// SPDX-License-Identifier: GPL-2.0 /* * Microchip Polarfire FPGA programming over slave SPI interface. */ #include #include #include #include #include #include #include #define MPF_SPI_ISC_ENABLE 0x0B #define MPF_SPI_ISC_DISABLE 0x0C #define MPF_SPI_READ_STATUS 0x00 #define MPF_SPI_READ_DATA 0x01 #define MPF_SPI_FRAME_INIT 0xAE #define MPF_SPI_FRAME 0xEE #define MPF_SPI_PRG_MODE 0x01 #define MPF_SPI_RELEASE 0x23 #define MPF_SPI_FRAME_SIZE 16 #define MPF_HEADER_SIZE_OFFSET 24 #define MPF_DATA_SIZE_OFFSET 55 #define MPF_LOOKUP_TABLE_RECORD_SIZE 9 #define MPF_LOOKUP_TABLE_BLOCK_ID_OFFSET 0 #define MPF_LOOKUP_TABLE_BLOCK_START_OFFSET 1 #define MPF_COMPONENTS_SIZE_ID 5 #define MPF_BITSTREAM_ID 8 #define MPF_BITS_PER_COMPONENT_SIZE 22 #define MPF_STATUS_POLL_TIMEOUT (2 * USEC_PER_SEC) #define MPF_STATUS_BUSY BIT(0) #define MPF_STATUS_READY BIT(1) #define MPF_STATUS_SPI_VIOLATION BIT(2) #define MPF_STATUS_SPI_ERROR BIT(3) struct mpf_priv { struct spi_device *spi; bool program_mode; u8 tx __aligned(ARCH_KMALLOC_MINALIGN); u8 rx; }; static int mpf_read_status(struct mpf_priv *priv) { /* * HW status is returned on MISO in the first byte after CS went * active. However, first reading can be inadequate, so we submit * two identical SPI transfers and use result of the later one. */ struct spi_transfer xfers[2] = { { .tx_buf = &priv->tx, .rx_buf = &priv->rx, .len = 1, .cs_change = 1, }, { .tx_buf = &priv->tx, .rx_buf = &priv->rx, .len = 1, }, }; u8 status; int ret; priv->tx = MPF_SPI_READ_STATUS; ret = spi_sync_transfer(priv->spi, xfers, 2); if (ret) return ret; status = priv->rx; if ((status & MPF_STATUS_SPI_VIOLATION) || (status & MPF_STATUS_SPI_ERROR)) return -EIO; return status; } static enum fpga_mgr_states mpf_ops_state(struct fpga_manager *mgr) { struct mpf_priv *priv = mgr->priv; bool program_mode; int status; program_mode = priv->program_mode; status = mpf_read_status(priv); if (!program_mode && !status) return FPGA_MGR_STATE_OPERATING; return FPGA_MGR_STATE_UNKNOWN; } static int mpf_ops_parse_header(struct fpga_manager *mgr, struct fpga_image_info *info, const char *buf, size_t count) { size_t component_size_byte_num, component_size_byte_off, components_size_start, bitstream_start, block_id_offset, block_start_offset; u8 header_size, blocks_num, block_id; u32 block_start, component_size; u16 components_num, i; if (!buf) { dev_err(&mgr->dev, "Image buffer is not provided\n"); return -EINVAL; } header_size = *(buf + MPF_HEADER_SIZE_OFFSET); if (header_size > count) { info->header_size = header_size; return -EAGAIN; } /* * Go through look-up table to find out where actual bitstream starts * and where sizes of components of the bitstream lies. */ blocks_num = *(buf + header_size - 1); block_id_offset = header_size + MPF_LOOKUP_TABLE_BLOCK_ID_OFFSET; block_start_offset = header_size + MPF_LOOKUP_TABLE_BLOCK_START_OFFSET; header_size += blocks_num * MPF_LOOKUP_TABLE_RECORD_SIZE; if (header_size > count) { info->header_size = header_size; return -EAGAIN; } components_size_start = 0; bitstream_start = 0; while (blocks_num--) { block_id = *(buf + block_id_offset); block_start = get_unaligned_le32(buf + block_start_offset); switch (block_id) { case MPF_BITSTREAM_ID: bitstream_start = block_start; info->header_size = block_start; if (block_start > count) return -EAGAIN; break; case MPF_COMPONENTS_SIZE_ID: components_size_start = block_start; break; default: break; } if (bitstream_start && components_size_start) break; block_id_offset += MPF_LOOKUP_TABLE_RECORD_SIZE; block_start_offset += MPF_LOOKUP_TABLE_RECORD_SIZE; } if (!bitstream_start || !components_size_start) { dev_err(&mgr->dev, "Failed to parse header look-up table\n"); return -EFAULT; } /* * Parse bitstream size. * Sizes of components of the bitstream are 22-bits long placed next * to each other. Image header should be extended by now up to where * actual bitstream starts, so no need for overflow check anymore. */ components_num = get_unaligned_le16(buf + MPF_DATA_SIZE_OFFSET); for (i = 0; i < components_num; i++) { component_size_byte_num = (i * MPF_BITS_PER_COMPONENT_SIZE) / BITS_PER_BYTE; component_size_byte_off = (i * MPF_BITS_PER_COMPONENT_SIZE) % BITS_PER_BYTE; component_size = get_unaligned_le32(buf + components_size_start + component_size_byte_num); component_size >>= component_size_byte_off; component_size &= GENMASK(MPF_BITS_PER_COMPONENT_SIZE - 1, 0); info->data_size += component_size * MPF_SPI_FRAME_SIZE; } return 0; } static int mpf_poll_status(struct mpf_priv *priv, u8 mask) { int ret, status; /* * Busy poll HW status. Polling stops if any of the following * conditions are met: * - timeout is reached * - mpf_read_status() returns an error * - busy bit is cleared AND mask bits are set */ ret = read_poll_timeout(mpf_read_status, status, (status < 0) || ((status & (MPF_STATUS_BUSY | mask)) == mask), 0, MPF_STATUS_POLL_TIMEOUT, false, priv); if (ret < 0) return ret; return status; } static int mpf_spi_write(struct mpf_priv *priv, const void *buf, size_t buf_size) { int status = mpf_poll_status(priv, 0); if (status < 0) return status; return spi_write_then_read(priv->spi, buf, buf_size, NULL, 0); } static int mpf_spi_write_then_read(struct mpf_priv *priv, const void *txbuf, size_t txbuf_size, void *rxbuf, size_t rxbuf_size) { const u8 read_command[] = { MPF_SPI_READ_DATA }; int ret; ret = mpf_spi_write(priv, txbuf, txbuf_size); if (ret) return ret; ret = mpf_poll_status(priv, MPF_STATUS_READY); if (ret < 0) return ret; return spi_write_then_read(priv->spi, read_command, sizeof(read_command), rxbuf, rxbuf_size); } static int mpf_ops_write_init(struct fpga_manager *mgr, struct fpga_image_info *info, const char *buf, size_t count) { const u8 program_mode[] = { MPF_SPI_FRAME_INIT, MPF_SPI_PRG_MODE }; const u8 isc_en_command[] = { MPF_SPI_ISC_ENABLE }; struct mpf_priv *priv = mgr->priv; struct device *dev = &mgr->dev; u32 isc_ret = 0; int ret; if (info->flags & FPGA_MGR_PARTIAL_RECONFIG) { dev_err(dev, "Partial reconfiguration is not supported\n"); return -EOPNOTSUPP; } ret = mpf_spi_write_then_read(priv, isc_en_command, sizeof(isc_en_command), &isc_ret, sizeof(isc_ret)); if (ret || isc_ret) { dev_err(dev, "Failed to enable ISC: spi_ret %d, isc_ret %u\n", ret, isc_ret); return -EFAULT; } ret = mpf_spi_write(priv, program_mode, sizeof(program_mode)); if (ret) { dev_err(dev, "Failed to enter program mode: %d\n", ret); return ret; } priv->program_mode = true; return 0; } static int mpf_spi_frame_write(struct mpf_priv *priv, const char *buf) { struct spi_transfer xfers[2] = { { .tx_buf = &priv->tx, .len = 1, }, { .tx_buf = buf, .len = MPF_SPI_FRAME_SIZE, }, }; int ret; ret = mpf_poll_status(priv, 0); if (ret < 0) return ret; priv->tx = MPF_SPI_FRAME; return spi_sync_transfer(priv->spi, xfers, ARRAY_SIZE(xfers)); } static int mpf_ops_write(struct fpga_manager *mgr, const char *buf, size_t count) { struct mpf_priv *priv = mgr->priv; struct device *dev = &mgr->dev; int ret, i; if (count % MPF_SPI_FRAME_SIZE) { dev_err(dev, "Bitstream size is not a multiple of %d\n", MPF_SPI_FRAME_SIZE); return -EINVAL; } for (i = 0; i < count / MPF_SPI_FRAME_SIZE; i++) { ret = mpf_spi_frame_write(priv, buf + i * MPF_SPI_FRAME_SIZE); if (ret) { dev_err(dev, "Failed to write bitstream frame %d/%zu\n", i, count / MPF_SPI_FRAME_SIZE); return ret; } } return 0; } static int mpf_ops_write_complete(struct fpga_manager *mgr, struct fpga_image_info *info) { const u8 isc_dis_command[] = { MPF_SPI_ISC_DISABLE }; const u8 release_command[] = { MPF_SPI_RELEASE }; struct mpf_priv *priv = mgr->priv; struct device *dev = &mgr->dev; int ret; ret = mpf_spi_write(priv, isc_dis_command, sizeof(isc_dis_command)); if (ret) { dev_err(dev, "Failed to disable ISC: %d\n", ret); return ret; } usleep_range(1000, 2000); ret = mpf_spi_write(priv, release_command, sizeof(release_command)); if (ret) { dev_err(dev, "Failed to exit program mode: %d\n", ret); return ret; } priv->program_mode = false; return 0; } static const struct fpga_manager_ops mpf_ops = { .state = mpf_ops_state, .initial_header_size = 71, .skip_header = true, .parse_header = mpf_ops_parse_header, .write_init = mpf_ops_write_init, .write = mpf_ops_write, .write_complete = mpf_ops_write_complete, }; static int mpf_probe(struct spi_device *spi) { struct device *dev = &spi->dev; struct fpga_manager *mgr; struct mpf_priv *priv; priv = devm_kzalloc(dev, sizeof(*priv), GFP_KERNEL); if (!priv) return -ENOMEM; priv->spi = spi; mgr = devm_fpga_mgr_register(dev, "Microchip Polarfire SPI FPGA Manager", &mpf_ops, priv); return PTR_ERR_OR_ZERO(mgr); } static const struct spi_device_id mpf_spi_ids[] = { { .name = "mpf-spi-fpga-mgr", }, {}, }; MODULE_DEVICE_TABLE(spi, mpf_spi_ids); #if IS_ENABLED(CONFIG_OF) static const struct of_device_id mpf_of_ids[] = { { .compatible = "microchip,mpf-spi-fpga-mgr" }, {}, }; MODULE_DEVICE_TABLE(of, mpf_of_ids); #endif /* IS_ENABLED(CONFIG_OF) */ static struct spi_driver mpf_driver = { .probe = mpf_probe, .id_table = mpf_spi_ids, .driver = { .name = "microchip_mpf_spi_fpga_mgr", .of_match_table = of_match_ptr(mpf_of_ids), }, }; module_spi_driver(mpf_driver); MODULE_DESCRIPTION("Microchip Polarfire SPI FPGA Manager"); MODULE_AUTHOR("Ivan Bornyakov "); MODULE_LICENSE("GPL");