/* * Copyright © 2008-2015 Intel Corporation * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS * IN THE SOFTWARE. */ #include "intel_display_types.h" #include "intel_dp.h" #include "intel_dp_link_training.h" static void intel_dp_dump_link_status(const u8 link_status[DP_LINK_STATUS_SIZE]) { DRM_DEBUG_KMS("ln0_1:0x%x ln2_3:0x%x align:0x%x sink:0x%x adj_req0_1:0x%x adj_req2_3:0x%x", link_status[0], link_status[1], link_status[2], link_status[3], link_status[4], link_status[5]); } static void intel_dp_reset_lttpr_common_caps(struct intel_dp *intel_dp) { memset(&intel_dp->lttpr_common_caps, 0, sizeof(intel_dp->lttpr_common_caps)); } static void intel_dp_reset_lttpr_count(struct intel_dp *intel_dp) { intel_dp->lttpr_common_caps[DP_PHY_REPEATER_CNT - DP_LT_TUNABLE_PHY_REPEATER_FIELD_DATA_STRUCTURE_REV] = 0; } static const char *intel_dp_phy_name(enum drm_dp_phy dp_phy, char *buf, size_t buf_size) { if (dp_phy == DP_PHY_DPRX) snprintf(buf, buf_size, "DPRX"); else snprintf(buf, buf_size, "LTTPR %d", dp_phy - DP_PHY_LTTPR1 + 1); return buf; } static u8 *intel_dp_lttpr_phy_caps(struct intel_dp *intel_dp, enum drm_dp_phy dp_phy) { return intel_dp->lttpr_phy_caps[dp_phy - DP_PHY_LTTPR1]; } static void intel_dp_read_lttpr_phy_caps(struct intel_dp *intel_dp, enum drm_dp_phy dp_phy) { u8 *phy_caps = intel_dp_lttpr_phy_caps(intel_dp, dp_phy); char phy_name[10]; intel_dp_phy_name(dp_phy, phy_name, sizeof(phy_name)); if (drm_dp_read_lttpr_phy_caps(&intel_dp->aux, dp_phy, phy_caps) < 0) { drm_dbg_kms(&dp_to_i915(intel_dp)->drm, "failed to read the PHY caps for %s\n", phy_name); return; } drm_dbg_kms(&dp_to_i915(intel_dp)->drm, "%s PHY capabilities: %*ph\n", phy_name, (int)sizeof(intel_dp->lttpr_phy_caps[0]), phy_caps); } static bool intel_dp_read_lttpr_common_caps(struct intel_dp *intel_dp) { struct drm_i915_private *i915 = dp_to_i915(intel_dp); if (intel_dp_is_edp(intel_dp)) return false; /* * Detecting LTTPRs must be avoided on platforms with an AUX timeout * period < 3.2ms. (see DP Standard v2.0, 2.11.2, 3.6.6.1). */ if (INTEL_GEN(i915) < 10) return false; if (drm_dp_read_lttpr_common_caps(&intel_dp->aux, intel_dp->lttpr_common_caps) < 0) goto reset_caps; drm_dbg_kms(&dp_to_i915(intel_dp)->drm, "LTTPR common capabilities: %*ph\n", (int)sizeof(intel_dp->lttpr_common_caps), intel_dp->lttpr_common_caps); /* The minimum value of LT_TUNABLE_PHY_REPEATER_FIELD_DATA_STRUCTURE_REV is 1.4 */ if (intel_dp->lttpr_common_caps[0] < 0x14) goto reset_caps; return true; reset_caps: intel_dp_reset_lttpr_common_caps(intel_dp); return false; } static bool intel_dp_set_lttpr_transparent_mode(struct intel_dp *intel_dp, bool enable) { u8 val = enable ? DP_PHY_REPEATER_MODE_TRANSPARENT : DP_PHY_REPEATER_MODE_NON_TRANSPARENT; return drm_dp_dpcd_write(&intel_dp->aux, DP_PHY_REPEATER_MODE, &val, 1) == 1; } /** * intel_dp_init_lttpr_and_dprx_caps - detect LTTPR and DPRX caps, init the LTTPR link training mode * @intel_dp: Intel DP struct * * Read the LTTPR common and DPRX capabilities and switch to non-transparent * link training mode if any is detected and read the PHY capabilities for all * detected LTTPRs. In case of an LTTPR detection error or if the number of * LTTPRs is more than is supported (8), fall back to the no-LTTPR, * transparent mode link training mode. * * Returns: * >0 if LTTPRs were detected and the non-transparent LT mode was set. The * DPRX capabilities are read out. * 0 if no LTTPRs or more than 8 LTTPRs were detected or in case of a * detection failure and the transparent LT mode was set. The DPRX * capabilities are read out. * <0 Reading out the DPRX capabilities failed. */ int intel_dp_init_lttpr_and_dprx_caps(struct intel_dp *intel_dp) { int lttpr_count; bool ret; int i; ret = intel_dp_read_lttpr_common_caps(intel_dp); /* The DPTX shall read the DPRX caps after LTTPR detection. */ if (drm_dp_read_dpcd_caps(&intel_dp->aux, intel_dp->dpcd)) { intel_dp_reset_lttpr_common_caps(intel_dp); return -EIO; } if (!ret) return 0; /* * The 0xF0000-0xF02FF range is only valid if the DPCD revision is * at least 1.4. */ if (intel_dp->dpcd[DP_DPCD_REV] < 0x14) { intel_dp_reset_lttpr_common_caps(intel_dp); return 0; } lttpr_count = drm_dp_lttpr_count(intel_dp->lttpr_common_caps); /* * Prevent setting LTTPR transparent mode explicitly if no LTTPRs are * detected as this breaks link training at least on the Dell WD19TB * dock. */ if (lttpr_count == 0) return 0; /* * See DP Standard v2.0 3.6.6.1. about the explicit disabling of * non-transparent mode and the disable->enable non-transparent mode * sequence. */ intel_dp_set_lttpr_transparent_mode(intel_dp, true); /* * In case of unsupported number of LTTPRs or failing to switch to * non-transparent mode fall-back to transparent link training mode, * still taking into account any LTTPR common lane- rate/count limits. */ if (lttpr_count < 0) return 0; if (!intel_dp_set_lttpr_transparent_mode(intel_dp, false)) { drm_dbg_kms(&dp_to_i915(intel_dp)->drm, "Switching to LTTPR non-transparent LT mode failed, fall-back to transparent mode\n"); intel_dp_set_lttpr_transparent_mode(intel_dp, true); intel_dp_reset_lttpr_count(intel_dp); return 0; } for (i = 0; i < lttpr_count; i++) intel_dp_read_lttpr_phy_caps(intel_dp, DP_PHY_LTTPR(i)); return lttpr_count; } EXPORT_SYMBOL(intel_dp_init_lttpr_and_dprx_caps); static u8 dp_voltage_max(u8 preemph) { switch (preemph & DP_TRAIN_PRE_EMPHASIS_MASK) { case DP_TRAIN_PRE_EMPH_LEVEL_0: return DP_TRAIN_VOLTAGE_SWING_LEVEL_3; case DP_TRAIN_PRE_EMPH_LEVEL_1: return DP_TRAIN_VOLTAGE_SWING_LEVEL_2; case DP_TRAIN_PRE_EMPH_LEVEL_2: return DP_TRAIN_VOLTAGE_SWING_LEVEL_1; case DP_TRAIN_PRE_EMPH_LEVEL_3: default: return DP_TRAIN_VOLTAGE_SWING_LEVEL_0; } } static u8 intel_dp_lttpr_voltage_max(struct intel_dp *intel_dp, enum drm_dp_phy dp_phy) { const u8 *phy_caps = intel_dp_lttpr_phy_caps(intel_dp, dp_phy); if (drm_dp_lttpr_voltage_swing_level_3_supported(phy_caps)) return DP_TRAIN_VOLTAGE_SWING_LEVEL_3; else return DP_TRAIN_VOLTAGE_SWING_LEVEL_2; } static u8 intel_dp_lttpr_preemph_max(struct intel_dp *intel_dp, enum drm_dp_phy dp_phy) { const u8 *phy_caps = intel_dp_lttpr_phy_caps(intel_dp, dp_phy); if (drm_dp_lttpr_pre_emphasis_level_3_supported(phy_caps)) return DP_TRAIN_PRE_EMPH_LEVEL_3; else return DP_TRAIN_PRE_EMPH_LEVEL_2; } static bool intel_dp_phy_is_downstream_of_source(struct intel_dp *intel_dp, enum drm_dp_phy dp_phy) { struct drm_i915_private *i915 = dp_to_i915(intel_dp); int lttpr_count = drm_dp_lttpr_count(intel_dp->lttpr_common_caps); drm_WARN_ON_ONCE(&i915->drm, lttpr_count <= 0 && dp_phy != DP_PHY_DPRX); return lttpr_count <= 0 || dp_phy == DP_PHY_LTTPR(lttpr_count - 1); } static u8 intel_dp_phy_voltage_max(struct intel_dp *intel_dp, const struct intel_crtc_state *crtc_state, enum drm_dp_phy dp_phy) { struct drm_i915_private *i915 = dp_to_i915(intel_dp); u8 voltage_max; /* * Get voltage_max from the DPTX_PHY (source or LTTPR) upstream from * the DPRX_PHY we train. */ if (intel_dp_phy_is_downstream_of_source(intel_dp, dp_phy)) voltage_max = intel_dp->voltage_max(intel_dp, crtc_state); else voltage_max = intel_dp_lttpr_voltage_max(intel_dp, dp_phy + 1); drm_WARN_ON_ONCE(&i915->drm, voltage_max != DP_TRAIN_VOLTAGE_SWING_LEVEL_2 && voltage_max != DP_TRAIN_VOLTAGE_SWING_LEVEL_3); return voltage_max; } static u8 intel_dp_phy_preemph_max(struct intel_dp *intel_dp, enum drm_dp_phy dp_phy) { struct drm_i915_private *i915 = dp_to_i915(intel_dp); u8 preemph_max; /* * Get preemph_max from the DPTX_PHY (source or LTTPR) upstream from * the DPRX_PHY we train. */ if (intel_dp_phy_is_downstream_of_source(intel_dp, dp_phy)) preemph_max = intel_dp->preemph_max(intel_dp); else preemph_max = intel_dp_lttpr_preemph_max(intel_dp, dp_phy + 1); drm_WARN_ON_ONCE(&i915->drm, preemph_max != DP_TRAIN_PRE_EMPH_LEVEL_2 && preemph_max != DP_TRAIN_PRE_EMPH_LEVEL_3); return preemph_max; } void intel_dp_get_adjust_train(struct intel_dp *intel_dp, const struct intel_crtc_state *crtc_state, enum drm_dp_phy dp_phy, const u8 link_status[DP_LINK_STATUS_SIZE]) { u8 v = 0; u8 p = 0; int lane; u8 voltage_max; u8 preemph_max; for (lane = 0; lane < crtc_state->lane_count; lane++) { v = max(v, drm_dp_get_adjust_request_voltage(link_status, lane)); p = max(p, drm_dp_get_adjust_request_pre_emphasis(link_status, lane)); } preemph_max = intel_dp_phy_preemph_max(intel_dp, dp_phy); if (p >= preemph_max) p = preemph_max | DP_TRAIN_MAX_PRE_EMPHASIS_REACHED; v = min(v, dp_voltage_max(p)); voltage_max = intel_dp_phy_voltage_max(intel_dp, crtc_state, dp_phy); if (v >= voltage_max) v = voltage_max | DP_TRAIN_MAX_SWING_REACHED; for (lane = 0; lane < 4; lane++) intel_dp->train_set[lane] = v | p; } static int intel_dp_training_pattern_set_reg(struct intel_dp *intel_dp, enum drm_dp_phy dp_phy) { return dp_phy == DP_PHY_DPRX ? DP_TRAINING_PATTERN_SET : DP_TRAINING_PATTERN_SET_PHY_REPEATER(dp_phy); } static bool intel_dp_set_link_train(struct intel_dp *intel_dp, const struct intel_crtc_state *crtc_state, enum drm_dp_phy dp_phy, u8 dp_train_pat) { int reg = intel_dp_training_pattern_set_reg(intel_dp, dp_phy); u8 buf[sizeof(intel_dp->train_set) + 1]; int len; intel_dp_program_link_training_pattern(intel_dp, crtc_state, dp_train_pat); buf[0] = dp_train_pat; /* DP_TRAINING_LANEx_SET follow DP_TRAINING_PATTERN_SET */ memcpy(buf + 1, intel_dp->train_set, crtc_state->lane_count); len = crtc_state->lane_count + 1; return drm_dp_dpcd_write(&intel_dp->aux, reg, buf, len) == len; } void intel_dp_set_signal_levels(struct intel_dp *intel_dp, const struct intel_crtc_state *crtc_state, enum drm_dp_phy dp_phy) { struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); u8 train_set = intel_dp->train_set[0]; char phy_name[10]; drm_dbg_kms(&dev_priv->drm, "Using vswing level %d%s, pre-emphasis level %d%s, at %s\n", train_set & DP_TRAIN_VOLTAGE_SWING_MASK, train_set & DP_TRAIN_MAX_SWING_REACHED ? " (max)" : "", (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) >> DP_TRAIN_PRE_EMPHASIS_SHIFT, train_set & DP_TRAIN_MAX_PRE_EMPHASIS_REACHED ? " (max)" : "", intel_dp_phy_name(dp_phy, phy_name, sizeof(phy_name))); if (intel_dp_phy_is_downstream_of_source(intel_dp, dp_phy)) intel_dp->set_signal_levels(intel_dp, crtc_state); } static bool intel_dp_reset_link_train(struct intel_dp *intel_dp, const struct intel_crtc_state *crtc_state, enum drm_dp_phy dp_phy, u8 dp_train_pat) { memset(intel_dp->train_set, 0, sizeof(intel_dp->train_set)); intel_dp_set_signal_levels(intel_dp, crtc_state, dp_phy); return intel_dp_set_link_train(intel_dp, crtc_state, dp_phy, dp_train_pat); } static bool intel_dp_update_link_train(struct intel_dp *intel_dp, const struct intel_crtc_state *crtc_state, enum drm_dp_phy dp_phy) { int reg = dp_phy == DP_PHY_DPRX ? DP_TRAINING_LANE0_SET : DP_TRAINING_LANE0_SET_PHY_REPEATER(dp_phy); int ret; intel_dp_set_signal_levels(intel_dp, crtc_state, dp_phy); ret = drm_dp_dpcd_write(&intel_dp->aux, reg, intel_dp->train_set, crtc_state->lane_count); return ret == crtc_state->lane_count; } static bool intel_dp_link_max_vswing_reached(struct intel_dp *intel_dp, const struct intel_crtc_state *crtc_state) { int lane; for (lane = 0; lane < crtc_state->lane_count; lane++) if ((intel_dp->train_set[lane] & DP_TRAIN_MAX_SWING_REACHED) == 0) return false; return true; } /* * Prepare link training by configuring the link parameters. On DDI platforms * also enable the port here. */ static bool intel_dp_prepare_link_train(struct intel_dp *intel_dp, const struct intel_crtc_state *crtc_state) { struct drm_i915_private *i915 = dp_to_i915(intel_dp); u8 link_config[2]; u8 link_bw, rate_select; if (intel_dp->prepare_link_retrain) intel_dp->prepare_link_retrain(intel_dp, crtc_state); intel_dp_compute_rate(intel_dp, crtc_state->port_clock, &link_bw, &rate_select); if (link_bw) drm_dbg_kms(&i915->drm, "Using LINK_BW_SET value %02x\n", link_bw); else drm_dbg_kms(&i915->drm, "Using LINK_RATE_SET value %02x\n", rate_select); /* Write the link configuration data */ link_config[0] = link_bw; link_config[1] = crtc_state->lane_count; if (drm_dp_enhanced_frame_cap(intel_dp->dpcd)) link_config[1] |= DP_LANE_COUNT_ENHANCED_FRAME_EN; drm_dp_dpcd_write(&intel_dp->aux, DP_LINK_BW_SET, link_config, 2); /* eDP 1.4 rate select method. */ if (!link_bw) drm_dp_dpcd_write(&intel_dp->aux, DP_LINK_RATE_SET, &rate_select, 1); link_config[0] = crtc_state->vrr.enable ? DP_MSA_TIMING_PAR_IGNORE_EN : 0; link_config[1] = DP_SET_ANSI_8B10B; drm_dp_dpcd_write(&intel_dp->aux, DP_DOWNSPREAD_CTRL, link_config, 2); intel_dp->DP |= DP_PORT_EN; return true; } static void intel_dp_link_training_clock_recovery_delay(struct intel_dp *intel_dp, enum drm_dp_phy dp_phy) { if (dp_phy == DP_PHY_DPRX) drm_dp_link_train_clock_recovery_delay(intel_dp->dpcd); else drm_dp_lttpr_link_train_clock_recovery_delay(); } /* * Perform the link training clock recovery phase on the given DP PHY using * training pattern 1. */ static bool intel_dp_link_training_clock_recovery(struct intel_dp *intel_dp, const struct intel_crtc_state *crtc_state, enum drm_dp_phy dp_phy) { struct drm_i915_private *i915 = dp_to_i915(intel_dp); u8 voltage; int voltage_tries, cr_tries, max_cr_tries; bool max_vswing_reached = false; /* clock recovery */ if (!intel_dp_reset_link_train(intel_dp, crtc_state, dp_phy, DP_TRAINING_PATTERN_1 | DP_LINK_SCRAMBLING_DISABLE)) { drm_err(&i915->drm, "failed to enable link training\n"); return false; } /* * The DP 1.4 spec defines the max clock recovery retries value * as 10 but for pre-DP 1.4 devices we set a very tolerant * retry limit of 80 (4 voltage levels x 4 preemphasis levels x * x 5 identical voltage retries). Since the previous specs didn't * define a limit and created the possibility of an infinite loop * we want to prevent any sync from triggering that corner case. */ if (intel_dp->dpcd[DP_DPCD_REV] >= DP_DPCD_REV_14) max_cr_tries = 10; else max_cr_tries = 80; voltage_tries = 1; for (cr_tries = 0; cr_tries < max_cr_tries; ++cr_tries) { u8 link_status[DP_LINK_STATUS_SIZE]; intel_dp_link_training_clock_recovery_delay(intel_dp, dp_phy); if (drm_dp_dpcd_read_phy_link_status(&intel_dp->aux, dp_phy, link_status) < 0) { drm_err(&i915->drm, "failed to get link status\n"); return false; } if (drm_dp_clock_recovery_ok(link_status, crtc_state->lane_count)) { drm_dbg_kms(&i915->drm, "clock recovery OK\n"); return true; } if (voltage_tries == 5) { drm_dbg_kms(&i915->drm, "Same voltage tried 5 times\n"); return false; } if (max_vswing_reached) { drm_dbg_kms(&i915->drm, "Max Voltage Swing reached\n"); return false; } voltage = intel_dp->train_set[0] & DP_TRAIN_VOLTAGE_SWING_MASK; /* Update training set as requested by target */ intel_dp_get_adjust_train(intel_dp, crtc_state, dp_phy, link_status); if (!intel_dp_update_link_train(intel_dp, crtc_state, dp_phy)) { drm_err(&i915->drm, "failed to update link training\n"); return false; } if ((intel_dp->train_set[0] & DP_TRAIN_VOLTAGE_SWING_MASK) == voltage) ++voltage_tries; else voltage_tries = 1; if (intel_dp_link_max_vswing_reached(intel_dp, crtc_state)) max_vswing_reached = true; } drm_err(&i915->drm, "Failed clock recovery %d times, giving up!\n", max_cr_tries); return false; } /* * Pick training pattern for channel equalization. Training pattern 4 for HBR3 * or for 1.4 devices that support it, training Pattern 3 for HBR2 * or 1.2 devices that support it, Training Pattern 2 otherwise. */ static u32 intel_dp_training_pattern(struct intel_dp *intel_dp, const struct intel_crtc_state *crtc_state, enum drm_dp_phy dp_phy) { bool source_tps3, sink_tps3, source_tps4, sink_tps4; /* * Intel platforms that support HBR3 also support TPS4. It is mandatory * for all downstream devices that support HBR3. There are no known eDP * panels that support TPS4 as of Feb 2018 as per VESA eDP_v1.4b_E1 * specification. * LTTPRs must support TPS4. */ source_tps4 = intel_dp_source_supports_hbr3(intel_dp); sink_tps4 = dp_phy != DP_PHY_DPRX || drm_dp_tps4_supported(intel_dp->dpcd); if (source_tps4 && sink_tps4) { return DP_TRAINING_PATTERN_4; } else if (crtc_state->port_clock == 810000) { if (!source_tps4) drm_dbg_kms(&dp_to_i915(intel_dp)->drm, "8.1 Gbps link rate without source HBR3/TPS4 support\n"); if (!sink_tps4) drm_dbg_kms(&dp_to_i915(intel_dp)->drm, "8.1 Gbps link rate without sink TPS4 support\n"); } /* * Intel platforms that support HBR2 also support TPS3. TPS3 support is * also mandatory for downstream devices that support HBR2. However, not * all sinks follow the spec. */ source_tps3 = intel_dp_source_supports_hbr2(intel_dp); sink_tps3 = dp_phy != DP_PHY_DPRX || drm_dp_tps3_supported(intel_dp->dpcd); if (source_tps3 && sink_tps3) { return DP_TRAINING_PATTERN_3; } else if (crtc_state->port_clock >= 540000) { if (!source_tps3) drm_dbg_kms(&dp_to_i915(intel_dp)->drm, ">=5.4/6.48 Gbps link rate without source HBR2/TPS3 support\n"); if (!sink_tps3) drm_dbg_kms(&dp_to_i915(intel_dp)->drm, ">=5.4/6.48 Gbps link rate without sink TPS3 support\n"); } return DP_TRAINING_PATTERN_2; } static void intel_dp_link_training_channel_equalization_delay(struct intel_dp *intel_dp, enum drm_dp_phy dp_phy) { if (dp_phy == DP_PHY_DPRX) { drm_dp_link_train_channel_eq_delay(intel_dp->dpcd); } else { const u8 *phy_caps = intel_dp_lttpr_phy_caps(intel_dp, dp_phy); drm_dp_lttpr_link_train_channel_eq_delay(phy_caps); } } /* * Perform the link training channel equalization phase on the given DP PHY * using one of training pattern 2, 3 or 4 depending on the source and * sink capabilities. */ static bool intel_dp_link_training_channel_equalization(struct intel_dp *intel_dp, const struct intel_crtc_state *crtc_state, enum drm_dp_phy dp_phy) { struct drm_i915_private *i915 = dp_to_i915(intel_dp); int tries; u32 training_pattern; u8 link_status[DP_LINK_STATUS_SIZE]; bool channel_eq = false; training_pattern = intel_dp_training_pattern(intel_dp, crtc_state, dp_phy); /* Scrambling is disabled for TPS2/3 and enabled for TPS4 */ if (training_pattern != DP_TRAINING_PATTERN_4) training_pattern |= DP_LINK_SCRAMBLING_DISABLE; /* channel equalization */ if (!intel_dp_set_link_train(intel_dp, crtc_state, dp_phy, training_pattern)) { drm_err(&i915->drm, "failed to start channel equalization\n"); return false; } for (tries = 0; tries < 5; tries++) { intel_dp_link_training_channel_equalization_delay(intel_dp, dp_phy); if (drm_dp_dpcd_read_phy_link_status(&intel_dp->aux, dp_phy, link_status) < 0) { drm_err(&i915->drm, "failed to get link status\n"); break; } /* Make sure clock is still ok */ if (!drm_dp_clock_recovery_ok(link_status, crtc_state->lane_count)) { intel_dp_dump_link_status(link_status); drm_dbg_kms(&i915->drm, "Clock recovery check failed, cannot " "continue channel equalization\n"); break; } if (drm_dp_channel_eq_ok(link_status, crtc_state->lane_count)) { channel_eq = true; drm_dbg_kms(&i915->drm, "Channel EQ done. DP Training " "successful\n"); break; } /* Update training set as requested by target */ intel_dp_get_adjust_train(intel_dp, crtc_state, dp_phy, link_status); if (!intel_dp_update_link_train(intel_dp, crtc_state, dp_phy)) { drm_err(&i915->drm, "failed to update link training\n"); break; } } /* Try 5 times, else fail and try at lower BW */ if (tries == 5) { intel_dp_dump_link_status(link_status); drm_dbg_kms(&i915->drm, "Channel equalization failed 5 times\n"); } return channel_eq; } static bool intel_dp_disable_dpcd_training_pattern(struct intel_dp *intel_dp, enum drm_dp_phy dp_phy) { int reg = intel_dp_training_pattern_set_reg(intel_dp, dp_phy); u8 val = DP_TRAINING_PATTERN_DISABLE; return drm_dp_dpcd_write(&intel_dp->aux, reg, &val, 1) == 1; } /** * intel_dp_stop_link_train - stop link training * @intel_dp: DP struct * @crtc_state: state for CRTC attached to the encoder * * Stop the link training of the @intel_dp port, disabling the training * pattern in the sink's DPCD, and disabling the test pattern symbol * generation on the port. * * What symbols are output on the port after this point is * platform specific: On DDI/VLV/CHV platforms it will be the idle pattern * with the pipe being disabled, on older platforms it's HW specific if/how an * idle pattern is generated, as the pipe is already enabled here for those. * * This function must be called after intel_dp_start_link_train(). */ void intel_dp_stop_link_train(struct intel_dp *intel_dp, const struct intel_crtc_state *crtc_state) { intel_dp->link_trained = true; intel_dp_disable_dpcd_training_pattern(intel_dp, DP_PHY_DPRX); intel_dp_program_link_training_pattern(intel_dp, crtc_state, DP_TRAINING_PATTERN_DISABLE); } static bool intel_dp_link_train_phy(struct intel_dp *intel_dp, const struct intel_crtc_state *crtc_state, enum drm_dp_phy dp_phy) { struct intel_connector *intel_connector = intel_dp->attached_connector; char phy_name[10]; bool ret = false; if (!intel_dp_link_training_clock_recovery(intel_dp, crtc_state, dp_phy)) goto out; if (!intel_dp_link_training_channel_equalization(intel_dp, crtc_state, dp_phy)) goto out; ret = true; out: drm_dbg_kms(&dp_to_i915(intel_dp)->drm, "[CONNECTOR:%d:%s] Link Training %s at link rate = %d, lane count = %d, at %s", intel_connector->base.base.id, intel_connector->base.name, ret ? "passed" : "failed", crtc_state->port_clock, crtc_state->lane_count, intel_dp_phy_name(dp_phy, phy_name, sizeof(phy_name))); return ret; } static void intel_dp_schedule_fallback_link_training(struct intel_dp *intel_dp, const struct intel_crtc_state *crtc_state) { struct intel_connector *intel_connector = intel_dp->attached_connector; if (intel_dp->hobl_active) { drm_dbg_kms(&dp_to_i915(intel_dp)->drm, "Link Training failed with HOBL active, not enabling it from now on"); intel_dp->hobl_failed = true; } else if (intel_dp_get_link_train_fallback_values(intel_dp, crtc_state->port_clock, crtc_state->lane_count)) { return; } /* Schedule a Hotplug Uevent to userspace to start modeset */ schedule_work(&intel_connector->modeset_retry_work); } /* Perform the link training on all LTTPRs and the DPRX on a link. */ static bool intel_dp_link_train_all_phys(struct intel_dp *intel_dp, const struct intel_crtc_state *crtc_state, int lttpr_count) { bool ret = true; int i; intel_dp_prepare_link_train(intel_dp, crtc_state); for (i = lttpr_count - 1; i >= 0; i--) { enum drm_dp_phy dp_phy = DP_PHY_LTTPR(i); ret = intel_dp_link_train_phy(intel_dp, crtc_state, dp_phy); intel_dp_disable_dpcd_training_pattern(intel_dp, dp_phy); if (!ret) break; } if (ret) intel_dp_link_train_phy(intel_dp, crtc_state, DP_PHY_DPRX); if (intel_dp->set_idle_link_train) intel_dp->set_idle_link_train(intel_dp, crtc_state); return ret; } /** * intel_dp_start_link_train - start link training * @intel_dp: DP struct * @crtc_state: state for CRTC attached to the encoder * * Start the link training of the @intel_dp port, scheduling a fallback * retraining with reduced link rate/lane parameters if the link training * fails. * After calling this function intel_dp_stop_link_train() must be called. */ void intel_dp_start_link_train(struct intel_dp *intel_dp, const struct intel_crtc_state *crtc_state) { /* * TODO: Reiniting LTTPRs here won't be needed once proper connector * HW state readout is added. */ int lttpr_count = intel_dp_init_lttpr_and_dprx_caps(intel_dp); if (lttpr_count < 0) return; if (!intel_dp_link_train_all_phys(intel_dp, crtc_state, lttpr_count)) intel_dp_schedule_fallback_link_training(intel_dp, crtc_state); }