// SPDX-License-Identifier: GPL-2.0-only /* * Copyright (c) 2012-2020, The Linux Foundation. All rights reserved. */ #include #include #include "dp_reg.h" #include "dp_aux.h" #define DP_AUX_ENUM_STR(x) #x struct dp_aux_private { struct device *dev; struct dp_catalog *catalog; struct mutex mutex; struct completion comp; u32 aux_error_num; u32 retry_cnt; bool cmd_busy; bool native; bool read; bool no_send_addr; bool no_send_stop; u32 offset; u32 segment; u32 isr; struct drm_dp_aux dp_aux; }; static const char *dp_aux_get_error(u32 aux_error) { switch (aux_error) { case DP_AUX_ERR_NONE: return DP_AUX_ENUM_STR(DP_AUX_ERR_NONE); case DP_AUX_ERR_ADDR: return DP_AUX_ENUM_STR(DP_AUX_ERR_ADDR); case DP_AUX_ERR_TOUT: return DP_AUX_ENUM_STR(DP_AUX_ERR_TOUT); case DP_AUX_ERR_NACK: return DP_AUX_ENUM_STR(DP_AUX_ERR_NACK); case DP_AUX_ERR_DEFER: return DP_AUX_ENUM_STR(DP_AUX_ERR_DEFER); case DP_AUX_ERR_NACK_DEFER: return DP_AUX_ENUM_STR(DP_AUX_ERR_NACK_DEFER); default: return "unknown"; } } static u32 dp_aux_write(struct dp_aux_private *aux, struct drm_dp_aux_msg *msg) { u32 data[4], reg, len; u8 *msgdata = msg->buffer; int const AUX_CMD_FIFO_LEN = 128; int i = 0; if (aux->read) len = 4; else len = msg->size + 4; /* * cmd fifo only has depth of 144 bytes * limit buf length to 128 bytes here */ if (len > AUX_CMD_FIFO_LEN) { DRM_ERROR("buf size greater than allowed size of 128 bytes\n"); return 0; } /* Pack cmd and write to HW */ data[0] = (msg->address >> 16) & 0xf; /* addr[19:16] */ if (aux->read) data[0] |= BIT(4); /* R/W */ data[1] = (msg->address >> 8) & 0xff; /* addr[15:8] */ data[2] = msg->address & 0xff; /* addr[7:0] */ data[3] = (msg->size - 1) & 0xff; /* len[7:0] */ for (i = 0; i < len; i++) { reg = (i < 4) ? data[i] : msgdata[i - 4]; /* index = 0, write */ reg = (((reg) << DP_AUX_DATA_OFFSET) & DP_AUX_DATA_MASK) | DP_AUX_DATA_WRITE; if (i == 0) reg |= DP_AUX_DATA_INDEX_WRITE; aux->catalog->aux_data = reg; dp_catalog_aux_write_data(aux->catalog); } dp_catalog_aux_clear_trans(aux->catalog, false); dp_catalog_aux_clear_hw_interrupts(aux->catalog); reg = 0; /* Transaction number == 1 */ if (!aux->native) { /* i2c */ reg |= DP_AUX_TRANS_CTRL_I2C; if (aux->no_send_addr) reg |= DP_AUX_TRANS_CTRL_NO_SEND_ADDR; if (aux->no_send_stop) reg |= DP_AUX_TRANS_CTRL_NO_SEND_STOP; } reg |= DP_AUX_TRANS_CTRL_GO; aux->catalog->aux_data = reg; dp_catalog_aux_write_trans(aux->catalog); return len; } static int dp_aux_cmd_fifo_tx(struct dp_aux_private *aux, struct drm_dp_aux_msg *msg) { u32 ret, len, timeout; int aux_timeout_ms = HZ/4; reinit_completion(&aux->comp); len = dp_aux_write(aux, msg); if (len == 0) { DRM_ERROR("DP AUX write failed\n"); return -EINVAL; } timeout = wait_for_completion_timeout(&aux->comp, aux_timeout_ms); if (!timeout) { DRM_ERROR("aux %s timeout\n", (aux->read ? "read" : "write")); return -ETIMEDOUT; } if (aux->aux_error_num == DP_AUX_ERR_NONE) { ret = len; } else { DRM_ERROR_RATELIMITED("aux err: %s\n", dp_aux_get_error(aux->aux_error_num)); ret = -EINVAL; } return ret; } static void dp_aux_cmd_fifo_rx(struct dp_aux_private *aux, struct drm_dp_aux_msg *msg) { u32 data; u8 *dp; u32 i, actual_i; u32 len = msg->size; dp_catalog_aux_clear_trans(aux->catalog, true); data = DP_AUX_DATA_INDEX_WRITE; /* INDEX_WRITE */ data |= DP_AUX_DATA_READ; /* read */ aux->catalog->aux_data = data; dp_catalog_aux_write_data(aux->catalog); dp = msg->buffer; /* discard first byte */ data = dp_catalog_aux_read_data(aux->catalog); for (i = 0; i < len; i++) { data = dp_catalog_aux_read_data(aux->catalog); *dp++ = (u8)((data >> DP_AUX_DATA_OFFSET) & 0xff); actual_i = (data >> DP_AUX_DATA_INDEX_OFFSET) & 0xFF; if (i != actual_i) DRM_ERROR("Index mismatch: expected %d, found %d\n", i, actual_i); } } static void dp_aux_native_handler(struct dp_aux_private *aux) { u32 isr = aux->isr; if (isr & DP_INTR_AUX_I2C_DONE) aux->aux_error_num = DP_AUX_ERR_NONE; else if (isr & DP_INTR_WRONG_ADDR) aux->aux_error_num = DP_AUX_ERR_ADDR; else if (isr & DP_INTR_TIMEOUT) aux->aux_error_num = DP_AUX_ERR_TOUT; if (isr & DP_INTR_NACK_DEFER) aux->aux_error_num = DP_AUX_ERR_NACK; if (isr & DP_INTR_AUX_ERROR) { aux->aux_error_num = DP_AUX_ERR_PHY; dp_catalog_aux_clear_hw_interrupts(aux->catalog); } complete(&aux->comp); } static void dp_aux_i2c_handler(struct dp_aux_private *aux) { u32 isr = aux->isr; if (isr & DP_INTR_AUX_I2C_DONE) { if (isr & (DP_INTR_I2C_NACK | DP_INTR_I2C_DEFER)) aux->aux_error_num = DP_AUX_ERR_NACK; else aux->aux_error_num = DP_AUX_ERR_NONE; } else { if (isr & DP_INTR_WRONG_ADDR) aux->aux_error_num = DP_AUX_ERR_ADDR; else if (isr & DP_INTR_TIMEOUT) aux->aux_error_num = DP_AUX_ERR_TOUT; if (isr & DP_INTR_NACK_DEFER) aux->aux_error_num = DP_AUX_ERR_NACK_DEFER; if (isr & DP_INTR_I2C_NACK) aux->aux_error_num = DP_AUX_ERR_NACK; if (isr & DP_INTR_I2C_DEFER) aux->aux_error_num = DP_AUX_ERR_DEFER; if (isr & DP_INTR_AUX_ERROR) { aux->aux_error_num = DP_AUX_ERR_PHY; dp_catalog_aux_clear_hw_interrupts(aux->catalog); } } complete(&aux->comp); } static void dp_aux_update_offset_and_segment(struct dp_aux_private *aux, struct drm_dp_aux_msg *input_msg) { u32 edid_address = 0x50; u32 segment_address = 0x30; bool i2c_read = input_msg->request & (DP_AUX_I2C_READ & DP_AUX_NATIVE_READ); u8 *data; if (aux->native || i2c_read || ((input_msg->address != edid_address) && (input_msg->address != segment_address))) return; data = input_msg->buffer; if (input_msg->address == segment_address) aux->segment = *data; else aux->offset = *data; } /** * dp_aux_transfer_helper() - helper function for EDID read transactions * * @aux: DP AUX private structure * @input_msg: input message from DRM upstream APIs * @send_seg: send the segment to sink * * return: void * * This helper function is used to fix EDID reads for non-compliant * sinks that do not handle the i2c middle-of-transaction flag correctly. */ static void dp_aux_transfer_helper(struct dp_aux_private *aux, struct drm_dp_aux_msg *input_msg, bool send_seg) { struct drm_dp_aux_msg helper_msg; u32 message_size = 0x10; u32 segment_address = 0x30; u32 const edid_block_length = 0x80; bool i2c_mot = input_msg->request & DP_AUX_I2C_MOT; bool i2c_read = input_msg->request & (DP_AUX_I2C_READ & DP_AUX_NATIVE_READ); if (!i2c_mot || !i2c_read || (input_msg->size == 0)) return; /* * Sending the segment value and EDID offset will be performed * from the DRM upstream EDID driver for each block. Avoid * duplicate AUX transactions related to this while reading the * first 16 bytes of each block. */ if (!(aux->offset % edid_block_length) || !send_seg) goto end; aux->read = false; aux->cmd_busy = true; aux->no_send_addr = true; aux->no_send_stop = true; /* * Send the segment address for every i2c read in which the * middle-of-tranaction flag is set. This is required to support EDID * reads of more than 2 blocks as the segment address is reset to 0 * since we are overriding the middle-of-transaction flag for read * transactions. */ if (aux->segment) { memset(&helper_msg, 0, sizeof(helper_msg)); helper_msg.address = segment_address; helper_msg.buffer = &aux->segment; helper_msg.size = 1; dp_aux_cmd_fifo_tx(aux, &helper_msg); } /* * Send the offset address for every i2c read in which the * middle-of-transaction flag is set. This will ensure that the sink * will update its read pointer and return the correct portion of the * EDID buffer in the subsequent i2c read trasntion triggered in the * native AUX transfer function. */ memset(&helper_msg, 0, sizeof(helper_msg)); helper_msg.address = input_msg->address; helper_msg.buffer = &aux->offset; helper_msg.size = 1; dp_aux_cmd_fifo_tx(aux, &helper_msg); end: aux->offset += message_size; if (aux->offset == 0x80 || aux->offset == 0x100) aux->segment = 0x0; /* reset segment at end of block */ } /* * This function does the real job to process an AUX transaction. * It will call aux_reset() function to reset the AUX channel, * if the waiting is timeout. */ static ssize_t dp_aux_transfer(struct drm_dp_aux *dp_aux, struct drm_dp_aux_msg *msg) { ssize_t ret; int const aux_cmd_native_max = 16; int const aux_cmd_i2c_max = 128; struct dp_aux_private *aux = container_of(dp_aux, struct dp_aux_private, dp_aux); mutex_lock(&aux->mutex); aux->native = msg->request & (DP_AUX_NATIVE_WRITE & DP_AUX_NATIVE_READ); /* Ignore address only message */ if ((msg->size == 0) || (msg->buffer == NULL)) { msg->reply = aux->native ? DP_AUX_NATIVE_REPLY_ACK : DP_AUX_I2C_REPLY_ACK; ret = msg->size; goto unlock_exit; } /* msg sanity check */ if ((aux->native && (msg->size > aux_cmd_native_max)) || (msg->size > aux_cmd_i2c_max)) { DRM_ERROR("%s: invalid msg: size(%zu), request(%x)\n", __func__, msg->size, msg->request); ret = -EINVAL; goto unlock_exit; } dp_aux_update_offset_and_segment(aux, msg); dp_aux_transfer_helper(aux, msg, true); aux->read = msg->request & (DP_AUX_I2C_READ & DP_AUX_NATIVE_READ); aux->cmd_busy = true; if (aux->read) { aux->no_send_addr = true; aux->no_send_stop = false; } else { aux->no_send_addr = true; aux->no_send_stop = true; } ret = dp_aux_cmd_fifo_tx(aux, msg); if (ret < 0) { usleep_range(400, 500); /* at least 400us to next try */ goto unlock_exit; } if (aux->aux_error_num == DP_AUX_ERR_NONE) { if (aux->read) dp_aux_cmd_fifo_rx(aux, msg); msg->reply = aux->native ? DP_AUX_NATIVE_REPLY_ACK : DP_AUX_I2C_REPLY_ACK; } else { /* Reply defer to retry */ msg->reply = aux->native ? DP_AUX_NATIVE_REPLY_DEFER : DP_AUX_I2C_REPLY_DEFER; } /* Return requested size for success or retry */ ret = msg->size; aux->retry_cnt = 0; unlock_exit: aux->cmd_busy = false; mutex_unlock(&aux->mutex); return ret; } void dp_aux_isr(struct drm_dp_aux *dp_aux) { struct dp_aux_private *aux; if (!dp_aux) { DRM_ERROR("invalid input\n"); return; } aux = container_of(dp_aux, struct dp_aux_private, dp_aux); aux->isr = dp_catalog_aux_get_irq(aux->catalog); if (!aux->cmd_busy) return; if (aux->native) dp_aux_native_handler(aux); else dp_aux_i2c_handler(aux); } void dp_aux_reconfig(struct drm_dp_aux *dp_aux) { struct dp_aux_private *aux; aux = container_of(dp_aux, struct dp_aux_private, dp_aux); dp_catalog_aux_update_cfg(aux->catalog); dp_catalog_aux_reset(aux->catalog); } void dp_aux_init(struct drm_dp_aux *dp_aux) { struct dp_aux_private *aux; if (!dp_aux) { DRM_ERROR("invalid input\n"); return; } aux = container_of(dp_aux, struct dp_aux_private, dp_aux); dp_catalog_aux_enable(aux->catalog, true); aux->retry_cnt = 0; } void dp_aux_deinit(struct drm_dp_aux *dp_aux) { struct dp_aux_private *aux; aux = container_of(dp_aux, struct dp_aux_private, dp_aux); dp_catalog_aux_enable(aux->catalog, false); } int dp_aux_register(struct drm_dp_aux *dp_aux) { struct dp_aux_private *aux; int ret; if (!dp_aux) { DRM_ERROR("invalid input\n"); return -EINVAL; } aux = container_of(dp_aux, struct dp_aux_private, dp_aux); aux->dp_aux.name = "dpu_dp_aux"; aux->dp_aux.dev = aux->dev; aux->dp_aux.transfer = dp_aux_transfer; ret = drm_dp_aux_register(&aux->dp_aux); if (ret) { DRM_ERROR("%s: failed to register drm aux: %d\n", __func__, ret); return ret; } return 0; } void dp_aux_unregister(struct drm_dp_aux *dp_aux) { drm_dp_aux_unregister(dp_aux); } struct drm_dp_aux *dp_aux_get(struct device *dev, struct dp_catalog *catalog) { struct dp_aux_private *aux; if (!catalog) { DRM_ERROR("invalid input\n"); return ERR_PTR(-ENODEV); } aux = devm_kzalloc(dev, sizeof(*aux), GFP_KERNEL); if (!aux) return ERR_PTR(-ENOMEM); init_completion(&aux->comp); aux->cmd_busy = false; mutex_init(&aux->mutex); aux->dev = dev; aux->catalog = catalog; aux->retry_cnt = 0; return &aux->dp_aux; } void dp_aux_put(struct drm_dp_aux *dp_aux) { struct dp_aux_private *aux; if (!dp_aux) return; aux = container_of(dp_aux, struct dp_aux_private, dp_aux); mutex_destroy(&aux->mutex); devm_kfree(aux->dev, aux); }