// SPDX-License-Identifier: GPL-2.0 /* * EDAC driver for DMC-520 memory controller. * * The driver supports 10 interrupt lines, * though only dram_ecc_errc and dram_ecc_errd are currently handled. * * Authors: Rui Zhao * Lei Wang * Shiping Ji */ #include #include #include #include #include #include #include #include #include #include "edac_mc.h" /* DMC-520 registers */ #define REG_OFFSET_FEATURE_CONFIG 0x130 #define REG_OFFSET_ECC_ERRC_COUNT_31_00 0x158 #define REG_OFFSET_ECC_ERRC_COUNT_63_32 0x15C #define REG_OFFSET_ECC_ERRD_COUNT_31_00 0x160 #define REG_OFFSET_ECC_ERRD_COUNT_63_32 0x164 #define REG_OFFSET_INTERRUPT_CONTROL 0x500 #define REG_OFFSET_INTERRUPT_CLR 0x508 #define REG_OFFSET_INTERRUPT_STATUS 0x510 #define REG_OFFSET_DRAM_ECC_ERRC_INT_INFO_31_00 0x528 #define REG_OFFSET_DRAM_ECC_ERRC_INT_INFO_63_32 0x52C #define REG_OFFSET_DRAM_ECC_ERRD_INT_INFO_31_00 0x530 #define REG_OFFSET_DRAM_ECC_ERRD_INT_INFO_63_32 0x534 #define REG_OFFSET_ADDRESS_CONTROL_NOW 0x1010 #define REG_OFFSET_MEMORY_TYPE_NOW 0x1128 #define REG_OFFSET_SCRUB_CONTROL0_NOW 0x1170 #define REG_OFFSET_FORMAT_CONTROL 0x18 /* DMC-520 types, masks and bitfields */ #define RAM_ECC_INT_CE_BIT BIT(0) #define RAM_ECC_INT_UE_BIT BIT(1) #define DRAM_ECC_INT_CE_BIT BIT(2) #define DRAM_ECC_INT_UE_BIT BIT(3) #define FAILED_ACCESS_INT_BIT BIT(4) #define FAILED_PROG_INT_BIT BIT(5) #define LINK_ERR_INT_BIT BIT(6) #define TEMPERATURE_EVENT_INT_BIT BIT(7) #define ARCH_FSM_INT_BIT BIT(8) #define PHY_REQUEST_INT_BIT BIT(9) #define MEMORY_WIDTH_MASK GENMASK(1, 0) #define SCRUB_TRIGGER0_NEXT_MASK GENMASK(1, 0) #define REG_FIELD_DRAM_ECC_ENABLED GENMASK(1, 0) #define REG_FIELD_MEMORY_TYPE GENMASK(2, 0) #define REG_FIELD_DEVICE_WIDTH GENMASK(9, 8) #define REG_FIELD_ADDRESS_CONTROL_COL GENMASK(2, 0) #define REG_FIELD_ADDRESS_CONTROL_ROW GENMASK(10, 8) #define REG_FIELD_ADDRESS_CONTROL_BANK GENMASK(18, 16) #define REG_FIELD_ADDRESS_CONTROL_RANK GENMASK(25, 24) #define REG_FIELD_ERR_INFO_LOW_VALID BIT(0) #define REG_FIELD_ERR_INFO_LOW_COL GENMASK(10, 1) #define REG_FIELD_ERR_INFO_LOW_ROW GENMASK(28, 11) #define REG_FIELD_ERR_INFO_LOW_RANK GENMASK(31, 29) #define REG_FIELD_ERR_INFO_HIGH_BANK GENMASK(3, 0) #define REG_FIELD_ERR_INFO_HIGH_VALID BIT(31) #define DRAM_ADDRESS_CONTROL_MIN_COL_BITS 8 #define DRAM_ADDRESS_CONTROL_MIN_ROW_BITS 11 #define DMC520_SCRUB_TRIGGER_ERR_DETECT 2 #define DMC520_SCRUB_TRIGGER_IDLE 3 /* Driver settings */ /* * The max-length message would be: "rank:7 bank:15 row:262143 col:1023". * Max length is 34. Using a 40-size buffer is enough. */ #define DMC520_MSG_BUF_SIZE 40 #define EDAC_MOD_NAME "dmc520-edac" #define EDAC_CTL_NAME "dmc520" /* the data bus width for the attached memory chips. */ enum dmc520_mem_width { MEM_WIDTH_X32 = 2, MEM_WIDTH_X64 = 3 }; /* memory type */ enum dmc520_mem_type { MEM_TYPE_DDR3 = 1, MEM_TYPE_DDR4 = 2 }; /* memory device width */ enum dmc520_dev_width { DEV_WIDTH_X4 = 0, DEV_WIDTH_X8 = 1, DEV_WIDTH_X16 = 2 }; struct ecc_error_info { u32 col; u32 row; u32 bank; u32 rank; }; /* The interrupt config */ struct dmc520_irq_config { char *name; int mask; }; /* The interrupt mappings */ static struct dmc520_irq_config dmc520_irq_configs[] = { { .name = "ram_ecc_errc", .mask = RAM_ECC_INT_CE_BIT }, { .name = "ram_ecc_errd", .mask = RAM_ECC_INT_UE_BIT }, { .name = "dram_ecc_errc", .mask = DRAM_ECC_INT_CE_BIT }, { .name = "dram_ecc_errd", .mask = DRAM_ECC_INT_UE_BIT }, { .name = "failed_access", .mask = FAILED_ACCESS_INT_BIT }, { .name = "failed_prog", .mask = FAILED_PROG_INT_BIT }, { .name = "link_err", .mask = LINK_ERR_INT_BIT }, { .name = "temperature_event", .mask = TEMPERATURE_EVENT_INT_BIT }, { .name = "arch_fsm", .mask = ARCH_FSM_INT_BIT }, { .name = "phy_request", .mask = PHY_REQUEST_INT_BIT } }; #define NUMBER_OF_IRQS ARRAY_SIZE(dmc520_irq_configs) /* * The EDAC driver private data. * error_lock is to protect concurrent writes to the mci->error_desc through * edac_mc_handle_error(). */ struct dmc520_edac { void __iomem *reg_base; spinlock_t error_lock; u32 mem_width_in_bytes; int irqs[NUMBER_OF_IRQS]; int masks[NUMBER_OF_IRQS]; }; static int dmc520_mc_idx; static u32 dmc520_read_reg(struct dmc520_edac *pvt, u32 offset) { return readl(pvt->reg_base + offset); } static void dmc520_write_reg(struct dmc520_edac *pvt, u32 val, u32 offset) { writel(val, pvt->reg_base + offset); } static u32 dmc520_calc_dram_ecc_error(u32 value) { u32 total = 0; /* Each rank's error counter takes one byte. */ while (value > 0) { total += (value & 0xFF); value >>= 8; } return total; } static u32 dmc520_get_dram_ecc_error_count(struct dmc520_edac *pvt, bool is_ce) { u32 reg_offset_low, reg_offset_high; u32 err_low, err_high; u32 err_count; reg_offset_low = is_ce ? REG_OFFSET_ECC_ERRC_COUNT_31_00 : REG_OFFSET_ECC_ERRD_COUNT_31_00; reg_offset_high = is_ce ? REG_OFFSET_ECC_ERRC_COUNT_63_32 : REG_OFFSET_ECC_ERRD_COUNT_63_32; err_low = dmc520_read_reg(pvt, reg_offset_low); err_high = dmc520_read_reg(pvt, reg_offset_high); /* Reset error counters */ dmc520_write_reg(pvt, 0, reg_offset_low); dmc520_write_reg(pvt, 0, reg_offset_high); err_count = dmc520_calc_dram_ecc_error(err_low) + dmc520_calc_dram_ecc_error(err_high); return err_count; } static void dmc520_get_dram_ecc_error_info(struct dmc520_edac *pvt, bool is_ce, struct ecc_error_info *info) { u32 reg_offset_low, reg_offset_high; u32 reg_val_low, reg_val_high; bool valid; reg_offset_low = is_ce ? REG_OFFSET_DRAM_ECC_ERRC_INT_INFO_31_00 : REG_OFFSET_DRAM_ECC_ERRD_INT_INFO_31_00; reg_offset_high = is_ce ? REG_OFFSET_DRAM_ECC_ERRC_INT_INFO_63_32 : REG_OFFSET_DRAM_ECC_ERRD_INT_INFO_63_32; reg_val_low = dmc520_read_reg(pvt, reg_offset_low); reg_val_high = dmc520_read_reg(pvt, reg_offset_high); valid = (FIELD_GET(REG_FIELD_ERR_INFO_LOW_VALID, reg_val_low) != 0) && (FIELD_GET(REG_FIELD_ERR_INFO_HIGH_VALID, reg_val_high) != 0); if (valid) { info->col = FIELD_GET(REG_FIELD_ERR_INFO_LOW_COL, reg_val_low); info->row = FIELD_GET(REG_FIELD_ERR_INFO_LOW_ROW, reg_val_low); info->rank = FIELD_GET(REG_FIELD_ERR_INFO_LOW_RANK, reg_val_low); info->bank = FIELD_GET(REG_FIELD_ERR_INFO_HIGH_BANK, reg_val_high); } else { memset(info, 0, sizeof(*info)); } } static bool dmc520_is_ecc_enabled(void __iomem *reg_base) { u32 reg_val = readl(reg_base + REG_OFFSET_FEATURE_CONFIG); return FIELD_GET(REG_FIELD_DRAM_ECC_ENABLED, reg_val); } static enum scrub_type dmc520_get_scrub_type(struct dmc520_edac *pvt) { enum scrub_type type = SCRUB_NONE; u32 reg_val, scrub_cfg; reg_val = dmc520_read_reg(pvt, REG_OFFSET_SCRUB_CONTROL0_NOW); scrub_cfg = FIELD_GET(SCRUB_TRIGGER0_NEXT_MASK, reg_val); if (scrub_cfg == DMC520_SCRUB_TRIGGER_ERR_DETECT || scrub_cfg == DMC520_SCRUB_TRIGGER_IDLE) type = SCRUB_HW_PROG; return type; } /* Get the memory data bus width, in number of bytes. */ static u32 dmc520_get_memory_width(struct dmc520_edac *pvt) { enum dmc520_mem_width mem_width_field; u32 mem_width_in_bytes = 0; u32 reg_val; reg_val = dmc520_read_reg(pvt, REG_OFFSET_FORMAT_CONTROL); mem_width_field = FIELD_GET(MEMORY_WIDTH_MASK, reg_val); if (mem_width_field == MEM_WIDTH_X32) mem_width_in_bytes = 4; else if (mem_width_field == MEM_WIDTH_X64) mem_width_in_bytes = 8; return mem_width_in_bytes; } static enum mem_type dmc520_get_mtype(struct dmc520_edac *pvt) { enum mem_type mt = MEM_UNKNOWN; enum dmc520_mem_type type; u32 reg_val; reg_val = dmc520_read_reg(pvt, REG_OFFSET_MEMORY_TYPE_NOW); type = FIELD_GET(REG_FIELD_MEMORY_TYPE, reg_val); switch (type) { case MEM_TYPE_DDR3: mt = MEM_DDR3; break; case MEM_TYPE_DDR4: mt = MEM_DDR4; break; } return mt; } static enum dev_type dmc520_get_dtype(struct dmc520_edac *pvt) { enum dmc520_dev_width device_width; enum dev_type dt = DEV_UNKNOWN; u32 reg_val; reg_val = dmc520_read_reg(pvt, REG_OFFSET_MEMORY_TYPE_NOW); device_width = FIELD_GET(REG_FIELD_DEVICE_WIDTH, reg_val); switch (device_width) { case DEV_WIDTH_X4: dt = DEV_X4; break; case DEV_WIDTH_X8: dt = DEV_X8; break; case DEV_WIDTH_X16: dt = DEV_X16; break; } return dt; } static u32 dmc520_get_rank_count(void __iomem *reg_base) { u32 reg_val, rank_bits; reg_val = readl(reg_base + REG_OFFSET_ADDRESS_CONTROL_NOW); rank_bits = FIELD_GET(REG_FIELD_ADDRESS_CONTROL_RANK, reg_val); return BIT(rank_bits); } static u64 dmc520_get_rank_size(struct dmc520_edac *pvt) { u32 reg_val, col_bits, row_bits, bank_bits; reg_val = dmc520_read_reg(pvt, REG_OFFSET_ADDRESS_CONTROL_NOW); col_bits = FIELD_GET(REG_FIELD_ADDRESS_CONTROL_COL, reg_val) + DRAM_ADDRESS_CONTROL_MIN_COL_BITS; row_bits = FIELD_GET(REG_FIELD_ADDRESS_CONTROL_ROW, reg_val) + DRAM_ADDRESS_CONTROL_MIN_ROW_BITS; bank_bits = FIELD_GET(REG_FIELD_ADDRESS_CONTROL_BANK, reg_val); return (u64)pvt->mem_width_in_bytes << (col_bits + row_bits + bank_bits); } static void dmc520_handle_dram_ecc_errors(struct mem_ctl_info *mci, bool is_ce) { struct dmc520_edac *pvt = mci->pvt_info; char message[DMC520_MSG_BUF_SIZE]; struct ecc_error_info info; u32 cnt; dmc520_get_dram_ecc_error_info(pvt, is_ce, &info); cnt = dmc520_get_dram_ecc_error_count(pvt, is_ce); if (!cnt) return; snprintf(message, ARRAY_SIZE(message), "rank:%d bank:%d row:%d col:%d", info.rank, info.bank, info.row, info.col); spin_lock(&pvt->error_lock); edac_mc_handle_error((is_ce ? HW_EVENT_ERR_CORRECTED : HW_EVENT_ERR_UNCORRECTED), mci, cnt, 0, 0, 0, info.rank, -1, -1, message, ""); spin_unlock(&pvt->error_lock); } static irqreturn_t dmc520_edac_dram_ecc_isr(int irq, struct mem_ctl_info *mci, bool is_ce) { struct dmc520_edac *pvt = mci->pvt_info; u32 i_mask; i_mask = is_ce ? DRAM_ECC_INT_CE_BIT : DRAM_ECC_INT_UE_BIT; dmc520_handle_dram_ecc_errors(mci, is_ce); dmc520_write_reg(pvt, i_mask, REG_OFFSET_INTERRUPT_CLR); return IRQ_HANDLED; } static irqreturn_t dmc520_edac_dram_all_isr(int irq, struct mem_ctl_info *mci, u32 irq_mask) { struct dmc520_edac *pvt = mci->pvt_info; irqreturn_t irq_ret = IRQ_NONE; u32 status; status = dmc520_read_reg(pvt, REG_OFFSET_INTERRUPT_STATUS); if ((irq_mask & DRAM_ECC_INT_CE_BIT) && (status & DRAM_ECC_INT_CE_BIT)) irq_ret = dmc520_edac_dram_ecc_isr(irq, mci, true); if ((irq_mask & DRAM_ECC_INT_UE_BIT) && (status & DRAM_ECC_INT_UE_BIT)) irq_ret = dmc520_edac_dram_ecc_isr(irq, mci, false); return irq_ret; } static irqreturn_t dmc520_isr(int irq, void *data) { struct mem_ctl_info *mci = data; struct dmc520_edac *pvt = mci->pvt_info; u32 mask = 0; int idx; for (idx = 0; idx < NUMBER_OF_IRQS; idx++) { if (pvt->irqs[idx] == irq) { mask = pvt->masks[idx]; break; } } return dmc520_edac_dram_all_isr(irq, mci, mask); } static void dmc520_init_csrow(struct mem_ctl_info *mci) { struct dmc520_edac *pvt = mci->pvt_info; struct csrow_info *csi; struct dimm_info *dimm; u32 pages_per_rank; enum dev_type dt; enum mem_type mt; int row, ch; u64 rs; dt = dmc520_get_dtype(pvt); mt = dmc520_get_mtype(pvt); rs = dmc520_get_rank_size(pvt); pages_per_rank = rs >> PAGE_SHIFT; for (row = 0; row < mci->nr_csrows; row++) { csi = mci->csrows[row]; for (ch = 0; ch < csi->nr_channels; ch++) { dimm = csi->channels[ch]->dimm; dimm->grain = pvt->mem_width_in_bytes; dimm->dtype = dt; dimm->mtype = mt; dimm->edac_mode = EDAC_SECDED; dimm->nr_pages = pages_per_rank / csi->nr_channels; } } } static int dmc520_edac_probe(struct platform_device *pdev) { bool registered[NUMBER_OF_IRQS] = { false }; int irqs[NUMBER_OF_IRQS] = { -ENXIO }; int masks[NUMBER_OF_IRQS] = { 0 }; struct edac_mc_layer layers[1]; struct dmc520_edac *pvt = NULL; struct mem_ctl_info *mci; void __iomem *reg_base; u32 irq_mask_all = 0; struct resource *res; struct device *dev; int ret, idx, irq; u32 reg_val; /* Parse the device node */ dev = &pdev->dev; for (idx = 0; idx < NUMBER_OF_IRQS; idx++) { irq = platform_get_irq_byname_optional(pdev, dmc520_irq_configs[idx].name); irqs[idx] = irq; masks[idx] = dmc520_irq_configs[idx].mask; if (irq >= 0) { irq_mask_all |= dmc520_irq_configs[idx].mask; edac_dbg(0, "Discovered %s, irq: %d.\n", dmc520_irq_configs[idx].name, irq); } } if (!irq_mask_all) { edac_printk(KERN_ERR, EDAC_MOD_NAME, "At least one valid interrupt line is expected.\n"); return -EINVAL; } /* Initialize dmc520 edac */ res = platform_get_resource(pdev, IORESOURCE_MEM, 0); reg_base = devm_ioremap_resource(dev, res); if (IS_ERR(reg_base)) return PTR_ERR(reg_base); if (!dmc520_is_ecc_enabled(reg_base)) return -ENXIO; layers[0].type = EDAC_MC_LAYER_CHIP_SELECT; layers[0].size = dmc520_get_rank_count(reg_base); layers[0].is_virt_csrow = true; mci = edac_mc_alloc(dmc520_mc_idx++, ARRAY_SIZE(layers), layers, sizeof(*pvt)); if (!mci) { edac_printk(KERN_ERR, EDAC_MOD_NAME, "Failed to allocate memory for mc instance\n"); ret = -ENOMEM; goto err; } pvt = mci->pvt_info; pvt->reg_base = reg_base; spin_lock_init(&pvt->error_lock); memcpy(pvt->irqs, irqs, sizeof(irqs)); memcpy(pvt->masks, masks, sizeof(masks)); platform_set_drvdata(pdev, mci); mci->pdev = dev; mci->mtype_cap = MEM_FLAG_DDR3 | MEM_FLAG_DDR4; mci->edac_ctl_cap = EDAC_FLAG_NONE | EDAC_FLAG_SECDED; mci->edac_cap = EDAC_FLAG_SECDED; mci->scrub_cap = SCRUB_FLAG_HW_SRC; mci->scrub_mode = dmc520_get_scrub_type(pvt); mci->ctl_name = EDAC_CTL_NAME; mci->dev_name = dev_name(mci->pdev); mci->mod_name = EDAC_MOD_NAME; edac_op_state = EDAC_OPSTATE_INT; pvt->mem_width_in_bytes = dmc520_get_memory_width(pvt); dmc520_init_csrow(mci); /* Clear interrupts, not affecting other unrelated interrupts */ reg_val = dmc520_read_reg(pvt, REG_OFFSET_INTERRUPT_CONTROL); dmc520_write_reg(pvt, reg_val & (~irq_mask_all), REG_OFFSET_INTERRUPT_CONTROL); dmc520_write_reg(pvt, irq_mask_all, REG_OFFSET_INTERRUPT_CLR); for (idx = 0; idx < NUMBER_OF_IRQS; idx++) { irq = irqs[idx]; if (irq >= 0) { ret = devm_request_irq(&pdev->dev, irq, dmc520_isr, IRQF_SHARED, dev_name(&pdev->dev), mci); if (ret < 0) { edac_printk(KERN_ERR, EDAC_MC, "Failed to request irq %d\n", irq); goto err; } registered[idx] = true; } } /* Reset DRAM CE/UE counters */ if (irq_mask_all & DRAM_ECC_INT_CE_BIT) dmc520_get_dram_ecc_error_count(pvt, true); if (irq_mask_all & DRAM_ECC_INT_UE_BIT) dmc520_get_dram_ecc_error_count(pvt, false); ret = edac_mc_add_mc(mci); if (ret) { edac_printk(KERN_ERR, EDAC_MOD_NAME, "Failed to register with EDAC core\n"); goto err; } /* Enable interrupts, not affecting other unrelated interrupts */ dmc520_write_reg(pvt, reg_val | irq_mask_all, REG_OFFSET_INTERRUPT_CONTROL); return 0; err: for (idx = 0; idx < NUMBER_OF_IRQS; idx++) { if (registered[idx]) devm_free_irq(&pdev->dev, pvt->irqs[idx], mci); } if (mci) edac_mc_free(mci); return ret; } static void dmc520_edac_remove(struct platform_device *pdev) { u32 reg_val, idx, irq_mask_all = 0; struct mem_ctl_info *mci; struct dmc520_edac *pvt; mci = platform_get_drvdata(pdev); pvt = mci->pvt_info; /* Disable interrupts */ reg_val = dmc520_read_reg(pvt, REG_OFFSET_INTERRUPT_CONTROL); dmc520_write_reg(pvt, reg_val & (~irq_mask_all), REG_OFFSET_INTERRUPT_CONTROL); /* free irq's */ for (idx = 0; idx < NUMBER_OF_IRQS; idx++) { if (pvt->irqs[idx] >= 0) { irq_mask_all |= pvt->masks[idx]; devm_free_irq(&pdev->dev, pvt->irqs[idx], mci); } } edac_mc_del_mc(&pdev->dev); edac_mc_free(mci); } static const struct of_device_id dmc520_edac_driver_id[] = { { .compatible = "arm,dmc-520", }, { /* end of table */ } }; MODULE_DEVICE_TABLE(of, dmc520_edac_driver_id); static struct platform_driver dmc520_edac_driver = { .driver = { .name = "dmc520", .of_match_table = dmc520_edac_driver_id, }, .probe = dmc520_edac_probe, .remove_new = dmc520_edac_remove }; module_platform_driver(dmc520_edac_driver); MODULE_AUTHOR("Rui Zhao "); MODULE_AUTHOR("Lei Wang "); MODULE_AUTHOR("Shiping Ji "); MODULE_DESCRIPTION("DMC-520 ECC driver"); MODULE_LICENSE("GPL v2");