emulated LAPIC timer hardware. */ if (!(ms_hyperv.features & HV_MSR_SYNTIMER_AVAILABLE)) return -EINVAL; hv_clock_event = alloc_percpu(struct clock_event_device); if (!hv_clock_event) return -ENOMEM; direct_mode_enabled = ms_hyperv.misc_features & HV_STIMER_DIRECT_MODE_AVAILABLE; /* * If Direct Mode isn't enabled, the remainder of the initialization * is done later by hv_stimer_legacy_init() */ if (!direct_mode_enabled) return 0; if (have_percpu_irqs) { ret = hv_setup_stimer0_irq(); if (ret) goto free_clock_event; } else { hv_setup_stimer0_handler(hv_stimer0_isr); } /* * Since we are in Direct Mode, stimer initialization * can be done now with a CPUHP value in the same range * as other clockevent devices. */ ret = cpuhp_setup_state(CPUHP_AP_HYPERV_TIMER_STARTING, "clockevents/hyperv/stimer:starting", hv_stimer_init, hv_stimer_cleanup); if (ret < 0) { hv_remove_stimer0_irq(); goto free_clock_event; } return ret; free_clock_event: free_percpu(hv_clock_event); hv_clock_event = NULL; return ret; } EXPORT_SYMBOL_GPL(hv_stimer_alloc); /* * hv_stimer_legacy_init -- Called from the VMbus driver to handle * the case when Direct Mode is not enabled, and the stimer * must be initialized late in the CPU onlining process. * */ void hv_stimer_legacy_init(unsigned int cpu, int sint) { if (direct_mode_enabled) return; /* * This function gets called by each vCPU, so setting the * global stimer_message_sint value each time is conceptually * not ideal, but the value passed in is always the same and * it avoids introducing yet another interface into this * clocksource driver just to set the sint in the legacy case. */ stimer0_message_sint = sint; (void)hv_stimer_init(cpu); } EXPORT_SYMBOL_GPL(hv_stimer_legacy_init); /* * hv_stimer_legacy_cleanup -- Called from the VMbus driver to * handle the case when Direct Mode is not enabled, and the * stimer must be cleaned up early in the CPU offlining * process. */ void hv_stimer_legacy_cleanup(unsigned int cpu) { if (direct_mode_enabled) return; (void)hv_stimer_cleanup(cpu); } EXPORT_SYMBOL_GPL(hv_stimer_legacy_cleanup); /* * Do a global cleanup of clockevents for the cases of kexec and * vmbus exit */ void hv_stimer_global_cleanup(void) { int cpu; /* * hv_stime_legacy_cleanup() will stop the stimer if Direct * Mode is not enabled, and fallback to the LAPIC timer. */ for_each_present_cpu(cpu) { hv_stimer_legacy_cleanup(cpu); } if (!hv_clock_event) return; if (direct_mode_enabled) { cpuhp_remove_state(CPUHP_AP_HYPERV_TIMER_STARTING); hv_remove_stimer0_irq(); stimer0_irq = -1; } free_percpu(hv_clock_event); hv_clock_event = NULL; } EXPORT_SYMBOL_GPL(hv_stimer_global_cleanup); static __always_inline u64 read_hv_clock_msr(void) { /* * Read the partition counter to get the current tick count. This count * is set to 0 when the partition is created and is incremented in 100 * nanosecond units. * * Use hv_raw_get_msr() because this function is used from * noinstr. Notable; while HV_MSR_TIME_REF_COUNT is a synthetic * register it doesn't need the GHCB path. */ return hv_raw_get_msr(HV_MSR_TIME_REF_COUNT); } /* * Code and definitions for the Hyper-V clocksources. Two * clocksources are defined: one that reads the Hyper-V defined MSR, and * the other that uses the TSC reference page feature as defined in the * TLFS. The MSR version is for compatibility with old versions of * Hyper-V and 32-bit x86. The TSC reference page version is preferred. */ static union { struct ms_hyperv_tsc_page page; u8 reserved[PAGE_SIZE]; } tsc_pg __bss_decrypted __aligned(PAGE_SIZE); static struct ms_hyperv_tsc_page *tsc_page = &tsc_pg.page; static unsigned long tsc_pfn; unsigned long hv_get_tsc_pfn(void) { return tsc_pfn; } EXPORT_SYMBOL_GPL(hv_get_tsc_pfn); struct ms_hyperv_tsc_page *hv_get_tsc_page(void) { return tsc_page; } EXPORT_SYMBOL_GPL(hv_get_tsc_page); static __always_inline u64 read_hv_clock_tsc(void) { u64 cur_tsc, time; /* * The Hyper-V Top-Level Function Spec (TLFS), section Timers, * subsection Refererence Counter, guarantees that the TSC and MSR * times are in sync and monotonic. Therefore we can fall back * to the MSR in case the TSC page indicates unavailability. */ if (!hv_read_tsc_page_tsc(tsc_page, &cur_tsc, &time)) time = read_hv_clock_msr(); return time; } static u64 notrace read_hv_clock_tsc_cs(struct clocksource *arg) { return read_hv_clock_tsc(); } static u64 noinstr read_hv_sched_clock_tsc(void) { return (read_hv_clock_tsc() - hv_sched_clock_offset) * (NSEC_PER_SEC / HV_CLOCK_HZ); } static void suspend_hv_clock_tsc(struct clocksource *arg) { union hv_reference_tsc_msr tsc_msr; /* Disable the TSC page */ tsc_msr.as_uint64 = hv_get_msr(HV_MSR_REFERENCE_TSC); tsc_msr.enable = 0; hv_set_msr(HV_MSR_REFERENCE_TSC, tsc_msr.as_uint64); } static void resume_hv_clock_tsc(struct clocksource *arg) { union hv_reference_tsc_msr tsc_msr; /* Re-enable the TSC page */ tsc_msr.as_uint64 = hv_get_msr(HV_MSR_REFERENCE_TSC); tsc_msr.enable = 1; tsc_msr.pfn = tsc_pfn; hv_set_msr(HV_MSR_REFERENCE_TSC, tsc_msr.as_uint64); } #ifdef HAVE_VDSO_CLOCKMODE_HVCLOCK static int hv_cs_enable(struct clocksource *cs) { vclocks_set_used(VDSO_CLOCKMODE_HVCLOCK); return 0; } #endif static struct clocksource hyperv_cs_tsc = { .name = "hyperv_clocksource_tsc_page", .rating = 500, .read = read_hv_clock_tsc_cs, .mask = CLOCKSOURCE_MASK(64), .flags = CLOCK_SOURCE_IS_CONTINUOUS, .suspend= suspend_hv_clock_tsc, .resume = resume_hv_clock_tsc, #ifdef HAVE_VDSO_CLOCKMODE_HVCLOCK .enable = hv_cs_enable, .vdso_clock_mode = VDSO_CLOCKMODE_HVCLOCK, #else .vdso_clock_mode = VDSO_CLOCKMODE_NONE, #endif }; static u64 notrace read_hv_clock_msr_cs(struct clocksource *arg) { return read_hv_clock_msr(); } static struct clocksource hyperv_cs_msr = { .name = "hyperv_clocksource_msr", .rating = 495, .read = read_hv_clock_msr_cs, .mask = CLOCKSOURCE_MASK(64), .flags = CLOCK_SOURCE_IS_CONTINUOUS, }; /* * Reference to pv_ops must be inline so objtool * detection of noinstr violations can work correctly. */ #ifdef CONFIG_GENERIC_SCHED_CLOCK static __always_inline void hv_setup_sched_clock(void *sched_clock) { /* * We're on an architecture with generic sched clock (not x86/x64). * The Hyper-V sched clock read function returns nanoseconds, not * the normal 100ns units of the Hyper-V synthetic clock. */ sched_clock_register(sched_clock, 64, NSEC_PER_SEC); } #elif defined CONFIG_PARAVIRT static __always_inline void hv_setup_sched_clock(void *sched_clock) { /* We're on x86/x64 *and* using PV ops */ paravirt_set_sched_clock(sched_clock); } #else /* !CONFIG_GENERIC_SCHED_CLOCK && !CONFIG_PARAVIRT */ static __always_inline void hv_setup_sched_clock(void *sched_clock) {} #endif /* CONFIG_GENERIC_SCHED_CLOCK */ static void __init hv_init_tsc_clocksource(void) { union hv_reference_tsc_msr tsc_msr; /* * If Hyper-V offers TSC_INVARIANT, then the virtualized TSC correctly * handles frequency and offset changes due to live migration, * pause/resume, and other VM management operations. So lower the * Hyper-V Reference TSC rating, causing the generic TSC to be used. * TSC_INVARIANT is not offered on ARM64, so the Hyper-V Reference * TSC will be preferred over the virtualized ARM64 arch counter. */ if (ms_hyperv.features & HV_ACCESS_TSC_INVARIANT) { hyperv_cs_tsc.rating = 250; hyperv_cs_msr.rating = 245; } if (!(ms_hyperv.features & HV_MSR_REFERENCE_TSC_AVAILABLE)) return; hv_read_reference_counter = read_hv_clock_tsc; /* * TSC page mapping works differently in root compared to guest. * - In guest partition the guest PFN has to be passed to the * hypervisor. * - In root partition it's other way around: it has to map the PFN * provided by the hypervisor. * But it can't be mapped right here as it's too early and MMU isn't * ready yet. So, we only set the enable bit here and will remap the * page later in hv_remap_tsc_clocksource(). * * It worth mentioning, that TSC clocksource read function * (read_hv_clock_tsc) has a MSR-based fallback mechanism, used when * TSC page is zeroed (which is the case until the PFN is remapped) and * thus TSC clocksource will work even without the real TSC page * mapped. */ tsc_msr.as_uint64 = hv_get_msr(HV_MSR_REFERENCE_TSC); if (hv_root_partition) tsc_pfn = tsc_msr.pfn; else tsc_pfn = HVPFN_DOWN(virt_to_phys(tsc_page)); tsc_msr.enable = 1; tsc_msr.pfn = tsc_pfn; hv_set_msr(HV_MSR_REFERENCE_TSC, tsc_msr.as_uint64); clocksource_register_hz(&hyperv_cs_tsc, NSEC_PER_SEC/100); /* * If TSC is invariant, then let it stay as the sched clock since it * will be faster than reading the TSC page. But if not invariant, use * the TSC page so that live migrations across hosts with different * frequencies is handled correctly. */ if (!(ms_hyperv.features & HV_ACCESS_TSC_INVARIANT)) { hv_sched_clock_offset = hv_read_reference_counter(); hv_setup_sched_clock(read_hv_sched_clock_tsc); } } void __init hv_init_clocksource(void) { /* * Try to set up the TSC page clocksource, then the MSR clocksource. * At least one of these will always be available except on very old * versions of Hyper-V on x86. In that case we won't have a Hyper-V * clocksource, but Linux will still run with a clocksource based * on the emulated PIT or LAPIC timer. * * Never use the MSR clocksource as sched clock. It's too slow. * Better to use the native sched clock as the fallback. */ hv_init_tsc_clocksource(); if (ms_hyperv.features & HV_MSR_TIME_REF_COUNT_AVAILABLE) clocksource_register_hz(&hyperv_cs_msr, NSEC_PER_SEC/100); } void __init hv_remap_tsc_clocksource(void) { if (!(ms_hyperv.features & HV_MSR_REFERENCE_TSC_AVAILABLE)) return; if (!hv_root_partition) { WARN(1, "%s: attempt to remap TSC page in guest partition\n", __func__); return; } tsc_page = memremap(tsc_pfn << HV_HYP_PAGE_SHIFT, sizeof(tsc_pg), MEMREMAP_WB); if (!tsc_page) pr_err("Failed to remap Hyper-V TSC page.\n"); }